

Building an Organization to Accelerate Data Utilization

Hideki Ninomiya Datack Inc

Career

- Tokyo University(Doctor of Medicine)
- Kansai Medical University
 - neurosurgeon
- Medley, Inc.
 - Medical Information
 - Telemedicine
- 3idea, Inc.
 - Data Science
- Datack, Inc.

Skill

- SQL, R, Python
- AWS
- epidemiology, data engineering, machine learning, natural language processing
 © 2020 DATACK.inc.

Real World Data Analysis

- Epidemiology, Data Engineering
- Claims data, Registry, EHR
- Database study

Real World Evidence

Building a clinical database in collaboration with hospitals

Goal: Application to Approval

- Area
 - Rheumatoid Arthritis

Today's topic

- Why do we use RWD?
- Challenges in utilizing RWD
- Four Keys to Organization Building
- Practices

Why do we use RWD?

Why do we use RWD?

First of all, we need to clarify the purpose of RWD utilization.

Advanced real-world-evidence analytics can play an important role across the pharma value chain.

R&D

Identify unmet need:

· Inform research decisions

Innovate in trial design:

· Use synthetic control arms

Improve trial design:

- Define inclusion/exclusion criteria and end-points
- · Optimize site selection
- · Accelerate recruitment

Accelerate time to market

Refine formularies:

 Determine optimal dosing based on patient response

Monitor real-world outcomes:

- · Quantify unmet need
- Understand safety and efficacy profiles

Market access

Improve evidence of economic value:

- Demonstrate economic value of treatment to payer
- Compare trial data with real-world evidence (RWE) to strengthen dossier
- Enable outcomesbased pricing

Improve formulary position:

- Achieve better patient access
- Show efficacy and safety through head-to-head in silico trials

Achieve label expansion:

 Use RWE to eliminate need for new randomized clinical trial

Sales and marketing

Improve targeting of commercial activities:

- Target underdiagnosed patients
- · Identify "super responders"
- Identify patients likely to switch or discontinue
- Inform design of patient services/solutions

Refine commercial strategy:

- Shape product positioning
- Understand healthcareprovider (HCP) decision making and impact on outcomes
- Sharpen understanding of influence networks

Build clinical-decisionsupport systems:

 Provide recommendations at point of care based on predictions of outcomes, risk, or disease progression

Medical

Improve pharmacovigilance:

- Monitor real-world usage for safety and adverse events
- Rapidly create granular view on benefits/risks

Strengthen evidence for differentiation:

- Analyze efficacy in understudied populations
- Identify subpopulations for which effect outperforms trials

Improve effectiveness of medical affairs:

 Monitor unmet patient need at HCP level

Improve adherence:

 Support personal engagement to drive adherence and capture patient-reported outcomes with digital tools

How pharma companies are applying advanced analytics to real-world evidence generation | McKinsey

Why do we use RWD?

green: start work → red: high impact, challenging

R&D

Identify unmet need:

· Inform research decisions

Innovate in trial design:

Use synthetic control arms

Improve trial design:

- Define inclusion/exclusion criteria and end-points
- Optimize site selection
- Accelerate recruitment

Accelerate time to market

Refine formularies:

 Determine optimal dosing based on patient response

Monitor real-world outcomes:

- · Quantify unmet need
- Understand safety and efficacy profiles

Market access

Improve evidence of economic value:

- Demonstrate economic value of treatment to payer
- Compare trial data with real-world evidence (RWE) to strengthen dossier
- Enable outcomesbased pricing

Improve formulary position:

- Achieve better patient access
- Show efficacy and safety through head-to-head in silico trials

Achieve label expansion:

 Use RWE to eliminate need for new randomized clinical trial

Sales and marketing

Improve targeting of commercial activities:

- Target underdiagnosed patients
- Identify "super responders"
- Identify patients likely to switch or discontinue
- Inform design of patient services/solutions

Refine commercial strategy:

- · Shape product positioning
- Understand healthcareprovider (HCP) decision making and impact on outcomes
- Sharpen understanding of influence networks

Build clinical-decisionsupport systems:

 Provide recommendations at point of care based on predictions of outcomes, risk, or disease progression

Medical

Improve pharmacovigilance:

- Monitor real-world usage for safety and adverse events
- Rapidly create granular view on benefits/risks

Strengthen evidence for differentiation:

- Analyze efficacy in understudied populations
- Identify subpopulations for which effect outperforms trials

Improve effectiveness of medical affairs:

 Monitor unmet patient need at HCP level

Improve adherence:

 Support personal engagement to drive adherence and capture patient-reported outcomes with digital tools

Challenges in utilizing RWD

Challenges in utilizing RWD

- 1. Insufficient human resources and organization
 - Today's main topic
- 2. Quality and Quantity of RWD
 - Bias, Confounding
 - Lack of required clinical data
 - Not enough patients
- 3. Regulation
 - Approval
 - pharmacovigilance

Frequent bias, confounding

Category/Subcategory	Percentage (%) ^{*2}	論文数 ^{※1}
Confounding	63.2	74
Confounding by indication	32.5	38
Time-dependent confounding	6.0	7
Unmeasured/residual confounding	28.2	33
Healthy user/adherer effect	5.1	6
Selection bias	47.0	55
Protopathic bias	3.4	4
Losses to follow-up (informative censoring)	2.6	3
Depletion of susceptibles (prevalent user bias)	10.3	12
Missing data	17.9	21
Measurement bias	46.2	54
Misclassification bias	43.6	51
Misclassification of exposure	23.9	28
Misclassification of outcome	28.2	33
Time-related bias	30.8	36
Immortal time bias	25.6	30
Immeasurable time bias	3.4	4
Time-window bias	2.6	3
Time-lag bias	0.9	1

Prada-Ramallal, G., Takkouche, B. & Figueiras, A. Bias in pharmacoepidemiologic studies using secondary health care databases: a scoping review. BMC Med Res Methodol 19, 53 (2019). © 2020 DATACK,inc.

Solutions to the Challenges

- 1. Insufficient human resources and organization
 - Today's main topic
- 2. Quality and Quantity of RWD
 - Bias, Confounding -
 - Lack of required clinical data
 - Not enough patients -

Epidemiology Understanding of data

Building new databases

- 3. Regulation
 - Approval -

pharmacovigilance

Accumulation by various stakeholders

Four Keys to Organization Building

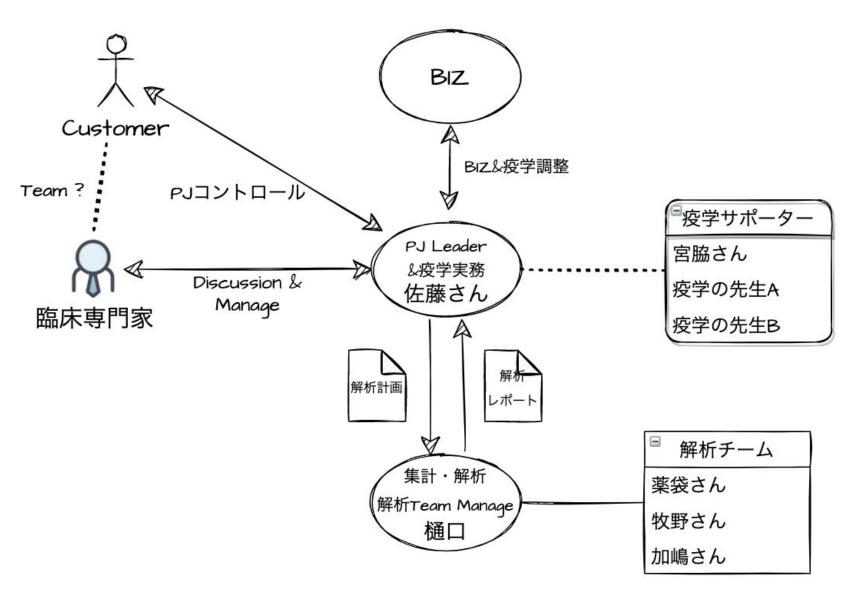
Four Keys to Organization Building

- 1. A person who makes the strategy
- 2. Epidemiologists (RWD experts)
- 3. Each department, each person, gains experience
- 4. Create a system for using RWD

