PharmaSUG 2023 - Paper SS-140

Working with Biomedical Concepts and SDTM Dataset Specializations for
Define-XML v2.1 using SAS® openCST
Lex Jansen, CDISC!

ABSTRACT

Biomedical Concepts are units of knowledge that relate to real-world entities. Getting Biomedical
Concepts off the ground has been a long and challenging journey. There is little to debate that in theory
Biomedical Concepts make sense, but implementation has been a great challenge with little to no
realization of benefits. Perhaps that is because the scope has been too large and complex, making
implementation extremely difficult. For this reason, CDISC has developed a simplified approach and
model which includes an abstract conceptual layer that provides semantics as well as a simplified
implementation layer of preconfigured Dataset Specializations (CDASH, SDTM, ...) linked to Biomedical
Concepts. SDTM Dataset Specializations are ready to use building blocks for Define-XML. This provides
immediate benefits to SDTM programmers and opens the door to efficient programming and automation.
Biomedical Concepts are now available in CDISC Library via the API. This paper shows how SAS® can
work with Biomedical Concepts and SDTM Dataset Specializations. This paper will show how SDTM
Dataset Specializations can be used by the Open Source release of SAS Clinical Standards Toolkit
(openCST) for the creation of Value Level Metadata in Define-XML v2.1.

Keywords: CDISC, Biomedical Concepts, SDTM Dataset Specializations, Define-XML, define.xml, Value
Level Metadata, metadata

INTRODUCTION

CDISC kicked off the Conceptual and Operational Standards Metadata Services (COSMoS) project in
2022 [1], taking a pragmatic, iterative approach to creating Biomedical Concepts (BCs) and representing
them in the Foundational Standards as Dataset Specializations with Value Level Metadata definitions.
Biomedical Concepts fill gaps in the current standards by adding semantics, variable relationships, and
the detailed metadata needed to generate Case Report Forms (CRFs) or a Define-XML document.

CDISC Biomedical Concepts include a two layered approach:

e Conceptual/abstract layer which provides a standards-agnostic, unambiguous semantic definition
largely based on concepts from the NCIt (National Cancer Institute Thesaurus).

¢ Implementation layer based on valid CDISC Dataset specializations that provide value level
metadata definitions and facilitate metadata driven automation.

The data model is flexible and can accommodate other standards (e.g., CDASH, HL7 FHIR) by defining
additional dataset specializations.

This paper will concentrate on the implementation layer, which is based on CDISC Dataset
Specializations. Especially, we show how SDTM Dataset Specializations can be used as building blocks
for Value Level Metadata (VLM) in Define-XML v2.1.

All code used in this paper is available on GitHub: https://github.com/lexjansen/sas-papers

CDISC BIOMEDICAL CONCEPTS
What is a Biomedical Concept? We use the definition from the following text:

BCs address metadata gaps in the current CDISC standards. They provide the conceptual definitions
supporting the existing CDISC Foundational Standards metadata. This conceptual metadata is
necessary to generate operationally ready Data Elements (DE). These operational DEs represent the

! Contract through Lex Jansen Consulting LLC

https://github.com/lexjansen/sas-papers

detail needed to create the dataset variable definitions and value level metadata needed to generate
a Define-XML document.

A BC is a unit of knowledge created by a unique combination of characteristics. As noted above, BCs
complement the existing standards, but omit the operationalization of the standards. That is, BCs
exist independent of any given standards implementation, such as SDTMIG v3.2 or CDASHIG v2.0. A
BC specifies an observation concept, or what should be observed for a specific subject assessment
in a clinical study, but not how to capture the data or how to group observations together [2].

The CDISC Biomedical Concepts are a pragmatic and simplified implementation that takes inspiration
from the ISO 11179 standard. The following quote is also from [2]:

An observation concept consists of one or more Data Element Concepts (DEC) as defined in the
ISO 11179 standard [3]. DECs represent the meaning of a variable and consist of a concept code
identifier and a definition. DEs, or operational variables, consist of a unique pairing of a DEC and
a Value Domain (VD). A VD is the domain of possible values for a DE which include data types,
formats, and constraints. A DE is formed when a DEC takes on a specific representation or VD.
Display 1 illustrates the 1ISO 11179 model.

Display 1. Overview Model for ISO/IEC 11179 Metadata Registry

DATA ELEMENT (N:1) CONCEPTUAL
CONCEPT DOMAIN
CONCEPTUAL
LEVEL
REPRESENTATIONAL
1:N 1:N
LEVEL /{) (/)

DATA ELEMENT (N:1) VALUE DOMAIN

The pragmatic CDISC Biomedical Concepts approach, as shown in Display 2 and Display 3, helps
implementers by:

e Adding explicit relationships to the existing standards such that they exist as explicit relationships
at the variable and dataset level. For example, a results variable may have a HAS_UNITS
relationship to the units variable. The missing relationships in the standards belong as part of the
standard itself, not added through an additional concept layer.

e Adding explicit operational metadata to the existing standards such that they are defined for each
variable. A variable definition should include all the operational metadata needed to create a
Define-XML document. So, each variable should have a specific data type (e.qg., integer, decimal,
datetime), significant digits, and length defined. Where appropriate, the appropriate codelist
subset should be associated with the variable.

e Associating example values with variables to highlight how a variable might be represented.

The model and schema describing the CDISC Biomedical Concepts and SDTM Dataset Specializations
can be found on GitHub (https://github.com/cdisc-org/COSMoS).

https://github.com/cdisc-org/COSMoS

Display 2 shows the class diagrams for the Biomedical Concepts and the SDTM Dataset Specializations.
The red lines show how an SDTM Dataset Specialization has a reference to a Biomedical Concept and
SDTM variables have references to Data Element Concepts.

Display 2. Class diagrams for the Biomedical Concepts and the SDTM Dataset Specializations

Biomedical Concept

SDTM Dataset Specialization

string conceptid
iy string datasetSpecializationid
uri href
date packageDate
string parentConceptld
SDTMDatasetSpecializationPackageType | packageType
date packageDate
string sdtmigStartVersion
BiomedicalConceptPackageType | packageType
string sdtmigEndVersion
stringList category
string domain
string shortName
string shortName
stringList synonym
string source
BiomedicalConceptResultScale | resultScale ",
*+ string biomedicalConceptid
string definition T
i T
variables
|
dataElementConcepts
|
i SDTMVariable
coding
string name
| string dataElementConceptid
boolean isNonStandard
string subsetCodelist
stringList valueList
DataElementConcept
z 5 string role
Coding string conceptid ¥
SDTMVariableDataType | dataType
string | code uri href
integer length
string | system string shortName
string format
string | systemName DataElementConceptDataType | dataType
integer significantDigits
stringList exampleSet
boolean mandatoryVariable
boolean mandatoryValue
OriginType originType
OriginSource originSource
Comparator comparator
codelist boolean vimTarget
relationship
assignedTerm
o) 1
A —— RelationShip
Codelist
AssignedTerm string subject
string | conceptid
string | conceptid LinkingPhrase | linkingPhrase
uri href
string | value PredicateTerm | predicateTerm
string | submissionValue
string object

Display 3 shows a Biomedical Concept (Systolic Blood Pressure) and an associated SDTM Dataset
Specialization (SYSBP).

