Catching the Wave of Disruptive Innovations in Real World Evidence

Yousuke Nishida
Real World Data Science Dept.
Chugai Pharmaceutical Co., Ltd.
The contents of this slide are partially omitted for website.
Today’s goals

• In the healthcare industry, advances in real-world data and digital solutions are being accompanied by the onset of disruptive innovation.

• The days of drug companies vying for higher market value are coming to an end, and an era of competition with heavy hitters such as GAFA and Rakuten is beginning.

• Data scientists who are able to adapt to the changing environment without shying away will survive. → Catching the wave of innovation.

• This presentation will be structured around a discussion of database research, an innovation in Japan’s Good Post-marketing Study Practice (GPSP). And we will end with a vision for a future that utilizes Medical Data Vision (MDV) and Amazon Web Services (AWS), which will form the core of innovation.

The opinions expressed herein belong solely to the presenter. They do not represent an official stance of the presenter’s employer or its stakeholders in any way.
What is the difference between Real World Data and Real World Evidence?
The way I see Real World Evidence

Real World Evidence is the truth obtained by utilizing real world data such as “subjective patient data” and “objective patient data.”

Subjective patient data
- SNS, PRO, QOL, PGHD, PX,
- Journey map, Communication Log

Objective patient data
- DPC, prescription and electronic medical record data, registries, etc.
Subjective patient data
Example: ePRO

- **Family/Patient**
 - (3) Accurate data entry

- **Hospital/Clinic**
 - (1) Quickly ascertain patient status
 - (2) Data entry reminders via email
 - Quickly promote appropriate use
 - Can be checked at any time

- **Pharma**
 - Timely data collection

ePRO system
(cloud server)
Subjective patient data
Example: Natural language on social media

Events that are difficult to communicate to a doctor. Abnormal occurrence of an event.
Participants in today’s session include many of the leaders and managers who are promoting database research.

I will provide an overview of the WT3 Pilot Study, which used the two commercially available diagnosis procedure combination (DPC) databases (commercial databases), including my experience—as well as some of my trials and tribulations—as team leader. In particular I will discuss some of the pitfalls for data analysts.
What is the WT3 pilot?

• In 2016, before use of MID-NET started following amendment of GPSP, arrangements were made with Japanese regulators to enable initiation of database studies using commercial databases.

• The Japanese regulatory agency wanted to “perform a pilot study to confirm that there are no problems” before issuing official notifications or ordinances on database studies.

• A pilot study was performed by Working Team 3* (WT3) of the Federation of Pharmaceutical Manufacturers’ Associations of Japan (4 of the companies participating in WT3).

 * A team comprising members from MHLW, PMDA, and the industry, tasked with exploring topics related to pharmacoepidemiology and database utilization.

Key achievements

● Clarifying issues with ensuring reliability when implementing database studies → “Considerations for ensuring reliability of postmarketing database studies of pharmaceuticals”

● Creation of template wording for protocols. Industry-wide standardization of terminology and definitions → “Template wording for postmarketing database study protocols”
Studies using commercial databases

(1) Healthcare data
(2) Data provision
(3) Data aggregation
(4) Data sales
(5) Analysis, report of results

- Corporate Health Insurance
- Health insurance company (JMDC, etc.)
- DPC (MDV, etc.)
- Database company
- Analyzed data also OK
- Pharmaceutical company

● Database studies are easy to plan if the design specifies a comparator. But it is necessary to understand the characteristics of each type of database. (an understanding of pros and cons)
→ Databases are not universal.
Select the study method that best fits the research question. There are many cases in which general drug use surveillance is appropriate.
Clinical question used in pilot

• During treatment with Y-type agents, acute pancreatitis occurs in rare cases.

• There are different descriptions in the package inserts of various companies’ Y-type agents.

• There are a small number of reports of acute pancreatitis in past cumulative data on Drug A.
 • No adverse reaction reports of acute pancreatitis in Japanese clinical studies of Drug A or postmarketing all-patient surveillance of Drug A.
 Very small number of cumulative acute pancreatitis adverse reactions to Drug A.

