Mapping Reported Term for the Adverse Event into MedDRA Using Deep Learning

Yoshihiro Nakashima
Standardization and Management Group, Data Science, Development
Astellas Pharma Inc.
September 4, 2018
Agenda

I. Introduction
II. MedDRA Mapping Process
III. Characteristics of Reported Term and MedDRA
IV. Building Deep Neural Network
V. Summary
Introduction
Introduction

Today, it is said that artificial intelligence (AI) is the third boom, and not a day passed without hearing AI. This boom is led by deep neural network (DNN) using technique of deep learning. DNN made tasks (e.g. image recognition, natural language processing, speech recognition) more advanced than ever.

In this presentation, I will implement deep learning to map reported term for adverse event into MedDRA. The procedure consists of two steps. First, converts each word in reported term into numeric vector produced by word2vec using Wikipedia data. Second, trains DNN using words represented by numeric vectors. Through this implementation, I would like to examine the applicability of AI technology to clinical trials.
MedDRA Mapping Process
MedDRA Mapping Process: Overview

Investigator

eCRF: Reported Term
Cramps in the calves (right leg)

Rawdata: PT
Muscle spasms

Today’s Topic
MedDRA Mapping Process: Basic

eCRF: Reported Term

Manual

Matching Existing List (synonym)

Rawdata: PT
MedDRA Mapping Process: Today’s Topic

- eCRF: Reported Term
 - Pre-Processing
 - Word Embedding
 - Deep Neural Network
 - Rawdata: PT

Absorb External Data (e.g. Wikipedia)
Pre-Processing

Word Segmentation

Original: “Cramps in the calves (right leg)”
-> Replace text: “cramps in the calves right leg ”
-> Separate by space: “cramps”, “in” “the”, ”calves”, “right”, “leg”

Drop Stop-words

“cramps”, “in” “the”, ”calves”, “right”, “leg”
-> “cramps”, ”calves”, “right”, “leg”
 (#words = 4)
Vectorize the word using Word2Vec to “calculate” words (i.e. Plus, Minus, Distance)

<table>
<thead>
<tr>
<th>Dictionary</th>
<th>Vocabulary</th>
<th>Embeddable Words in Reported Term / All Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wikipedia*¹</td>
<td>2.2 million</td>
<td>2300 / 2600</td>
</tr>
<tr>
<td>Google News*²</td>
<td>3 million</td>
<td>2000 / 2600</td>
</tr>
</tbody>
</table>

*¹: https://dumps.wikimedia.org/enwiki/latest/
*²: https://code.google.com/archive/p/word2vec/
Deep Neural Network

Structure of Neural Network

Simple Neural Network (NN)
• No structure
• Each layers are fully connected

Bidirectional Recurrent Neural Network (BRNN)
• Treat sequence of the data
• Network is trained by Bidirectional information (Past and Future information)
Characteristics of Reported Term and MedDRA
Distribution of Pattern and Record

Pattern: Unique Pre-processed Reported Term
Record: CRF Record
Distribution of #Words per Pattern

- #Words / Pattern

<table>
<thead>
<tr>
<th>#Words / Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7≥</td>
</tr>
</tbody>
</table>

% distribution:
- 1 word: 10%
- 2 words: 30%
- 3 words: 25%
- 4 words: 15%
- 5 words: 5%
- 6 words: 1%
- 7 or more: 1%
Building Deep Neural Network
Split Data into Training Data, Validation Data, and Test Data

Split Data
- Training Data
- Validation Data
- Test Data (at least 1 reported term per each PT)

Build Neural Network
- Construct neural network using training data and validation data
- Evaluate neural network by test data
Accuracy of each Structure by Original Data

BRNN

Simple NN

Accuracy for Test: 43%

Accuracy for Test: 42%
Improve Training

Data Acquisition
• Medical history data
• MedDRA dictionary (LLT is linked to PT)

Data Augmentation
Image data
• Rotation, Shift, etc.

Text data
• Replace with Synonyms
• Back translating
• Permutate the words
Accuracy of BRNN by each Training Data

Permutated Training Data

Original Training Data

Accuracy for Test: 59%

Accuracy for Test: 43%
Accuracy of BRNN by Test Data

Improved accuracy using permutated training data
But is the accuracy the best measurement to your purpose?
Summary

- Implemented MedDRA mapping process using DNN.
- BRNN is better than simple NN.
- Word permutation improved test accuracy, but still over-fitting.
- Consider process and performance measurement and based on your purpose before implicate to real world.
References

• 斎藤康毅, ゼロから作るDeep Learning 2 - 自然言語処理編, オライリージャパン, 2018
• Keras document, https://keras.io/
• Mike Schuster and Kuldip K. Paliwal, Bidirectional Recurrent Neural Networks, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 11, NOVEMBER 1997