Display 3. Biomedical Concept (Systolic Blood Pressure) and an associated SDTM Dataset
Specialization (SYSBP)

Concept Id: C173522
Short Name: Vital Signs Result

VSPOS

VSLOC

VSSTRESU

Cancept Id: C49669 Data
Short Name: Unit of Pressure

Element

Data

Element VSLAT VSSTRESN
Concepl

SDTM
Dataset

” — [E{EIENCES ———— Sp:;\\?é\ég)mn
Data Dataset Specialization Id: SYSBP VSSTRESC
Concept Id: C83088 2\ ="\ Concept ataset Specialization Id: '
Name : Vital Signs Location Concent Concept Id: C25298
P Name : Systolic Blood Pressure
VSORRESU

Data
Element
Concept

VSTESTCD

Data
Element
Concept

Concept Id: C123975

Short Name: Vital Signs Laterality

Concept Id: C83114
Short Name: Vital Signs Position

as
~Subg,
rCodsl’St da\-\S’ﬂ.
oC VSPOS s~
~—has o vsstresuY "
—~2UDsat, ; ji
codelist— f VSLOC — has_assigned_term ——p

NCIt:C49670

VSSTRESN

VSLAT

Dataset
Specialization
(SYSBP)

VSSTRESC :
et
2% cote'®
/h B
VSORRESU
VSTEST = has_assigned_torm — .

VSORRES

NCIt:C25298 NCIt.C49670

NCIt:C67154

Table 1 lists some of the attributes that are part of a SDTM Dataset Specialization, together with their
description.

Table 1. SDTM Dataset Specialization attributes

Attribute Description

datasetSpecializationld Identifier for SDTM Value Level Metadata group

domain Domain for the SDTM specialization group

shortName SDTM group short name which provides a user friendly and intuitive name for
the datasetSpecializationld

source SDTM VLM Source which categorizes VLM groups by topic variable

sdtmigStartVersion The earliest SDTMIG version applicable to the SDTM dataset specialization

sdtmigEndVersion The last SDTMIG version that is applicable to the SDTM dataset specialization

biomedicalConceptld Biomedical Concept identifier

Every SDTM Dataset Specialization contains one or more variables. Table 2 lists some of the variable

attributes and their description.

Table 2. SDTM Dataset Specialization Variable attributes

Attribute

name

‘ Description

Variable included in the SDTM dataset specialization

dataElementConceptld

Biomedical Concept Data Element Concept identifier

codelist conceptld

C-code for a codelist in NCIt

href

Link to NCIt for the codelist

submissionValue

CDISC submission value for the codelist

subsetCodelist

Subset codelist short name

valueList List of SDTM submission values used if subset codelist is not applicable
assignedTerm | conceptld C-code for assigned term in NCIt
value Submission value for assigned term in NCIt if it exists, or an assigned
value which will be the default value
role SDTM variable role
relationship Subject Subject in a variable relationship
linkingPhrase Variable relationship descriptive linking phrase
predicateTerm Short variable relationship linking phrase for programming
object Object in a variable relationship
datatype Variable data type
length Variable length
format Variable display format
significantDigits Variable significant digits
originType Variable origin type (Assigned, Collected, Derived, Protocol, Predecessor)

originSource

Variable origin source (Investigator, Sponsor, Subject, Vendor)

comparator

Comparison operator for SDTM group variables included in VLM (EQ, IN)

vimTarget

Target variable for VLM (true/false)

ACCESSING BIOMEDICAL CONCEPTS AND SDTM DATASET SPECIALIZATIONS

CDISC Biomedical Concepts and SDTM Dataset Specializations are published by CDISC as packages
and can be accessed through a REST API in a comparable way as data standards metadata and
controlled terminology can be accessed from the CDISC Library [4]. At the time of the writing of this paper
(April 2023), three packages with Biomedical Concepts and SDTM Dataset Specializations were released
(2022-10-26, 2023-02-13, 2023-03-31). A package is incremental and contains new or updated content.

Table 3 gives a list of the API endpoints that are currently available. More API endpoints are being
developed by CDISC. To be able to use the API it is required that the user has an API key [5].

Table 3. REST API Endpoints to access Biomedical Concepts and SDTM Dataset Specializations

API Endpoint / Description

/mdr/bc/packages
Get Biomedical Concept Package List

/mdr /bc/packages/{package}/biomedicalconcepts
Get Biomedical Concept List

/mdr/bc/packages/{package}/biomedicalconcepts/{biomedicalconcept}
Get Biomedical Concept

/mdr/specializations/sdtm/packages
Get SDTM Dataset Specialization Package List

/mdr/specializations/sdtm/packages/{package}/datasetspecializations
Get SDTM Dataset Specialization List

/mdr/specializations/sdtm/packages/{package}/datasetspecializations/{datasetspecialization}
Get SDTM Dataset Specialization

The API request returns JSON content by default. Display 4 shows part of the JSON response from the

API request to get the Diastolic Blood Pressure:
/mdr/specializations/sdtm/packages/2022-10-26/datasetspecializations/SYSBP

The response in Display 4 shows some SDTM Data Specialization metadata, like the
datasetSpecializationld (“SYSBP”), the domain (“VS”), and an array of variables.

Display 4. Example SDTM Dataset Specialization JSON Response Fragments from an APl Request

" links": {

"datasetSpecializationId": "SYSBP",
"domain™: "VS",

"shortName"”: "Systolic Blood Pressure”,
"source": "VS.VSTESTCD",
"sdtmigStartVersion™: "
"sdtmigEndVersion™: "",

"variables": [

Display 5 shows a selection of the variables in the response: VSTESTCD, VSPOS, VSLOC, VSLAT.
These variables have in common that they all have a comparator property equal to either “IN” or “EQ”.

Also, they all have an assigned term (VSTESTCD) or a codelist (VSPOS, VSLOC and VSLAT).
Display 5 Example SDTM Dataset Specialization JSON Response Fragments from an APl Request

"n: VSTESTCD",
sNonStandard”
I

"mandatoryVa
“comparator”:

nt
sNonStandard™:

ntConceptId”: "C
NonStandard”™:
o f

"comparator”:
“comparator”

Since the variables VSTESTCD, VSPOS, VSLOC, and VSLAT have a comparator (last property in each
screenshot), they will become conditions in a (composite) WhereClause in Value Level Metadata in a
Define-XML document:

VSTESTCD EQ | VSPOS IN VSLOC IN ("BRACHIAL VSLAT IN
"SYSBP" ("SITTING","STANDING","SUPINE") ARTERY","CARQTID ("LEFT","RIGHT")
ARTERY","DORSALIS PEDIS
ARTERY","FEMORAL
ARTERY","RADIAL ARTERY")

Display 6 shows the VSORRES and VSORRESU variables in the JSON response. These variables both
have the vimTarget attribute with a value of “true”. This means that these variables are described by
Value Level Metadata. Other variable attributes in the response, like length, datatype, originType,
originSource, codelist, and assignedTerm describe the variable as part of the Value Level Metadata
under the specific condition defined by the WhereClause.

Display 6. Example SDTM Dataset Specialization JSON Response Fragments from an APl Request

“name”: "\ ES",
"dateElementConceptId”: ™
"isNonStandard":

“role”:

"dataType

“name” ESU",
"dateElementConceptId”: "C4
"isNonStandard": A
"codelist": {
"conceptId”:
"submissionVa

"length™:

"relationship”

}s

“href": "ht /ncit rus.nci.nif

"subject”: " ¥

ssignedTerm™

"linkingPhrase
"predicateTerm :CONCeEtI?
“object":) value”:
I
"role™:

"mandatoryVariable™:

"mandatoryValu
"originType":
"originSourc
"vimTarget”:

"relations
"subject”:
"linkingPhras
"predicateTerm"
“"object™:

IE

"mandatoryVariable":

"mandatoryValue":

"vlmTarget™:

REST API REQUESTS IN SAS

REST API requests are widely supported by software languages. PROC HTTP is a powerful SAS
procedure to issue Hypertext Transfer Protocol (HTTP) requests [6] [7] [8]. The procedure includes a
DEBUG statement, response status macro variables, and the ability to specify a time-out period for
requests.

