PharmaSUG China 2016-31

A Grid Computing Tool to Batch Run a List of SAS® Programs
Huashan Huo, Zhongyu Li, Lu Zhang, PPD, Beijing

ABSTRACT

In clinical research, it is very common that a large number of SAS programs are to be repeatedly batch run due to
program modifications or new data updates. In the past few years, several papers authored by pharmaceutical
industry programmers (Gilbert Chen 2002; Shu 2008; Prescod Cawley 2010; Wong Sun 2010; Conover 2011;
Andrew E. Hansen 2013; Huashan Huo, Fanyu Li 2015) were published in this area to describe methods and tools for
automating this process. The purpose of this paper is to introduce a tool for grid computing a large number of SAS
programs concurrently. The SAS computing tasks are distributed among multiple computers on a network, all under
the tool's self-management. Not only workloads are distributed across a grid of computers, but also overall execution
time is geometrically reduced. This paper also describes how the tool supports Multi-User Workload Balancing and
Parallel Workload Balancing without SAS/Share and SAS Grid Manager.

INTRODUCTION

Generally speaking, batch run is usually tedious and time consuming, due to the great amount of data and large
number of SAS programs. In addition, the widely accepted double programming, may approximately double the
workload. Batch run is more efficient than running each of the tasks manually, however, given the fact that batch run
is only execution in sequential on a single machine, it still takes us too long to perform all of the tasks.

This paper introduces a tool that makes distributed computational resources available to accomplish a target project.
Parallel computations connected by internet can be taken place independently in different hosts. Resources shared in
the grid can dramatically reduce the processing time of the whole project. Thus, the total execution time is negatively
correlated with number of computers involved in. In an extreme case, it can be as short as the longest execution time
of a single SAS program.

In our previous paper we introduced a similar tool built on user-friendly interface (GUI) system, which is capable of
running multiple SAS session concurrently in a stand-alone computer and display real-time progress and status
information. As soon as fulfilling all the tasks, an automatic wrap-up email will be sent to the leader and
corresponding program authors. Customized list filter is available as well for program re-running. By maximizing the
utilization of resource of a single computer, the computation time of our previous tool can be increased by two times
or more compared to ordinary batch run. However, it is still limited by the computer's own CPU resource and memory
capacity. Our existing tool carries on all the advantages, and further improves the computation speed geometrically
by coupling distributed virtual computers. Instead of static pre-specified SAS sessions, this tool can launch new SAS
session dynamically depending on each computer's own resource.

METHODS

Job scheduling algorithm

Precedency constraints for set of parallel tasks must be guaranteed by executing predecessor tasks before the
successor ones. To achieve this goal, we will group the tasks and assign each of them with priority level. The task list
along with priority information recorded in excel file will be imported when the tool is launched.

Instead of being assigned by a central job scheduler, the tasks are positively claimed by idle computers. Task pools
are accessible for all of the computers in the network. The pool for production side is built when the directory is
created by the first computer involved in. But for the QV pool, tasks are added progressively as soon as the
production program execution is finished. Those shared pools may lead to conflicts when checking out the same task
by multiple computers. SAS/SHARE, which facilitates multi-user management, can be one of the solutions. Since we
haven’'t purchased it, we generate a physical file for each task to indicate its three execution status: “READY”,
“CLAIMED” and “COMPLETED”, when the task list is created.

Workflows of tasks from being claimed to completed are similar for both sides. The only difference is that for
production side, execution order based on the priority level must be taken care of, while it is not a matter for the QV
side. In production side, tasks with lower priority level will not start to execute until the last one of higher level is
finished. Therefore, each time when idle computers check out tasks from the pool, those with lowest level will be
claimed first. In this scheduling mechanism we adhere to first come first served (FCFS) principle. When two or more
users try to pick up the same task from the pool, only the first user will succeed. The fulfilment of checking out is
marked by updating of status from “READY" to “CLAIMED”, which is achieved by renaming of the physical file. Only

one computer will complete the progress to take the ownership for execution. As soon as the execution of the task for
production side is finished, the status will be updated to "COMPLETED" and it will be moved to QV pool. The task
lifecycle will be performed repeatedly until the last one is finished.

The workflows of performing each program for both sides are similar, but the task pools are different. The tasks for
production pool are filled in when the directory is created, while the tasks in the QV pool are added as soon as it is
completed for the production side.

Work Flow

This tool was implemented using SAS/AF and SYSTASK statement. The general approach is to use SAS/AF to
implement the GUI, by calling the %MAIN macro in RSUBMIT. This macro could use SYSTASK statement to launch
a number of SAS sessions to run in parallel. The following is the GUI display.