13

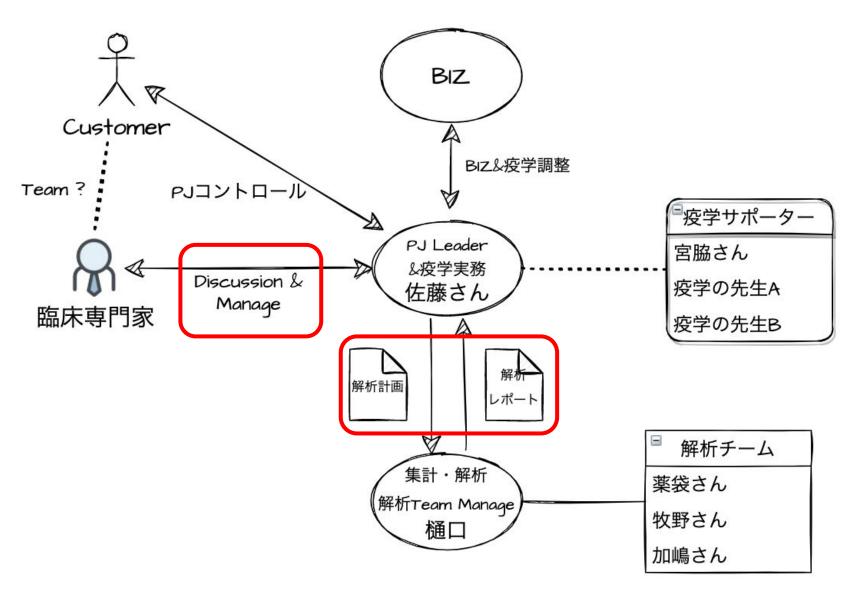
Required skill of Epidemiologists

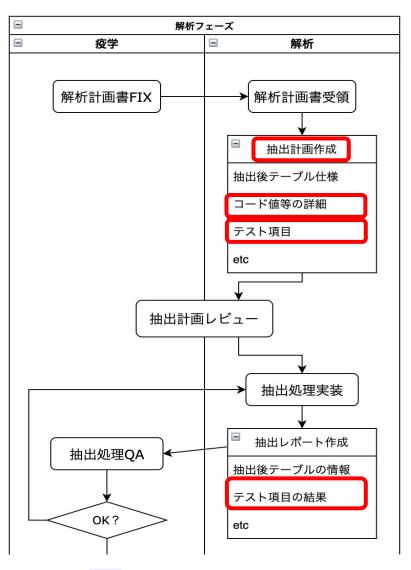
- Creating a research design
 - prospective research
 - database study
- Data handling
 - SQL, SAS, R...
 - Understanding of database and clinical practice
- Collaborating with clinical experts
 - Generating clinical questions
 - Making decisions
- Paper writing skills

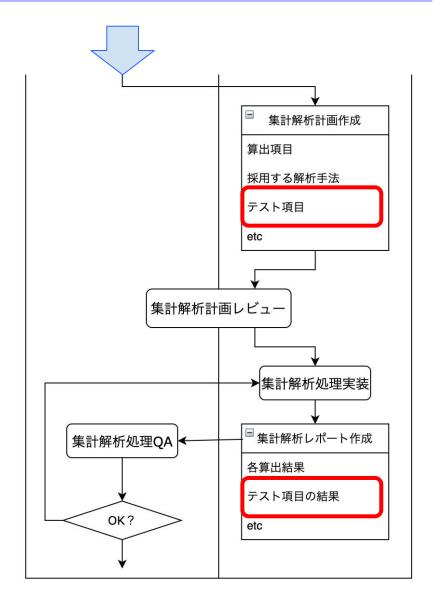


Practice

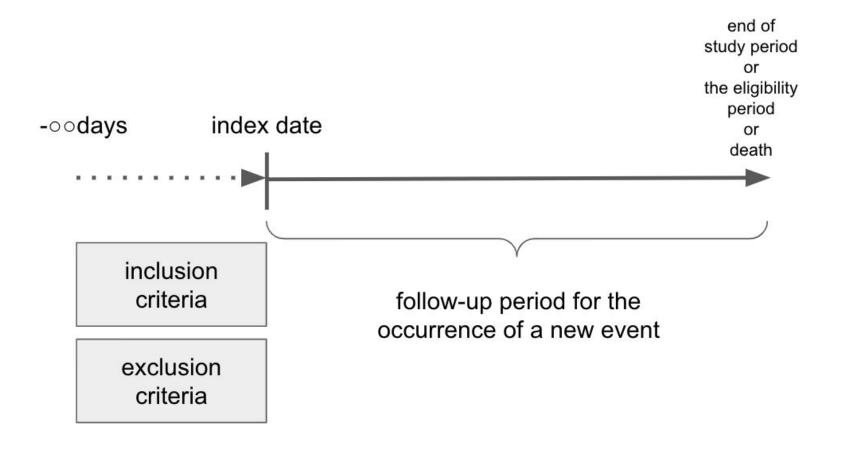
- Case: Datack
 - organization
 - workflow
- Extraction Request Form
- Code Set
- Analysis environment


