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ABSTRACT

Traditionally the process for programming ADaM datasets is cumbersome and relies heavily on manual
work. Per regulatory requirements clinical programing algorithms should be clearly defined in the analysis
specification documents in natural language(human-readable). Programmers spend most of the time
developing or updating SAS® code according to specification documents. By adopting Machine Learning
and leveraging the power of NLP we could analyze human-readable text from the specification
documents, train the machine to convert defined algorithms to metadata and map them to the core pieces
of SAS® code.

This paper is part 2 of Metadata-based Auto-Programming Process?, and it shares an approach to
automatically generate SAS® code to create ADaM datasets from source SDTM datasets via metadata
and NLP methodology.

The strategy would be to extract key information from defined algorithms written in human language and
existing code, populate metadata and then utilize the metadata to generate code.

INTRODUCTION
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Learning and leveraging the power of NLP we can analyze human language, train the machine to convert

defined algorithms to metadata and map them to the core pieces of code (e.g., SAS® or R) to automate

the programing process.

We started an innovative project called Autocode in pr.
objective is to automate generation of SAS® code for analysis datasets and analysis reports. The vision

is to apply new technology to analyze the data structure, digitize the specification document and SAS®

code and store them in the form of metadata into a database. Advantages of this model would be more

automation, standardization and re-usability study after study. This project is still in the prototype stage

and we will share our design, progress and experience in this paper.

FIRST MAIN TOPIC
METADATA DRIVEN APPROACH

With increased enforcement from regulatory agencies towards standardized data and the industry moving
towards standardizing analysis requirements, we look to achieve more automation by reusing standard
and previously used study algorithms stored in metadata to generate code for analysis.
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Figure 1. Metadata management

MODULES

Our model is comprised of three different modules to analyze data, SAS® code and document
specifications. We use SAS® to calculate the metadata summary for source data and output data. We are
using regular expressions and exploring the powerful parser generator ANTLR (Another Tool for
Language Recognition) to parse the SAS® code automatically and NLP methodology to analyze
specification documents to calculate document similarity and extract key pieces to find the algorithm
patterns.
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Figure 2. Modules to analyze data, SAS® code and specifications

The goal of the three modules is to extract key information from different sources for data analysis and
make them machine readable in structured data, from which we can generate SAS code for analysis.
Here are the 3 modules:

1. PDE (PowerDataExplorer)?: This module is used to generate metadata for SDTM & ADaM
datasets, including data elements, structure/hierarchy, relationship, changes/differences across



multiple datasets
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Figure 3. PDE Module

2. PME (PowerMacroExplorer): This module is used to create a dataset which contains
program/macro dependency, macro parameters and macro calls in historical use cases by scanning
and parsing codes across multiple study folders
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Figure 4. PME Module

3. ADaM Planning Sheet analyzed by NLP: The Excel specification includes key information such as
SAS macro name (SASMCR) and text descriptions of the derivation algorithm (ORIGCOM)
necessary to guide programmer to create SAS code for the variable derivations. Generally,
ORIGCOM columns may be any combination of plain English text, a formula, pseudocode, etc. It
describes the source of the data or the derivation clearly and it serves as the submission-ready text
for the source/derivation/comments in define.xml. This paper focus on derivation and we will
introduce how to analyze the algorithm text in ORIGCOM using NLP to map it to macro metadata
and generate SAS code. At this stage we focus on the planning sheet, but a similar approach can be
applied to other document specifications like protocol and Statistical Analysis Plan (SAP).

DATASET |VARNAME |VARLABEL ORIGCOM DER\"'COPY‘r SASMCR =
Set to M if minute is missing and imputed.