%, DUO SAS Run - [Main] - [=]x]
S Flle View Tools Sohtiors Window Help =8 x]
[- 0 &R e DB 208

Funy Sy

(3R | Oree | f SVAZ AZCAZNPODT\ Trunk) TLF\study ol Ml xds aten | @Son| e | @ |

At SN Update Programs
™ Genesste Dashbosd n Emal

debsList

Enal T I AbAusters 7 huoh O Success 500 | W Enor 3 | oewarming 11 | @mMismecho | LR a0.R2ciEm |
ait] | | B |Gesl Fiaruema | Adbe [Ewsedles] Sitow s
[1 [AiBach T wT1I0CB0R 508 Tlewicied T T [—
| 2 |MBach Two «T1I0C0303 s MEETNE Resticted 00215 ZAUNTE0R 3622
Ofenn | T3 |MBach Tem vIT1020804 300 22 ZUNNTE08 8T
I Misrasich Progrms A |ABach Treo T 110020808 cae 00147 ZRUNXNE0R 65D
5 AFBatch Two ¥ T11000805 sae 00154 ZAUNINE0R N4

W Emaitafaming Frogiame T B |MBach Two VT1I020601 sae
™ Prohisted Log e Frograma AlBsich Twa 11100050200 sas
I™ Possicted Log isue Prograsa B |AtGaich Two 1110206011
I et Loy i 8 |AFRaich Teo TYVVOOSONN e

N0 [ANBatch One wT1I00000102 0
EF ckmsticnal et P SN 11 |miBach Orw wT1I0306M 100
Bach 12 |[ARBaich One | wT11000603 20
13 |MBach Ore WT1I030E05 e

A Bichy M |AMBsch Oes THIO0602ses
15 |AMBsch Ore T1LDXINI02 808

16 |AtBach One 1110306015

17 |AlBaich Ore THMEN s

18 |ANBsich Ore 717000804 sa0

00040 ZAAINZO1606:36.07
00120 ZANATE08 3601
00249 FUNANEDR 24N
00218 ZANNXIER0R 229
DO2S ZAUNING0RI21I
002 ZUUN0IE0E 3102
00243 ZUNXG08 1247
0ERE DuNNsER
00227 ZMINNE0E 2342
00235 ZUUNX0TE0E 2930
00233 TAUNAIE08 2555
00220 PARINANE0N 2949
00228 DHNNTE082957
OOZIE RN 0 X006

T 19 |ANBach Ore V7030605 as

iy 0 [ARBakch Two | wATZITAGN07 et 00751 ZANIEOTALS
Oow - 21 |AsBach Teo 1100050610 s 01214 PMUNNTGIIRZ -
D51
Ore52 = &l »
Main ‘

1. Using SAS/AF to develop GUI

Using CONNECTWAIT=NO and RSUBMIT statement, user could get the control of GUI without waiting for the
completion of a running program and get the latest status of all programs. SAS/AF is a classic visual programming
tool. There is a specific introduction in SAS help. SAS/AF is just one choice to develop GUI. We also could use
SAS %WINDOW and %DISPLAY to achieve a real-time interaction. Due to the complexity of the macros and
previous papers (Alden 2000, Mace 2002), we will not discuss this part in this paper. We chose SAS/AF sinceithas a
stronger interactions than %WINDCW and %DISPLAY. You can also use color marks to identify the different types
(Success, Error, Warning, the Log issue, etc.). By clicking on the program name of GUI, the tool can automatically
open the comresponding SAS program and the corresponding Log. That makes debugging and fixing the programs
much more easily. The table viewer controls also bring filter selection function and that makes it easy to find what you
need from numerous programs.

2. General overview of the %MAIN macro

When running this macro, user should create a list of programs which contains all programs needed in parallel batch
submission. There are many methods to assemble this. We recommend using excel file as a best practice.

Brief flow chart of the macro is as follow:

Create task pool

v
I » Try to fetch a to-do task
/“x
il “___
i 'Any taskis L
in progress?