Datack Organization


Datack Organization



Workflow



Extraction Request Form

patient definition 1

Various Codes for Pharmaceuticals

一般名	商品名	規格包装単位	薬価基準収載 医薬品コード	個別医薬品コード (YJコード)	レセプト電算処理 システム用コード	JAN=-F	調剤包装単位 (GTIN-13)	販売包装単位 (GTIN-14)	基準番号 (HOT-13)	ATC⊐−ド	
ロサルタンカリウム 錠	ロサルタンカリウム錠 25mg「アメル」	25mg/錠 PTP 10錠×10	2149039F1244	2149039F1244	44 622144801	4987058892039	04987058143971	14987058892036	1214482010101		
		25mg/錠 PTP 14錠×10				4987058892077	04987058143988	14987058892074	1214482010201		
		25mg/錠 バラ 500錠×1瓶				4987058892558	04987058214541	14987058892555	1214482010301		
ロサルタンカリウム 2 5 mg錠	ロサルタンカリウム錠 25mg「NP」	25mg/錠 PTP 10錠×10	-	2149039F1201	2149039F1201 622165301	4987190032300	04987190662507	14987190032307	1216530010101		
		25mg/錠 PTP 14錠×10				4987190032324	04987190662521	14987190032321	1216530010201	C09CA01	
		25mg/錠 バラ 500錠×1瓶	2149039F1015			4987190032348	04987190662538	14987190032345	1216530010301		
	ロサルタンカリウム錠 2 5 m g 「サンド」	25mg/錠 PTP 10錠×10	2149039F1015	2149039F1287		4987614408605	04987614408667	14987614408602	1217704010101		
		25mg/錠 PTP 14錠×50			2149039F1287	622177001	4987614408643	04987614408674	14987614408640	1217704010201	
		25mg/錠 バラ 500錠×1瓶				4987614408636	04987614408681	14987614408633	1217704010301		

Code Set for Disease

DMARDs

Biological DMARDs (boDMARDS+bsDMARDS)

-TNF

インフリキシマブ (ATCコード: L04AB02)

エタネルセプト(L04AB01)

アダリムマブ (L04AB04)

ゴリムマブ (L04AB06)

セルトリズマブペゴル (L04AB05)

-IL6

トシリズマブ(L04AC07)

サリルマブ(L04AC14)

-T cell

アバタセプト (L04AA24)

Synthetic DMARDs

Targeted (tsDMARDS) = JAK阻害剤

トファシチニブ(L04AA29)

オルミエント(L04AA37)

Conventional (csDMARDS)

メトトレキサート(L04AX03)

レフルノミド (L04AA13)

ブシラミン (M01CC02)

ペニシラミン (M01CC01)

サラゾスルファピリジン(A07EC01)

ミゾリビン (ATCコードなし)

タクロリムス(L04AD02)

金チオリンゴ酸ナトリウム(M01CB01)

オーラノフィン(M01CB03)

メタルカプターゼ(M01CC01)

アクタリット (ATCコードなし)

イグラチモド(ATCコードなし)

Code Set for Disease, Procedure

< Disease : ICD-10 code >

MI: I21

Angina pectoris : I20

Stroke : I60-I64

Ischemic stroke : I63-I64

Atrial fibrillation: I48

Heart failure: I50

<CABG or PCI (K code) >

- K546 経皮的冠動脈形成術
- K547 経皮的冠動脈粥腫切除術
- K548 経皮的冠動脈形成術(特殊カテーテルによるもの)
- K549 経皮的冠動脈ステント留置術
- K550冠動脈内血栓溶解療法
- K550-2 経皮的冠動脈血栓吸引術
- K551 冠動脈形成術(血栓内膜摘除)
- K552 冠動脈、大動脈バイパス移植術
- K552-2 冠動脈、大動脈バイパス移植術(人工心肺を使用しないもの)