ADAE AENTMF Analysis End Time Imputation Flag [Set to "H' if hour and minute are missing and|Derived %ADAEDT
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~ , - . AENDT-ARFSTDT+1 if on or after ARFSTDT, . ,

ADAE AENDY Analysis End Relative Day otherwise, AENDT-ARFSTDT. Derived BADAEDT
ADURN is the duration of the AE in days from

ADAE ADURN AE Duration (N) onset date to AE stop date. AE. AEENDY — Derived %ADADURN
AE. AESTDY + 1 . If using the numeric dates
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ADAE AESEVN Severity/Intensity (N) Code AE. AESEV to numeric walue. Low intensity Derived wADSEV
should correspond to low wvalue.

Instructions ADM Dataset ADAE ADM Codelist Release History (O] 4

Figure 5. ADaM Planning Sheet example



Natural Language Processing (NLP)

Natural language processing (NLP) is a branch of artificial intelligence that helps computers understand,
interpret and manipulate human language. NLP draws from many disciplines, including computer science
and computational linguistics, in its pursuit to fill the gap between human communication and computer
understanding®. NLP is important because it helps analyze large volumes of textual data efficiently and
resolve ambiguity in language to structure a highly unstructured textual data source. Below is a simple
example of syntax analysis to discover structure of the algorithm text.

Dependency % Part of Speech

- - - - - - - - - - - - -

Assign to Y on last non-missing record within PARAMCD where ADT < = ARFSTDT
VERB ADP NOUN ADP ADJ ADJ NOUN  ADP NOUN ADV  NOUN PUNCT X  NOUN

source: https://cloud.google.com/natural-language

Figure 6. Syntax analysis from NLP

We have loaded 600,000+ records of variable derivation algorithms into our prototype Metadata
Repository (MDR) system collected from the planning sheets across 60+ compounds and 1000+ study
folders. Taking the variable ABLFL (Baseline Record Flag) derivation for example, there are 3000+
records of algorithms and 380 unique algorithm descriptions. After some pre-processing steps to
normalize (lemmatization and removing some stop words) the texts, we did basic syntax analysis to get
some idea of the key nouns, adjectives and thei
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Figure 7. Syntax analysis for variable ABLFL derivation
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There are two approaches developed to map the human-language defined algorithms to code. The unsupervised
approach is to calculate the document similarity of algorithm sentences to get the corresponding standard/historical
codes. The supervised approach is to split algorithm sentences to phrases and map phrases to code pieces in a
training database and then incorporate the RNN (Recurrent Neural Networks)*! model to learn the pattern and
generate more flexible code.

1 Unsupervised approach: For new data analysis algorithms we search the database based on text similarity
score to get the most similar standard/historical algorithms and codes. We applied two approaches to calculate

the text similarity, Fuzzy string-matching algorithm based on edit distance, and Word Mover's Distance (WMD) 1
algorithm based on semantic distance, and we also created the algorithm clusters from the similarity matrix.

1.

Fuzzy String Matching, also called Approximate String Matching, is the process of finding strings
that approximatively match a given pattern. The degree of closeness between two strings is
measured using Levenshtein Distance!?, also known as edit distance which basically is based on
counting the number of primitive operations (insertion, deletion, and substitution) necessary to
convert the string into an exact match. We use the fuzzywuzzy® package to do the calculation:

from fuzzywuzzy import fuzz

textA
textB

'Y* if index(ATRTRF, 'BEFORE/DURING') or ASTDT=AP@1SDT"
"if index(atrtrf, "BEFORE/DURING') or astdt =ap®lsdt then ablfl="Y""

fuzz.ratio(textA.upper(),textB.upper())/100

.82
Figure 8. Text similarity score using fuzzywuzzy
Word Mover's Distance (WMD) algorithm is a method that allows us to assess the "distance"
between two documents in a meaningful way, even when they have no words in common, via
vector embeddings of words. Word embeddings (word vectors) are numeric representations of

words, usually generated via dimensionality reduction on a word cooccurrence matrix for a large
corpus. These vectors are used to calculate semantic similarity between words and documents:

Figure 9. WMD algorithm via word embedding

We use the library textacy’ which is built on top of spaCy® package to compute the word mover's
distance and get the text similarity score