ﬁ)t a tO*d(;R T

Wait 0.1 second

— =i oy
_— Postprocess y
- started?
. : v
[\I > - /ﬂh\&““*-%___
’ Post process ‘ " Thetask rank is max
among tasks to do
_ and tasks in progress
v " - '
End y

o =

it /'//System idle N

async exec a SAS task W

%MAIN can start a number of SAS sessions to run SAS programs in parallel using SYSTASK statement. Atthe same
time, it can automatically examine the running status of each SAS session. When a task is completed, a new SAS
session will be assigned to run. In this case, we do not utilize the existing session to start another program run in
order to preserve independent execution environment for the programs. This is because during an execution, a
program may modify system options, global macro variables, temporary data sets, formats, templates, etc. and may
interfere with the execution of next program run. The macro automatically looks up the program owner and the
executer's information and sends a summary email to them when a problem occurs.

$MATN (
jobFileName = StudyName Joblist.xls,
jobFilePath = %str(&xlsPathName)

I

1

Parameter explanations:
jobFileName - Excelfile contains program list to batch run
jobFilePath - The excel file path

3. Program execution level definition

The hierarchy of the programs must be defined in a parallel batch submission. Using Excel to define the batch and
group level is easy to read and maintain.

A B [D E
1 Batch |Group CodeMame Skip Sysparm
2 |Table Batch 1 Graup 1 T1103010101 sas a
3 |Tahle Batch 1 Group 1 T1103010102 sas 0
4 |Table Batch 1 Group 2 T1103010103.sas 0
4 |Tahble Batch 1 Group 2 T1103010104 sas a
B |Listing Batch 1 LB L1103010101 sas 0
7 |Listing Batch 1 LB L1103010102 sas 0
8 |Listing Batch 1 LB L1103010103 sas 0
9 |Listing Batch 1 LB L1103010104 sas 0

We could use batch and group to define a level. For example, the ‘Group 1’ of the ‘Table Batch1’ tables will be in a
same level. There is no sequence within one level so that they could be parallel batch submitted. However, among
different levels, there is a sequence, and different levels must be batch submitted in the right sequence.

4. Submita program
Each program will be submitted by %runOneJob macro and SYSTASK statement. The structure is as follows:

$macro runOneJob (
JjobName=
,flag=
 type=
)
%global &type.done&flag.;
systask command "'c:\progra~l\sas9~1.2\sasfou~1\9.2\sas.exe'
—autoexec ""&G fullpath.AUTOEXEC.SAS""
-sysin ""&G fullpath.&jobName..sas""
-log ""&G fullpath.&jobName..log""
-print ""&G fullpath.&jobName..lst""
&initStatement. &termStatement.
-noterminal -rsasuser -nosplash
" nowalt status=&type.done&flag.
taskname="&type.&flag.";
%1if &SYSRC >0 %then %do;
Fput Batch SAS job &G fullpath.&jobName..sas start failed: SYSRC=&SYSRC..;
%end;
%global startDT&flag;
%let startDT&flag=%sysfunc (datetime ()):;
%mend runOneJob;

Key points:
° SYSTASK asynchronous mode

SYSTASK allows user to execute operating system-specific commands from within users SAS session or
application. SYSTASK runs these commands as asynchronous tasks, which means that these tasks execute
independently of all other tasks that are currently running. Asynchronous tasks run in the background, so user can
perform additional tasks while the asynchronous task is still running. SYSTASK asynchronous mode is the
cornerstone of our tool.

o SYSTASK NOWAIT option

Determines whether SYSTASK COMMAND suspends execution of the current SAS session until the task has
completed. For tasks that are started with the NOWAIT argument, we use the WAITFOR statement to suspend
execution of the SAS session until the task has finished.

° RSASUSER ensure the SAS session independent

This option specifies to open the SASUSER library for read access. It is useful since then all SAS sessions will use a
single SASUSER library without conflict risk.

® The method of concurrently write dataset

When programs are run in parallel, concurrent conflicts in writing a same dataset can happen if user does not have a
permit to use the SAS/SHARE. We could use INITSTMT statement to solve this problem. We use INITSTMT
statement to create a library “Here” for each session. This library points to a solely physical path (different programs
have different paths). When all program executions complete, one could set all datasets together.

-initstmt '||""libname here " [|"d:\&&&&jobNameOfLevel&&L&level..N&curNumofLevel.."||™;™

5. Sending emails

When batch submission completes and results are available, this tool sends emails to authors and program executor.

CONCLUSION
Benefits

Our old version tool invoked multiple SAS session by utilizing CPU in a time-division-multiplex mode in a single CPU.
The efficiency is enhanced significantly. The computation efficiency is still limited by its own CPU and memory
limitation. When it reaches the limit of physical capacity, the system performance will be affected negatively. To
maximize the power of the tool, tasks are dispatched to different CPUs/cores in grid computing system. The benefit of
this tool are stated as below.