Analysis environment requirements

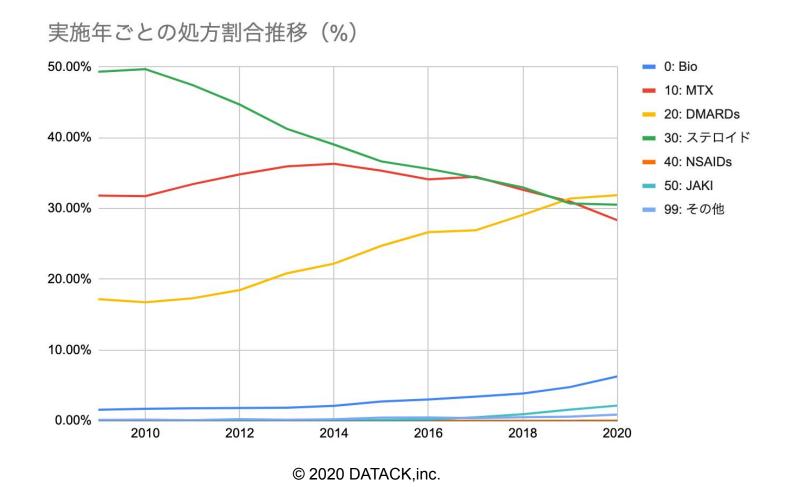
- Reproducibility of analysis
- Easy to review code
- Centralized data management and pre-processing
- Version control
- Storage, Memory, Process speed
- Security

Reproducibility & Replicability

© 2020 DATACK,inc.

	dataset	study design	
Reproducibility	Same	Same	
	Different	Same	
Replicability	Same	Different	
	Different	Different	

Analysis Environment


data storage	Amazon Simple Storage Service (Amazon S3)	
database	Amazon Athena Amazon Redshift	
analysis server	Amazon Elastic Compute Cloud (Amazon EC2)	
language	MySQL Python	
version control system	Bitbucket	
execution environment	Jupyter	

Test of results

Based on clinicians and previous studies, it is important to determine indicators to check the validity of the tabulation and analysis.

- Percentage of patients using bDMARDs
 - Clinician's prediction: 20%

Easy to review

- Check the work of others
 - data
 - script
 - code
 - period

In [41]: import yaml import pandas as pd from datack.path import user_home_path from datack.sql import athena_quire_base def load_athena_config(): yaml_file = user_home_path("datack/config/athena_mirai.yml") with open(yaml_file) as f: config = yaml.load(f.read(), Loader=yaml.SafeLoader)["mirai"] return config def athena_quire(sql_query, dtype=None): """Execute sql_query to select in Athena. sql_query(str): SQL you want to execute. pd.Dataframe: Result of sql_query >>> df = athena_quire("'SELECT * FROM sample_db LIMIT 1000 config = load_athena_config() return athena_quire_base(sql_query=sql_query, config=config, dtype=dtype) In [9]: athena_quire('show tables') EngineExecutionTime: 0.0 secondsDataScannedInBytes: 0.0 MB

EngineExecutionTime: 0.365 secondsDataScannedInBytes: 0.0 MB

Is the data correct?

m_drug m_patient t disease t_hisdrug 3 t hisexamlab t_hisradio t_ope t_ranote t_rapanel

Out[9]:

Easy to review

Is there a disease other than RA?

In [12]: dis.disease.value_counts()

Out[12]: RA 2327 **PMR** 37 SLE 9 SiS 8 SSc PM

> **MCTD** Behcet

DMy IgG4RD

潰瘍性大腸炎関連関節炎

Name: disease, dtype: int64

In [66]: #2020年について、各患者で一番古い処方日を選ぶ

first_odrymd_2020 = drug_2020.groupby('pid', as_index=False).odrymd.min()

first_odrymd_2020.head(3)

Out[66]:

	pid	odrymd
0	341	2020-06-18
1	383	2020-01-22
2	634	2020-03-25

Is the period correct?

In [72]: #同一患者で2020年で一番古い日の処方データに、複数種類の薬剤が含まれている場合の取り扱い について

> # 00(Bio), 10(MTX), 20(DMARDs), 30(ステロイド), 40(NSAIDs), 99(その他)の順に優先する #JAKは分類していない。

例えばBioとMTXが同時に処方されていた場合、その患者はBioとして集計する

#下記は分類ごとの処方数

first_drug_2020.groupby('pid').bunrui.min().value_counts()

Out[72]: 10 1248

535 20

30 325

0 314

65

99 29

Name: bunrui, dtype: int64

Is the condition correct?

Today's summary

- We need to clarify the purpose of RWD utilization.
- Challenges in utilizing RWD & Solution
 - Insufficient human resources and organization
 - Quality and Quantity of RWD
 - Regulation
- Four Keys to Organization Building
- Practices
 - Case: Datack
 - organization
 - workflow
 - Extraction Request Form
 - Code Set
 - Analysis environment

Data can lead society in the right direction.