Below is an example of requesting the SYSBP SDTM Dataset Specialization from the 2022-10-26
package. It is expected that the macro variable &ApiKey contains your personal API key that you created
at the CDISC Library APl Management Developer Portal [5].

%let ApiKey=<your_personal_api_key>;
%let baseURL=https://library.cdisc.org/api;

filename json_out temp;

proc http
method = 'GET'
url="8&baseURL/mdr/specializations/sdtm/packages/2022-10-26/datasetspecializations/SYSBP"
out=json_out;

headers
"api-key" = "&ApiKey"
"Accept" = "application/json";
run;

%put %sysfunc(jsonpp(json_out, log));

filename json_map temp;
libname json_out json map=json_map automap=create fileref=json_out;

proc copy in = json_out out = work;
run;

NOTE: 200 DK

NOTE: PROCEDURE HTTP used (Total process time):
real time 0.38 seconds
cpu time 0.03 =zeconds

30 Zput Zsysfunc(jsonpp(json_out, log));
{

" links™: {
“parentBiomedicalConcept’:
“href": ”/mdr/bc/packages/2022 -10- ZB/h|omed|calconcepts/C252SB“
“title”: "Systolic Blood Pressure .
“type'': "Biomedical Concept”

“parentPackage’: {
“href": “/mndr/special izat ions/sdtm/packages/2022-10-26/datasetspecial izations”,
"title': “SDTM Dataset Specialization Package Effective 2022-10-26",
“type': "SDTM Dataset Specialization Package”

fcel ™
“href': ”/mdr/SDEC|al|zat|ons/sdtm/packages/2022 10-26/datasetspecial izat ions/SYSBP",
“title': “Systolic Blood Pressure™
“type': "SDTM Dataset Speclallzatlnn

},

”datasetSpecla]|zat|on|d" "SYSBP",
"domaln "U

“shortName™: "Systollc Blood Pressure’,
"source: "US.USTESTCD”,
"sdtmigStartVersion': "3-2",
“"sdtmigEndVersion™: "

“wariables": [

“name’: "WSTESTCD",
"isNonStandard™: false,
Ycodelist™: {
"concept Id": "CB5047",
"submissionValue': “"WSTESTCD",
"href": “https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport. jsp?dictionary=NHCI1_Thesaurus&ns=ncit&code=C65047"

"éssignedTerm”: {
"concept Id: '"C25298",
“walue™: “STSBP"

31
32 filename json_map temp;
33 libname json_out json map=json_map automap=create fileref=j=son_out;

NOTE: JSOWN data i= only read once. To read the J50N again, reassign the JSON L IBHAME.
NOTE: Map file C:‘Users'LEXJAN™1'fAppData‘lLocal’ Temp'.S5AS Temporary Files'_TD20984_DESKTOP-K9ABGGC_"#LN00040 was created.
MOTE: Libref JSON_OUT was successfully assigned as follows:

Engine: JSON

Physical Name: C:!:‘Users'LEXJAN™1'#ppData‘local’ Temp'.SAS Temporary Files'_TD20984_DESKTOP-K9ABGGC_'#LN00039

34
35 proc copy in=json_out out=work;
36 run;

NOTE: Copying JSON_OUT.ALLDATA to WORK.ALLDATA (memtype=DATA).
MOTE: BUFSIZE i= not cloned when copying across different engines. System Option for BUFSIZE was used.
INFO: Data set block 1/0 cannot be used because:
INFO: = The data sets use different engines, have different variables or have attributes that may differ.
MOTE: There were 210 observations read from the data set JS0H_OUT.ALLDATA.
NOTE: The data set WORK.ALLDATA has 210 obserwvations and 6 variables.
HOTE: Compressing data set WORK.ALLDATA decreased size by 0.00 percent.
Compressed is 1 pages; un-compressed would require 1 pages.
NOTE: Copying JSON_OUT.ROOT to WORK.ROOT (memtype=DATA).
MOTE: BUFSIZE i= not cloned when copying across different engines. System Option for BUFSIZE was used.
INFO: Data set block 1/0 cannot be used because:
INFO: = The data sets use different engines, have different variables or have attributes that may differ.
MOTE: There were |1 observations read from the data =set JSOW_OUT.ROOT.
NOTE: The data set WORK.ROOT has 1 observations and 7 variables.
MOTE: Compressing data set WORK.RDOT decreased size by 0.00 percent.
Compressed is 1 pages; un-compressed would require 1 pages.
NOTE: Copying JSON_OUT.VARIABLES to WORK.VARIABLES (memtype=DATaA).
NOTE: BUFSIZE i= not cloned when copying across different engines. System Option for BUFSIZE was used.
INFO: Data set block 1/0 cannot be used because:
INFO: = The data sets use different engines, have different variables or have attributes that may differ.
MOTE: There were 10 observations read from the data set JSON_OUT.VARIABLES.
NOTE: The data set WORK.VYARIABLES has 19 observations and 15 variables.
MOTE: Compressing data set WORK.VARIABLES decreased =ize by 0.00 percent.
Compressed is 1 pages; un-compressed would require 1 pages.
NOTE: Copying JSON_OUT.¥ARIABLES_ASS IGNEDTERM to WORK. UﬁHIﬁBLES _ASSIGNEDTERM (memtype=DATA).

This code results in 10 SAS datasets, some of which need to be merged to get the expected SAS dataset
with SDTM Dataset Specialization metadata.

--: _links_parentbiomedicalconcept.sas7bdat --) _links_parentpackage.sas7bdat
23 _links_self.sas7bdat -2 alldata.sas7hbdat

-2 root.sasThdat - variables.sasThdat

-=; variables_assignedterm.sasibdat -5 variables_codelist.sasThdat

::; variables_relationship.sas7bdat --i variables_valuelist.sas7hdat

Display 7 shows the resulting root, variables, variables_codelists, variables_valuelist and
variables_assigned_term datasets.

Display 7. Datasets created by the SAS JSON engine

| ordinal_root | datasetSpecializationld | domain | shotName | SOUICE sdtmigStart Version
1 1 5Y5BP V3 Systolic Blood Pressure VS.VSTESTCD 32
Is
ordinal_root ordinal_variables name role comparator dateEIemerrtCDncemldl dataType | length | originType origin Source vimTarget subsetCodelist
1 1 1 VSTESTCD Topic EQ
2 1 2 VSTEST Qualifier .
5] 1 3 VSORRES CQualifier C173522 integer 3 Collected Investigator 1
4 1 4 VS5ORRES Qualifier 49669 1
5 1 5 WSSTRESC Qualifier C173522 integer 3 1
6 1 6 VSSTRESN Qualifier C173522 integer 3 1
7 1 7 VS5TRESU Qualifier 49663 1
3 1 8 V5POS CQualifier IN C33114 . VSPOS
9 1 3 VSLOC Qualifier IN 33088 . VSLOC_PULSE
10 1 10 VSLAT Qualifier IN 123975 . VSLAT_BP
ordinal_variables ordinal_assigned Term | conceptld | value A ordinal_variables | ordinal_codelist | conceptld | submizsionValue ”~
1 1 1 C25298 SYSBP 1 1 1 C65047 WVSTESTCD
2 2 2 C25258 Systolic Blood Pressure 2 2 2 Ce7154 VSTEST
5 4 3 C45670 mmHG 3 4 3 CE6770 VSRESU
4 7 4 C43670 mmHG 4 7 4 Ce6770 VSRESU
5 8 5 C71148 POSITION
6 t] 6 C74456 LoC
7 10 7 C95073 LAT
v
=1 (=®][= >
ordinal_varables | ordinal_valueList walueList] valuelist2 valuelistd walu A
1 3 1 SITTING STANDING SUPINE
2 2 BRACHIAL ARTERY COROTID ARTERY DORSALIS PEDIS ARTERY FEM
3 10 3 LEFT RIGHT

The code above uses the SAS JSON engine libname, which was introduced in SAS 9.4TS1M4 [10].
Using SAS can be cumbersome when dealing with complex JSON files as it requires the merging of
potentially a large number of datasets and dealing with the management of JSON MAP files to correct
decisions that the SAS JSON automapper makes in terms of variable types and variable lengths. Earlier
papers by the author have used PROC LUA to parse JSON files in SAS [4][11][12]. The JSON for SDTM
Dataset Specializations is not too complex. So, for this paper | decided to use the native SAS JSON
engine libname.