(1) Cost effective: As central server and distributed virtual computer is common in pharmaceutical industry.
Centralizing arrays of virtual computers to fulfill a set of SAS program execution is easy to achieve in this
circumstances.

(2) Utilization of idle resource: By utilizing the idle resources especially in business hours to reduce the time for
waiting makes work more productive.

(3) Modularity: Each of the tasks can be work independently. If one of the processor crashes, others will not be
affected. The failure job can be picked up by other computers.

(4) Resource-adaptive: Tasks was claimed by the execution computer based on its own resource instead of being
assigned by a dispatcher.

(5) Flexible: The number of computers in the grid is not pre-defined. Any idle computers available can be joined any
time. If itis not available, it can be removed.

Next Step

Currently, we still need to ask people to log in to acquire idle computers. In the future, we plan to use SAS/IT to
enhance this tool to support Browser/Server mode. By optimization the IT resources across enterprise can facilitate to
maximize the use of the tool.

REFERENCES

Alden, Kay. 2000 "SAS' Best Kept Secret: Macro Windows® for Applications Development" Proceedings of the
Twenty-Fifth Annual SAS Users Group International Conference, paper 76.

Cawley, Jim, Prescod Jillian 2010 "Need Reporting Deliverables the Painless and Easy Way? A Batch Submit Macro
of Course!" Proceedings of the PharmaSUG 2010 Conference, paper CC10.

Chen, Ling Y., Gilibet Steven A. 2002 "Run All Your SAS(R) Programs in One Program Automatically" Proceedings of
the Twenty-Seventh Annual SAS Users Group International Conference, paper 105.

Conover, William 2011 "BAT Files: Run all Your Programs with One Click in PC SAS" Proceedings of the
PharmaSUG 2011 Conference, paper PO01.

Mace, Michael A. 2002 "%WINDOW: You Can Talk to the Users, and They Can Talk Back" Proceedings of the
Twenty-Seventh Annual SAS Users Group International Conference, paper 192.

Murphy, Howard. 2007 "Changing Data Set Variables into Macro Variables" Proceedings of the 2007 SAS Global
Forum, paper 050.

SAS Institute Inc. 2013 SAS® 9.2 Companion for Windows Cary, NC: SAS Institute Inc.

Shu, Haibin 2006 "Highly Effective Batch Processing”" Proceedings of the PharmaSUG 2006 Conference, paper
ADQ9.

Sun, Helen, Wong Cindy 2010 "A Macro to Create a Batch Submit SAS Program" Proceedings of the 2010 SAS
Global Forum, paper 092.

RECOMMENDED READING

Cogswell, Denis. 2005 "More Than Batch — A Production SAS® Framework" Proceedings of the Thirtieth Annual SAS
Users Group International Conference, paper 21.

Furdal, Stanislaw. 2008 "Quick Windows Batches to Control SAS® Programs Running Under Windows and UNIX"
Proceedings of the SAS Global Forum 2008, paper 17.

Andrew E. Hansen. 2013 "A Macro to Batch Submit a List of Programs with Real Time Feedback" PharmaSUG 2013,
paper AD15

ACKNOLEDGEMENTS

The author would like to thank Ping-Chung Chang and Xianyi Kong for their insightful comments in reviewing an
earlier publication of this paper.

DISCLAIMER

The contents of this paper are the work of the author and do not necessarily represent the opinions,
recommendations, or practices of PPD.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Huashan Huo Name: Zhongyu Li

Enterprise: PPD LLC. Enterprise: PPD LLC.

Address: 25th Floor, Raffles City Beijing Office Address: 25th Floor, Raffles City Beijing Office
Tower No.1 Dongzhimen South Street, Tower No.1 Dongzhimen South Street,
Dongcheng District, Beijing 100007, China Dongcheng District, Beijing 100007, China

Work Phone: +86 10-61846092 Work Phone: +86 10-61846085

Fax: +86 1061846099 Fax: +86 10-61846099

E-mail: Huashan.Huo@ppdi.com E-mail: Zhongyu Li@ppdi.com

Web: www.ppdi.com Web: www.ppdi.com

Name: Lu Zhang

Enterprise: PPD LLC.

Address: 25th Floor, Raffles City Beijing Office
Tower No.1 Dongzhimen South Street,
Dongcheng District, Beijing 100007, China

Work Phone: +86 10-61846094

Fax: +86 10-61846099

E-mail: Lu.Zhang18@ppdi.com

Web: www.ppdi.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