→ Compared to treatment with similar drugs (Y-type agents), is the incidence of acute pancreatitis comparable? Different?
PECOT Details

Participants
In patients with Cancer X who are eligible for treatment with Y-type agents,

Exposure
If Drug A is administered,

Comparison
Compared to treatment with similar drugs (Y-type agents),

Outcome
Is the incidence of acute pancreatitis comparable?

Time
From marketing start of Y-type agents to study implementation

PECOT framework of pilot

Calculate the incidence of acute pancreatitis when using either Drug A or Y-type agents to treat patients who have Cancer X, and consider the adjusted odds ratio corrected for patient baseline characteristics.
Study overview

<table>
<thead>
<tr>
<th>Design</th>
<th>Cohort design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>Not set</td>
</tr>
<tr>
<td></td>
<td>(because event incidence <0.1%; signal detection objective)</td>
</tr>
</tbody>
</table>
| **Outcome definition** | (1) (primary) Acute pancreatitis, ICD-10: K85 (excluding pancreatic abscess)
(2) (secondary) In line with (1), intervention for acute pancreatitis, drug |
| **Items for assessment** | Incidence of cases with acute pancreatitis in Drug A group and comparator group
Perform logistic regression using whether acute pancreatitis occurred as the response variable and treatment group, sex, age, gallstones, and alcoholism as explanatory variables. Assess risk by calculating the adjusted odds ratio and 95% confidence interval of the Drug A group relative to the comparator group. |

ICD: International Classification of Diseases
Observation period

Date of first prescription

Data period

Date of last dose, date of regimen change, etc.

Ongoing prescription period

Grace period\(^2\)

Look back period\(^1\)

Observation period

1: Period for confirming pre-exposure confounding factors. Set separately according to characteristics of each database.

2: Set at +30 days. Sensitivity analysis of 0 days and +60 days conducted separately.
Details of pilot protocol are available below (in Japanese)

URL: http://www.jpma.or.jp/medicine/shinyaku/tiken/allotment/db_inspect.html
Lessons from the pilot

● Different characteristics of health insurance and DPC databases
 Definition of sample size, age groups, look back period, new user design
 → Each database has its strengths and weaknesses
 It is necessary to select the appropriate database after considering the characteristics of the particular field in light of the research question.

● Some confounding factors are not present in databases.
 → History of alcohol consumption is not available, so presence of alcoholism is used instead.
Lessons from the pilot

● Consideration of study design
 • Dealing with competing risks → whether tracking time is needed?
 • Propensity score method (matching, inverse probability weighting) → effects of small sample size, confounding factor alternatives?
 • Approach to unexpected confounding (instrumental variables method) → issue with adherence to preconditions?

● It is better for pharmaceutical data scientists to also be knowledgeable about diseases and GxP.

In particular, study leaders need to have a wide-ranging, comprehensive skill set and not stop at specializing in one field.
Leader’s wide-ranging area of expertise

• It is essential for database study leaders to have a sense of balance!!

Clinical function
- MD
- Safety assurance
- measures responsible Specialist

Analysis function
- Data manager
- Biostatistician
- Epidemiologist

Quality function
- Outsourcing
- responsible System
- SOP

Leader

External
- PMDA handling
- Database vendor
- Notifications
- Case studies
Key points about using medical data

- Awareness of selecting the optimal database for a research question according to a clear understanding of the characteristics of health insurance and DPC data.

<table>
<thead>
<tr>
<th>Type</th>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
</table>
| Health insurance database | Highly traceable and consistent.
→ Can set a long look back period.
→ High degree of reliability regarding confounding factors and new user design. | Data on those ≥65 years old unavailable.
Lab test results unavailable.
(medical check data available) |
| DPC database | Not age-dependent.
Lab test results available (10% of total).
High coverage of conditions mainly treated at acute care facilities.
Database of >25 million people available. | Restricted to acute care hospitals.
Issues with traceability. |
An innovative future made a reality by MDV & AWS

Data Lake (AWS)

Subjective patient data

Objective patient data (including MDV data)

Data scientist

Data scientist

Data scientist

Data scientist