As mentioned, there are challenges when combining the various datasets with SDTM Dataset
Specialization endpoints into a single dataset:

e When the JSON map is automatically generated (automap=create) the datasets, variables and
length of variables depend on the endpoint. For example, Dataset Specializations will not always
have a valuelist attribute, so there may not be a variables_valuelist dataset.

e Since the valuelist attribute is really a JSON array, the number of variables valueListl, valueList2,
... is not known beforehand

The code, which can be found in the repository?, manages these challenges by creating a template for the
expected dataset with all variables and their lengths, checking whether datasets exist and pre-processing
the variables_valuelist dataset before merging.

The following SAS code shows how to combine an unknown number of valuelist1, valuelist2, ... variables
into a _valuelist variable using an array:

2 The GitHub repository that supports this paper is located at: https://github.com/lexjansen/sas-papers

10

https://github.com/lexjansen/sas-papers

data work.variables_valuelist(drop=valuelList:);
set work.variables_valuelist;
length _valuelList $ 2048;
array valuelist_{*} $ 1024 valuelist:;
valuelList = catx(";", OF valueList{*});
run;

Tables that were extracted from JSON can be joined with the following SAS code:

proc sql;

create table out.sdtm_specializations

as select

root.datasetSpecializationId
root.domain
root.source
root.shortName
var.name
var.ordinal_variables as order
var.isNonStandard
varcl.conceptId as codelist
varcl.submissionValue as codelist_submission_value
varvl._valuelist as value_list
varat.conceptId as assigned_term
varat.value as assigned_value
var.subsetCodelist
var.role
var.dataType
var.length
var.format
var.significantDigits
var.mandatoryVariable
var.mandatoryValue
var.originType
var.originSource
var.comparator
var.vlmTarget

L S o T T G R

)
from
work.root root
join work.variables var
on (var.ordinal_root=root.ordinal_root)
left join work.variables_codelist varcl
on (varcl.ordinal_variables=var.ordinal_variables)
left join work.variables_assignedterm varat
on (varat.ordinal_variables=var.ordinal_variables)
left join work.variables_valuelist varvl
on (varvl.ordinal_variables=var.ordinal_variables)
order by datasetSpecializationId, order

3
5
quit;

Display 8 shows part of the merged dataset with metadata for all SDTM Dataset Specializations, showing
the Systolic Blood Pressure (SYSBP) and Temperature (TEMP) specializations.

Using this dataset, we can create Value Level Metadata and codelist metadata, which can then be used
as building blocks to create a Define-XML document.

11

Display 8. Dataset with metadata for all SDTM Dataset Specializations

Library SDTM_SPECIALIZATIONS

Freeze Hide Show... Format E%Filter... A Font.. Find i
Table View
domain sounce datasetSpeciglizationld shortMame name order codelist codelist_submissior subsetCodelist walue_list
1S VS MSTESTCD SYSBP Systolic Blood Pr... |VSTESTCD 1|CBE741 VSTESTCD
2|vs VS MSTESTCD SYSBP Systolic Blood Pr... |VSTEST 2|C67153 WVSTEST
3/vs V3 MSTESTCD STYSBP Systolic Blood Pr... |VSORRES 3
4/vs VS VSTESTCD SYSBP Systolic Blood Pr... |VSORRESU 4 |C86770 WVSRESU
5 vs VS VSTESTCD SYSBP Systolic Blood Pr... |VSSTRESC 5
& VS VS MSTESTCD SYSBP Systolic Blood Pr... |VSSTRESN 3
N VS MSTESTCD SYSBP Systolic Blood Pr... |VSSTRESU 7 |C66770 WSRESU
8|Vs V5 WSTESTCD STSBP Systolic Blood Pr... |VSPOS 8|C71148 POSITION V5POS SITTING STANDING;SUPINE
9vs VS VSTESTCD SYSBP Systolic Blood Pr... |VSLOC 9 |C74456 LoC VSLOC_PULSE |BRACHIAL ARTERY:.CAROTID ARTERY:DORSAL...
p 10|vS VS VSTESTCD SYSBP Systolic Blood Pr... |VSLAT 10 |C95073 LAT VSLAT_BP LEFT.RIGHT
11vs VS MSTESTCD TEMP Temperature VSTESTCD 1|CBE741 VSTESTCD
12 /vs V3 MSTESTCD TEMP Temperature VSTEST 2|C67153 VSTEST
13 \vs V5 WSTESTCD TEMP Temperature VSORRES 3
14 vs VS VSTESTCD TEMP Temperature WSORRESU 4|C66770 WVSRESU VSRESU_TEMP |C:FK
15| v§ VS VSTESTCD TEMP Temperature WSSTRESC 5
16| Vs VS MSTESTCD TEMP Temperature WS5TRESN 6
17 Vs V3 MSTESTCD TEMP Temperature WS5TRESU 7 |C66770 WVSRESU
18 Vs V5 WSTESTCD TEMP Temperature V5LOC 8 |C74456 Loc VSLOC_TEMP | AXILLA:EAR:FOREHEAD.ORAL CAVITY:RECTUM
assigned_term assigned_value rale dataType length format signficantDigits ~ mandatoryVariable mandatonyValue originType onginSource comparator vimTarget
1/C25258 SYSEP Topic 1 0 EQ
2|c25298 Systolic Blood Pressure Qualifier 1 0
3 Qualifier integer 3 1 0 | Colected Investigator 1
4|C49670 mmHg Qualifier 1 0 1
5 Qualfier integer 3 0 0 1
& Gualifier integer 3 0 0 1
7|C49670 mmHg Qualifier 0 0 1
2 Qualifier 0 0 IN
5 Qualfier 0 0 IN
10 Qualifier 0 0 IN
11 |C174446 TEMP Topic 1 0 EQ
12| C174446 Body Temperature Qualfier 1 0
13 Qualifier float 8(83 3 1 0 | Collected Investigator 1
14 Qualifier 1 0 1
15 Qualifier float 8(83 3 0 0 1
16 Qualfier float 8(83 3 0 0 1
17 C Qualiier] 0 1
p 18 Qualfier 0 0 IN

SAS OPENCST, FORMERLY KNOWN AS SAS CLINICAL STANDARDS TOOLKIT

The SAS Clinical Standards Toolkit (CST) was published by SAS in 2009 and supports clinical research
activities by providing a framework of SAS macros based functionality to help ensure that standards are
applied to clinical data and metadata. The SAS Clinical Standards Toolkit was designed as a modular
system, able to adapt to new standards and versions of those standards [13][14]. CST focuses on the
registration and use of standards defined by CDISC. SAS stopped development of CST in 2017. The last
version supported by SAS, CST 1.7.2, primarily supported the following capabilities related to CDISC

standards:

Creating/reading Dataset-XML

Creating/reading CT-XML

Creating/reading CRT-DDS 1.0 (Define-XML v1.0)
Creating/reading Define-XML v2.0 (including Analysis Results Metadata)®

Creating/reading ODM v1.3.0 and ODM v1.3.1

Registration of CDASH, SDTM, SEND and ADaM standards metadata

3 The references section includes a paper about the Define-XML v2.0 implementation in CST [16].

12

In 2022 SAS released SAS Clinical Standards Toolkit under an Open Source license as SAS Clinical
Standards Toolkit (openCST). The CDISC Open Source Alliance (COSA) has added openCST to its
repository of Open Source projects [15]. This Open Source release is a direct port of the last production
release 1.7.2 with minor modifications to adapt to new deployment architecture and has product
documentation, installation instructions and details for contribution.

