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ABSTRACT 

Traditionally the process for programming ADaM datasets is cumbersome and relies heavily on manual 
work. Per regulatory requirements clinical programing algorithms should be clearly defined in the analysis 
specification documents in natural language(human-readable). Programmers spend most of the time 
developing or updating SAS® code according to specification documents. By adopting Machine Learning 
and leveraging the power of NLP we could analyze human-readable text from the specification 
documents, train the machine to convert defined algorithms to metadata and map them to the core pieces 
of SAS® code.  

  

This paper is part 2 of Metadata-based Auto-Programming Process1, and it shares an approach to 
automatically generate SAS® code to create ADaM datasets from source SDTM datasets via metadata 
and NLP methodology.  

  

The strategy would be to extract key information from defined algorithms written in human language and 
existing code, populate metadata and then utilize the metadata to generate code. 

INTRODUCTION 

According to Gartner, ñby 2020, natural-language generation and artificial intelligence will be a standard 
feature of 90% of modern business intelligence platformsò3. Following the trend, adopting Machine 
Learning and leveraging the power of NLP we can analyze human language, train the machine to convert 
defined algorithms to metadata and map them to the core pieces of code (e.g., SAS® or R) to automate 
the programing process. 

 

We started an innovative project called Autocode in programming team. Autocode projectôs main 
objective is to automate generation of SAS® code for analysis datasets and analysis reports. The vision 
is to apply new technology to analyze the data structure, digitize the specification document and SAS® 
code and store them in the form of metadata into a database. Advantages of this model would be more 
automation, standardization and re-usability study after study. This project is still in the prototype stage 
and we will share our design, progress and experience in this paper. 

FIRST MAIN TOPIC 

METADATA DRIVEN APPROACH 

With increased enforcement from regulatory agencies towards standardized data and the industry moving 
towards standardizing analysis requirements, we look to achieve more automation by reusing standard 
and previously used study algorithms stored in metadata to generate code for analysis. 
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Figure 1. Metadata management 

 

MODULES 

Our model is comprised of three different modules to analyze data, SAS® code and document 
specifications. We use SAS® to calculate the metadata summary for source data and output data. We are 
using regular expressions and exploring the powerful parser generator ANTLR10 (Another Tool for 
Language Recognition) to parse the SAS® code automatically and NLP methodology to analyze 
specification documents to calculate document similarity and extract key pieces to find the algorithm 
patterns. 

 

Figure 2. Modules to analyze data, SAS® code and specifications 

 

The goal of the three modules is to extract key information from different sources for data analysis and 
make them machine readable in structured data, from which we can generate SAS code for analysis. 
Here are the 3 modules: 

1. PDE (PowerDataExplorer)2: This module is used to generate metadata for SDTM & ADaM 
datasets, including data elements, structure/hierarchy, relationship, changes/differences across 
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multiple datasets 

 

Figure 3. PDE Module 

 

2. PME (PowerMacroExplorer): This module is used to create a dataset which contains 
program/macro dependency, macro parameters and macro calls in historical use cases by scanning 
and parsing codes across multiple study folders 
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Figure 4. PME Module 

 

3. ADaM Planning Sheet analyzed by NLP: The Excel specification includes key information such as 
SAS macro name (SASMCR) and text descriptions of the derivation algorithm (ORIGCOM) 
necessary to guide programmer to create SAS code for the variable derivations. Generally, 
ORIGCOM columns may be any combination of plain English text, a formula, pseudocode, etc. It 
describes the source of the data or the derivation clearly and it serves as the submission-ready text 
for the source/derivation/comments in define.xml. This paper focus on derivation and we will 
introduce how to analyze the algorithm text in ORIGCOM using NLP to map it to macro metadata 
and generate SAS code. At this stage we focus on the planning sheet, but a similar approach can be 
applied to other document specifications like protocol and Statistical Analysis Plan (SAP). 

 

Figure 5. ADaM Planning Sheet example  
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Natural Language Processing (NLP) 

Natural language processing (NLP) is a branch of artificial intelligence that helps computers understand, 
interpret and manipulate human language. NLP draws from many disciplines, including computer science 
and computational linguistics, in its pursuit to fill the gap between human communication and computer 
understanding4. NLP is important because it helps analyze large volumes of textual data efficiently and 
resolve ambiguity in language to structure a highly unstructured textual data source. Below is a simple 
example of syntax analysis to discover structure of the algorithm text. 

 

Figure 6. Syntax analysis from NLP 

 

We have loaded 600,000+ records of variable derivation algorithms into our prototype Metadata 
Repository (MDR) system collected from the planning sheets across 60+ compounds and 1000+ study 
folders. Taking the variable ABLFL (Baseline Record Flag) derivation for example, there are 3000+ 
records of algorithms and 380 unique algorithm descriptions. After some pre-processing steps to 
normalize (lemmatization and removing some stop words) the texts, we did basic syntax analysis to get 
some idea of the key nouns, adjectives and their relationships in ABLFL derivation, like the words ófirstô, 
ólastô, óclosestô, ômultipleô, ôaverageô etc. that play important role to describe the algorithms to select the 
right value from data.  

   

Figure 7. Syntax analysis for variable ABLFL derivation 
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There are two approaches developed to map the human-language defined algorithms to code. The unsupervised 
approach is to calculate the document similarity of algorithm sentences to get the corresponding standard/historical 
codes. The supervised approach is to split algorithm sentences to phrases and map phrases to code pieces in a 
training database and then incorporate the RNN (Recurrent Neural Networks)11 model to learn the pattern and 
generate more flexible code. 

.  

¶ Unsupervised approach: For new data analysis algorithms we search the database based on text similarity 

score to get the most similar standard/historical algorithms and codes. We applied two approaches to calculate 

the text similarity, Fuzzy string-matching algorithm based on edit distance, and Word Mover's Distance (WMD)
 12

 

algorithm based on semantic distance, and we also created the algorithm clusters from the similarity matrix. 

1. Fuzzy String Matching, also called Approximate String Matching, is the process of finding strings 
that approximatively match a given pattern. The degree of closeness between two strings is 
measured using Levenshtein Distance14, also known as edit distance which basically is based on 
counting the number of primitive operations (insertion, deletion, and substitution) necessary to 
convert the string into an exact match. We use the fuzzywuzzy6 package to do the calculation: 

 

 Figure 8. Text similarity score using fuzzywuzzy 

2. Word Mover's Distance (WMD) algorithm is a method that allows us to assess the "distance" 
between two documents in a meaningful way, even when they have no words in common, via 
vector embeddings of words. Word embeddings (word vectors) are numeric representations of 
words, usually generated via dimensionality reduction on a word cooccurrence matrix for a large 
corpus. These vectors are used to calculate semantic similarity between words and documents: 

 

 Figure 9. WMD algorithm via word embedding 

We use the library textacy7 which is built on top of spaCy8 package to compute the word mover's 
distance and get the text similarity score 