In the rest of this paper when we talk about SAS Clinical Standards Toolkit, we mean the Open Source
version openCST.

Since releasing SAS Clinical Standards Toolkit under an Open Source license, the following additions
have been made:

e Updated Define-XML v2.0 stylesheet.

e Support for ODM v1.3.2.

e Added CT-XML 1.2.0, to be able to support the latest NCI Controlled Terminology.
e Added full support for Define-XML v2.1.

SUPPORTING DEFINE-XML V2.1 WITH SAS OPENCST

Each SAS Clinical Standards Toolkit standard provides a SAS representation of the published source
guidelines or source specification. The SAS representation is designed to serve as a model or template of
the source specification. This representation helps with the following points:

+ It supplies an implementation of data models and standards that are based on SAS.

* It enables you to use SAS routines to assess how well any user-defined set of data and metadata
conforms to the standard.

* It enables you to use SAS code to read and derive files in other formats (for example, XML).

Since a Define-XML file does not have a 2-dimensional data structure, it is not a trivial task to translate this
hierarchical file to SAS dataset with rows and columns. SAS has defined a relational data model that
represents a Define-XML file.

The source metadata SAS datasets in SAS Clinical Standards Toolkit for Define-XML v2.1 are like the
source metadata SAS datasets for Define-XML v2.0 [16]. For Define-XML v2.1 a source_standards
dataset was added.

For Define-XML v2.1 the following source metadata SAS datasets are defined in SAS Clinical Standards
Toolkit:

e source_study

Metadata about the study, such as study name, study description and protocol name.
e source_standards

Metadata about the data standards and terminology standards used in the study.
e source_tables

Table metadata, such as name, domain, description (label), class, structure, purpose, keys, data
location, comments, and document references.

e source_columns

Column metadata, such as name, description (label), order number, datatype, length, codelist,
origin type, origin source, significant digits, display format, derivation (algorithm), comments and
document references.

e source values
Value level metadata (VLM), that has a condition defined in the WHERECLAUSE column.

13

Example WHERECLAUSE values are:
o (LBTESTCD EQ "BILI") AND (LBCAT EQ "CHEMISTRY") AND (LBSPEC EQ "BLOOD")
o VSTESTCD EQ “HEIGHT”

o PARAMCD IN ("ACITMO1","ACITM02","ACITMO03")
PARAMCD NOTIN ("ACTOT")

The column which the value level metadata is attached to, is defined by the TABLE and
COLUMN columns. Apart from the WHERECLAUSE column, this dataset has the same kind of
metadata as the source_columns dataset.

e source_codelists

Metadata related to Controlled Terminology, such as name, description, datatype, valid values,
decodes, rank, order number, reference to NCI code, and external terminologies.

e source_documents:

Metadata related to referenced documents, such as annotated CRF, reviewer guides or other
supplemental documents. Records in this dataset can be linked to source_study,
source_standards, source_tables, source_columns, source_values, source_codelists, or
source_analysisresults datasets. Page numbers and named destinations in PDF files can be
defined in this dataset as well.

e source_analysisresults:

Metadata related to analysis displays and results: display identifier, display name, display
description, result identifier, result description, analysis purpose and reason, parameter column,
analysis variables, analysis datasets, selection criteria (WhereClause), Selection criteria for the
records subject to analysis, result programming code and context, result documentation.

There are five key macros that are provided with the SAS Clinical Standards Toolkit that support the
CDISC Define-XML v2.1 standard.

1. The define_sourcetodefine macro creates the SAS tables that contain the SAS representation
of the Define-XML v2.1 file from the study source metadata SAS datasets. This macro, using
SDTM, SEND or ADaM table and column metadata as its source, populates a subset of the
Define-XML v2.1 datasets.

2. The define_write macro creates the Define-XML file from the SAS representation of the CDISC
Define-XML v2.1 file.

3. The cstutilxmlvalidate macro validates that the XML file is syntactically correct according to the
XML schema that is associated with the Define-XML v2.1 standard.

4. The define_read macro creates the SAS representation of the CDISC Define-XML 2.1 file by
importing a Define-XML file.

5. The define_createsrcmetafromdefine macro creates the eight study source metadata SAS
datasets from the SAS representation of the Define-XML v2.1 file.

These macros are called by driver programs that are responsible for properly setting up each openCST
process to perform a task. Sample driver programs are provided with the Define-XML v2.1 standard in
openCST related to the creation and import of the Define-XML file.

Here is the purpose of each of these driver programs:

e The create_definexml_from_source.sas driver program sets up the required metadata and
SASReferences dataset for the sample study. It runs the define_sourcetodefine macro to create
the SAS representation of the CDISC Define-XML v2.1 file from the sample study source
metadata datasets. Then it runs the define_write and cstutilxmlvalidate macros to create the
Define-XML v2.1 file. It also validates the XML syntax.

14

The create_sourcemetadata_from_definexml.sas driver program sets up the required
metadata and SASReferences dataset for the sample study. It runs the cstutilxmlvalidate and
define_read macros to validates the XML syntax and reads the Define-XML file into the SAS
dataset representation of the CDISC Define-XML 2.1 file. Then it runs the
define_createsrcmetafromdefine macro to create the study source metadata datasets.

The sample implementation also includes other programs:

migrate_definexml_20_21.sas

Migrates study source metadata from the Define-XML v2.0 format to the Define-XML v2.1 format.
The result may not be a complete representation of the study source metadata for Define-XML
v2.1, since the Define-XML v2.0 study source metadata may not have everything that is required
to create a complete and valid Define-XML v2.1 file. It does give a jump start for creating a
Define-XML v2.1 fille when a Define-XML v2.0 file is available.

create_sourcemetadata_fromsaslib.sas

Creates initial study source metadata for Define-XML v2.1 from a library of SAS datasets. This is
only an attempted approximation of study source metadata. No assumptions should be made that
the result accurately and fully represents the study source metadata that is required to create a
complete and valid Define-XML v2.1 file.

compare_metadata_sasdefine_xpt.sas
Compared the metadata from SAS XPT files with the SAS tables that contain the SAS
representation of the Define-XML v2.1 file that describes the XPT files.

definexml_roundtrip_full_example.sas

Creates study source metadata from a Define-XML v2.1 file and uses that same metadata to
create a Define-XML v2/1 file. The Define-XML file contains full coverage of the supported
Define-XML v2.1 elements and attributes.

These driver programs are examples that are provided with the SAS Clinical Standards Toolkit. You can
use these driver programs or create your own. The names of these driver programs are not important.
However, the content is important and demonstrates how the various SAS Clinical Standards Toolkit
framework macros are used to generate the required metadata files.

Display 9 illustrates the process for creating a Define-XML v2.1 in the SAS Clinical Standards Toolkit.

Display 9. The SAS macro process to create and read a Define-XML v2.1 document

Column
Metadata

Table
Metadata
Standards
Metadata

Value Level
Metadata

Codelist
Metadata

Document
Metadata

Analysis Results

Metadata
Study Internal SAS
Metadata representation
of Define-XML

15

The following steps are identified:

1.

The define_sourcetodefine macro creates the tables for the SAS representation of the Define-
XML v2.1 file from study source metadata datasets (source_*).

The define_write macro creates the Define-XML file from the SAS representation of the CDISC
Define-XML v2.1 files.

The cstutilxmlvalidate macro validates the Define-XML file against the XML schema that is
associated with the CDISC Define-XML v2.1 standard.

PROC XSL creates an HTML document from the Define-XML file and the XSL stylesheet that
comes with the SAS Clinical Standards Toolkit.

The define_read macro creates the tables for the SAS representation of the Define-XML v2.1
files from a Define-XML file.

The define_createsrcmetafromdefine macro creates the study source metadata datasets
(source_* datasets).

Display 10. SAS macros to support reading/writing Define-XML v2.1

@ cpisc N

Define.xml Eo Y
S%s
~

cube

Internal SAS
representation of
Define-XML

8 Source Metadata
SAS data sets

Display 10 illustrates how the openCST macros support the creation and import of a Define-XML v2.1
document.

As mentioned, the Clinical Standard Toolkit uses XML schema validation to validate the resulting Define-
XML v2.1 file against the XML schema. The Define-XML v2.1 file still needs to be validated against the
conformance rules for Define-XML v2.1 [17]. Currently the Clinical Standard Toolkit does not support
validation of a Define-XML v2.1 file

16

CREATING DEFINE-XML V2.1 FROM CDISC SDTM SPECIALIZATIONS

This section shows how one can use the SAS Clinical Standards Toolkit, PROC HTTP and basic SAS
code to extract CDISC SDTM Dataset Specializations and NCI Controlled Terminology from the CDISC
Library to add Value Level Metadata to limited domain metadata. This demonstrates then that CDISC
SDTM Dataset Specializations and NCI Controlled Terminology provide building blocks that can be used
to create Value Level Metadata for Define-XML v2.1. A similar process would also work for Define-XML

v2.0.

For this exercise | used the Define-XML v2.1 document that was published with the SDTM Metadata
Submission Guidelines v2.0 [18]. This Define-XML v2.1 document was stripped down to only contain the
study metadata, standards metadata, and domain metadata for the LB (Laboratory Test Results) and VS
(Vital Signs) domains. The resulting basic Define-XML v2.1 file did not contain any terminology
information, or even comments or methods. A partial view of this basic Define-XML v2.1 file can be seen

in Display 11.

Display 11. Basic Define-XML v2.1 document with study metadata, standards metadata, and basic
table and column metadata for the LB and VS domains.

CDISCPILOTO1

Standards
Datasets
LB (Laboratory Test Results)

Study N
VS (vital Signs) udy Name

Study Description
Protocol Name

Metadata Name

Date/Time of Define-XML document generation: 2023-04-12T18:03:13-04:00
Define-XML version: 2.1.0

Define-XML Context: Submission

Stylesheet version: 201%-02-11

CDISCPILOTOL
Study Data Tabulation Model Sample Study
CDISCPILOTO1

Data Definitions for SDTM datasets

Standards for Study CDISCPILOTO1

Standard Type Status Documentation
SDTMIG 3.3 1G Final
CDISC/NCI SDTM 2023-03-31 () Final
CDISC/NCI DEFINE-XML 2022-12-16 T Final
Datasets
Dataset Description Class Structure Purpose Keys Documentation Location
LB [SDTMIG 3.3] | Laboratory Test FINDINGS | One record per analyte per Tabulation | STUDYID, USUBJID, LBCAT, Ib.xpt &
Results visit per subject LBMETHOD, LBTESTCD, LBDTC,
VISITNUM, LBNAM

VS [SDTMIG 3.2] | Vital Signs FINDINGS | One record per vital sign Tabulation | STUDYID, USUBJID, VSTESTCD, vs.xpt i

measurement per visit per VSPOS, VISITNUM, VSREPNUM

subject

Go to the top of the Define-XML document

LB (Laboratory Test Results) - [SDTMIG 3.3]

Variable Label / Description

Location: 1b.xpt &

Length Controlled Terms or ISO Origin / Source / Method /

or Format Comment

Display

Format
STUDYID Study Identifier text Identifier 12 Protocol (Source: Sponsor)
DOMAIN Domain Abbreviation text Identifier 2 Assigned (Source: Sponsor)
USUBIID Unigue Subject Identifier text Identifier 8 Assigned (Source: Sponsor)
LBSEQ Sequence Number integer Identifier 3 Derived (Source: Vendor)

Display 12 shows the process to get from a Define-XML v2.1 file with basic LB and VS domain metadata
to a Define-XML v2.1 file with complete SDTM Dataset Specialization Value Level Metadata and
Controlled Terminology metadata for the LB and VS domains.

17

Display 12. The SAS process to create a Define-XML v2.1 document with VLM from SDTM Dataset
Specializations and Terminology

CDISC SDTM Dataset
Specialization
Metadata

Column Metadata e/

Table Metadata CDISC Library

Basic Terminology
Define-XMLv2.1 Metadata
Value Level
Metadata o
Standards
Metadata E
Internal SAS 9
representation Codelist
of Define-XML Metadata
Study
Metadata Define-XML v2.1 + VLM +
Terminology

The process in Display 12 uses six SAS program, each with a specific task.

1. 01 _import_definexml.sas
Imports a basic Define-XML v2.1 document (Display 11) that contains study metadata, standards
metadata, and basic LB and VS table and column metadata. The result of this import are study
source metadata tables (source_study, source_standards, source_tables, and source_columns).
It also creates the remaining source_* tables with zero records (source_values, source_codelists,
and source_documents).
The program uses the standard openCST Define-XML v2.1 import process.

2. 02 _request_api_sdtm_latest.sas
Uses PROC HTTP to get the latest version of all SDTM Dataset Specializations metadata from
the CDISC Library as JSON files. It then creates a SAS dataset that has the complete metadata
for all the latest versions of the SDTM Dataset Specializations. This dataset has the same
structure as the dataset in Display 8.

3. 03 _request_api_ct.sas
Uses PROC HTTP to get the SDTM Terminology metadata from the CDISC Library as a JSON
file. The version of the Terminology is determined by the standards metadata that was in the
imported basic Define-XML v2.1 file in step 1. The program then converts the JSON file to a SAS
dataset

4. 04_create_vim_from_sdtm_specializations.sas
Creates the source_values dataset from the SDTM Dataset Specializations dataset that was
created in step 2. Records with comparator = "EQ" or comparator = "IN" will be used to create
WhereClause metadata. Records with vimTarget = 1 will be used to create records in the
source_values dataset with ‘virtual variable’ metadata. This will include creating references for
both codelists and subset codelists.

5. 05 create ct _metadata.sas
Creates the source_codelists dataset from the SDTM Terminology metadata that was created in
step 3. Only the codelists will be kept that are reference from the source_values dataset in step 4.

18

The program will also create subset codelists from valuelists that were part of the SDTM Dataset
Specializations dataset that was created in step 2.

6. 06_create_definexml.sas
Uses the source metadata tables that were created in the previous steps to create a Define-XML
v2.1 file, including its HTML rendition.
The program uses the standard openCST Define-XML v2.1 creation process.

Display 13 shows screenshots of the HTML rendition of the ‘enhanced’ Define-XML v2.1 file.

Display 13. Define-XML v2.1 document with complete SDTM Dataset Specialization Value Level
Metadata and Controlled Terminology metadata for the LB and VS domains.

Date/Time of Define-XML document generation: 2023-04-13T12:52:12-04:00

CDISCPILOTO1
Define-XML version: 2,1.5

Standards Define-XML Context: Submission
Datasets Stylesheet version: 2019-02-11

LB (Laboratory Test Results)

) . Study Name CDISCPILOTO1

VS (Vital Signs)

Controlled Terminology Study Description Study Data Tabulation Model Sample Study

Protocol Name CDISCPILOTO1

Expand all VLM
Metadata Name Data Definitions for SDTM datasets
Collapse all VLM

This Define-XML document is based on basic LB and VS dataset and column metadata. Value level metadata (VLM) and codelists were programmatically created by
extracting metadata from CDISC SDTM Dataset Specializations and the CDISC Library.

Standards for Study CDISCPILOTO1

Status Documentation
SDTMIG 3.3 picj Final
CDISC/NCI SDTM 2023-03-31 T Final
CDISC/NCI DEFINE-XML 2022-12-16 T Final
Datasets
Dataset Description Class Structure Purpose Keys Documentation L
LB [SDTMIG 2.3] |Laboratory Test | FINDINGS | One record per analyte per visit | Tabulation | STUDYID, USUBJID, LBCAT, LEMETHOD,
Results per subject LBTESTCD, LBDTC, VISITNUM, LBNAM

VS [SDTMIG 3.3] |Vital Signs FINDINGS | One record per vital sign Tabulation | STUDYID, USUBJID, VSTESTCD, VSPOS, vs.xpt &

measurement per visit per VISITNUM, VSREPNUM

subject

Go to the top of the Define-XML document

Vendor)
CDISCPILOTO1
Standards LBORRES YLM Result Tr Finding in text Resl‘ﬂ; 20 Collected
Original Units ualifier .
Datasets g Q (Source:
Vendor)
LB (Laboratory Test Resull
VS (vital Signs) LBORRESU YtM Original Units text Variable 13 Collected
Controlled Terminology Qualifier (Source:
CodelLists Vendor)
Laterality LBTESTCD = "ALB" {Albumin) | Albumin Concentration | text Qualifier Unit, subset for Albumin
Laboratory Test Name and in Serum/Plasma Concentration in
Laboratory Test Code LBSPEC = "SERUM OR Serum/Plasma - Qriginal
Anatomical Location PLASMA" . g/l
Method . grdL”
No Yes Response
P P . "mgldL"
Position . .
Size Response * "umol/L
Specimen Type LBTESTCD = "ALB" (Albumin) | Albumin Concentration |text Qualifier Unit, subset for Albumin
unit, subset for Body M: and in Urine Concentration in Urine -
Unit, subset for Albumir LBSPEC = "URINE" Original
Unit, subset for Albumin . "g/L"
Unit, subset for Alkaline . "gdL”
Unit, subset for Alanine . "ma/L”
Unit, subset for Asparta N
; | « "ma/dL”
Unit, subset for Basophi

19

CDISCPILOTO1 LBSTRESC YLt Character text Result 20 Derived
Standards Result/Finding in Std Qualifier (Source:
Datasets Format Eencopl

LB (Laboratory Test Resull LBSTRESN YLM MNumeric Result/Finding | float Result 12 Derived
VS (Vvital Signs) in Standard Units Qualifier (Source:
Controlled Terminology Vendor)
Codelists
Laterality LBSTRESU ¥LM Standard Units text Vaﬁgbla 13 Assigned
Laboratory Test Name Qi (BT
Laberatory Test Code S
Anatomical Location LBTESTCD = "ALB" (Albumin) | Albumin Concentration |text Qualifier Unit,_subset for Albumin
Method and in Serum/Plasma Concentration in
No Yes Response LBSPEC = "SERUM OR Serum/Plasma -
Position PLASMA" Standardized
Size Response * o/
Specimen Type LBTESTCD = "ALB" (Albumin) | Albumin Concentration |text Qualifier Unit, subset for Albumin
Unit, subset for Body Me and in Urine Concentration in Urine -
Unit, subset for Albumin LBSPEC = "URINE" Standardized
Unit, subset for Albumin . g/L"
Unit, subset for Alkaline
e
Unit, subset for Absolutt VSTESTCD = "SYSBP" Systolic Blood text | Qualifier Units for Vital Signs Results,
Unit, subset for Nicotine (Systelic Blood Pressure) Pressure subset for Systolic Blood Pressure
Unit, subset for Nicotine and = Original
Unit, subset for Nornico! %ng_(
Unit, subset for Phosphe “STANDIN(%",
Unit, subset for Platelet "SUPINE"
Unit, subset for Protein) and
Unit, subset for Erythroc VSLOCIN (
Unit, subset for Sodium ::BMCHIAL ARTERT*
unit, subset for Sodium HCAROT[D ARTERY",
Unit, subset for Sodium AI:?E:;!_’IS PEDIS
Unit, subset for Urate Ci "FEMORAL ARTERY",
Unit, subset for Leukocy "RADIAL ARTERY"
Units for Vital Signs Res) and
Units for Vital Signs Res VSLATIN {
Units for Vital Signs Res ::LEFT"'“
~ RIGHT
Units for Vital Signs Res)
Units for Vital Signs Res
Units for Vital Signs Res ‘E:T;% = “‘EEM;;") Temperature text Qualifier Wgnir’\;ﬂdt{; .
- ~ ody Temperature) an subset for Temperature - Original
Un{ts fmr V!tal S!gms Res VSLOC TN (Ve
Units for Vital Signs Res "AXILLA", =
Units for Vital Signs Res "EAR”, *'F
Units for Vital Signs Res "FOREHEAD", . K"
Units for Vital Signs Res "ORAL CAVITY",
Units for Vital Signs Res "RECTUM”
Units for Vital Signs Res)
Units for Vital Signs Res VSTESTCD = "WEIGHT" Weight text Qualifier
Units for vital Signs Res (Weight)
Units for Vital Signs Res
Units for Vital Signs Res . g"
Units for Vital Signs Res . k"
Units for Vital Signs Res

20

VSORRESU LM Original Units text Variable 11
CDISCPILOTO1 Qualifier
Standards VSSTRESC YLM Character Result/Finding | text | Result 20 Derived (Source:
Datasets in Std Format Qualifier Sponsor)
LB (Laboratory Test Results)
VS (vital Signs) VSTESTCD = "BMI" (Body Body Mass Index float Qualifier 8.3
(
Controlled Terminology [Ees i)
CodeLists VSTESTCD = "DIABP" Diastolic Blood Pressure | integer | Qualifier 3
Laterality (Diastolic Blood Pressure} and
Laboratory Test Name %ng.[
Laboratory Test Code “STANDING,
Anatomical Lacation "SUPINE"
Method) and
No Yes Response VSLOC IN (
Position "BRACHIAL ARTERY",
Size Response "CAROTID ARTERY",
Shedi . "DORSALIS PEDIS ARTERY",
pedmen Type "FEMORAL ARTERY",
unit, subset for Body Mass In "RADIAL ARTERY"
Unit, subset for Albumin Conc) and
Unit, subset for Albumin Conc VSLAT IN (
unit, subset for Alkaline Phos| =T,
Unit, subset for Alanine Amint KIcH
Unit, subset for Aspartate Am)
Unit, subset for Basophil Cour VSTESTCD = "FRMSIZE" (Body | Frame Size text Qualifier 20 | Size Response
Unit, subset for Bicarbonate € Frame Size) « "LARGE"
Unit, subset for Calcium Conc « "MEDIUM"
unit, subset for Carboxyheme . "SMALL"
uUnit, subset for Calcium Conc
unit, subset for Chloride Conc VSTESTCD = "HEIGHT" Height float | Qualifier 8.2
Unit, subset for Chloride Conc (Height)
Unit enheat for Carhon Monoe o IS b e -
UNIT, SUDSET TOr Sodium
Unit, subset for Urate Ci VSTESTCD = "SYSBP" Systolic Blood text Qualifier Units for Vital Signs Results,
Unit, subset for Leukocy (Systolic Blood Pressure) | Pressure subset for Systolic Blood Pressure
Units for Vital Signs Res 32‘:05 o =Standardized
e For VSPOS « "mmHg"
Units for Vital Signs Res "SITTING”,
Units for vital Signs Res "STANDING",
Units for vital Signs Res "SUPINE"
Units for vital Signs Res) and
Units for Vital Signs Res VSLOC IN (
Units for Vital Signs Res HEE‘:E::S:‘:?E&%Y ‘
e o .
Um_.s for_ Vital Signs Res "DORSALIS PEDIS
Units for Vital Signs Res ARTERY",
Units for Vital Signs Res "FEMORAL ARTERY",
Units for Vital Signs Res "RADIAL ARTERY"
Units for Vital Signs Res) and
Units for Vital Signs Res % IN(
e For b
Units for vital Signs Res "RIGHT"
Units for Vital Signs Res)
Units for Vital Signs Res
Units for Vital Signs Res VSTESTCD = "TEMP" Temperature text Qualifier Units for Vital Signs Results,
r for | {Body Temperature) and subset for Temperature -
Units for Vital Signs Res VSLOC IN Standardized
Units for Vital Signs Res "AXILLA", e
Vital Signs Test Name "EAR",
Vital Signs Test Code "FOREHEAD",
"ORAL CAVITY",
"RECTUM"
Zxpand all VLM)

CONCLUSION

CDISC kicked off the Biomedical Concepts project in 2022, taking a pragmatic, iterative approach to
create Biomedical Concepts (BCs) and representing them in the Foundational Standards as Dataset
Specializations with Value Level Metadata definitions. This paper showed that the SDTM Dataset
Specializations can be represented as Value Level Metadata definitions in Define-XML v2.1. These
definitions contain detailed metadata, including Controlled Terminology subsets. The SDTM Dataset
Specializations can be considered pre-configured building blocks, from which end-users can select and
configure to build Value Level Metadata, which is an important part of the metadata for their Define-XML.
The simplified implementation approach is easy to understand and allows for quick return on investment.
SDTM dataset specializations are ready to be used as building blocks for Define-XML. This provides
immediate benefits to SDTM programmers and opens the door to efficient programming and automation.

21

REFERENCES

(1]
(2]

(3]

[4]

[5]

[6]

[7]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

CDISC Biomedical Concepts. Available at https://www.cdisc.org/cdisc-biomedical-concepts

Hume, Sam. (2020). CDISC 360: Using Biomedical Concept Metadata to Generate Case Report
Forms and Dataset Definitions. Proceedings of PHUSE US Connect 2020.
Retrieved from https://www.lexjansen.com/phuse-us/2020/tt/TT06.pdf

ISO/IEC. (2013). ISO/IEC 11179 Part 3: Registry metamodel and basic attributes. Available at
https://en.wikipedia.org/wiki/ISO/IEC_11179

Jansen, Lex. (2021). Extracting Data Standards Metadata and Controlled Terminology from the
CDISC Library using SAS® with PROC LUA. Proceedings of PharmaSUG 2021.
Retrieved from https://www.lexjansen.com/pharmasug/2021/AD/PharmaSUG-2021-AD-168.pdf

CDISC website. How-to-articles: Getting Started: Access to CDISC Library API using APl Key
Authentication. Available at
https://wiki.cdisc.org/display/LIBSUPRT/Getting+Started%3A+Access+to+CDISC+Library+APl+usi
ng+API+Key+Authentication

SASP Institute Inc. (2017). “The HTTP Procedure” Base SAS Procedures Guide: Seventh Edition.
Cary, NC: SAS® Institute Inc. Available at
https://go.documentation.sas.com/doc/en/pgmsascdc/9.4 3.5/proc/nObdg5vmrpyi7jnlpbgbje2atoo
v.htm

Henry, Joseph (2020), REST Just Got Easy with SAS® and PROC HTTP.
Proceedings of SAS Global Forum 2020.

Retrieved from https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-
proceedings/2020/4426-2020.pdf

Henry, Joseph (2019). The ABCs of the HTTP Procedure.
Proceedings of SAS Global Forum 2019.
Retrieved from https://support.sas.com/resources/papers/proceedings19/3232-2019.pdf

SASP® Institute Inc . 2017. “LIBNAME Statement: JSON Engine” SAS® 9.4 Global Statements:
Reference, Seventh Edition. Cary, NC: SAS® Institute Inc. Available at
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.2/lestmtsglobal/nljfdetszx99banlrl4zli6tej7].h
tm

Jansen, Lex (2021). Parsing JSON Files in SAS® Using PROC LUA.
Proceedings of PHUSE EU Connect 2021.
Retrieved from https://www.lexjansen.com/phuse/2021/ad/PRE_ADOQ6.pdf

Jansen, Lex (2022). Working with Dataset-JSON using SAS®. Proceedings of PharmaSUG 2022.
Retrieved from https://www.lexjansen.com/pharmasug/2022/AD/PharmaSUG-2022-AD-150.pdf

SAS® Clinical Standards Toolkit
Available at the Internet Archive (accessed on April 19, 2023):
https://web.archive.org/web/20220127085021/support.sas.com/rnd/base/cdisc/cst/index.html

Villiers, Pete (2009). A Toolkit for CDISC Implementation.
Proceedings of SAS Global Forum 2009.
Retrieved from https://support.sas.com/resources/papers/proceedings09/161-2009.pdf

SAS Clinical Standards Toolkit (openCST) at the CDISC Open Source Alliance.
Available at https://cosa.cdisc.org/directory/open-sas-clinical-standards-toolKkit

Jansen, Lex (2017). Creating Define-XML version 2 including Analysis Results Metadata with the
SAS® Clinical Standards Toolkit. Proceedings of PharmaSUG 2017.
Retrieved from https://www.lexjansen.com/pharmasug/2017/SS/PharmaSUG-2017-SS08.pdf

22

https://www.cdisc.org/cdisc-biomedical-concepts
https://www.lexjansen.com/phuse-us/2020/tt/TT06.pdf
https://en.wikipedia.org/wiki/ISO/IEC_11179
https://www.lexjansen.com/pharmasug/2021/AD/PharmaSUG-2021-AD-168.pdf
https://wiki.cdisc.org/display/LIBSUPRT/Getting+Started%3A+Access+to+CDISC+Library+API+using+API+Key+Authentication
https://wiki.cdisc.org/display/LIBSUPRT/Getting+Started%3A+Access+to+CDISC+Library+API+using+API+Key+Authentication
https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/proc/n0bdg5vmrpyi7jn1pbgbje2atoov.htm
https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/proc/n0bdg5vmrpyi7jn1pbgbje2atoov.htm
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4426-2020.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4426-2020.pdf
https://support.sas.com/resources/papers/proceedings19/3232-2019.pdf
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.2/lestmtsglobal/n1jfdetszx99ban1rl4zll6tej7j.htm
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.2/lestmtsglobal/n1jfdetszx99ban1rl4zll6tej7j.htm
https://www.lexjansen.com/phuse/2021/ad/PRE_AD06.pdf
https://www.lexjansen.com/pharmasug/2022/AD/PharmaSUG-2022-AD-150.pdf
https://web.archive.org/web/20220127085021/support.sas.com/rnd/base/cdisc/cst/index.html
https://support.sas.com/resources/papers/proceedings09/161-2009.pdf
https://cosa.cdisc.org/directory/open-sas-clinical-standards-toolkit
https://www.lexjansen.com/pharmasug/2017/SS/PharmaSUG-2017-SS08.pdf

[17] CDISC (2021). Conformance Rules for Define-XML v2.1.
Available at https://www.cdisc.org/standards/foundational/define-xml/conformance-rules-define-
xml-v2-1

[18] CDISC (2021). SDTM Metadata Submission Guidelines v2.0.
Available at https://www.cdisc.org/standards/foundational/sdtm/sdtm-metadata-submission-

quidelines-v2-0

ACKNOWLEDGMENTS

The author would like to acknowledge the CDISC team for their work on the CDISC Biomedical Concepts,
including Linda Lander, Anthony Chow, Sam Hume, Nic Haydel, Andrew Su, without whom this paper
would not be possible.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Lex Jansen
Sr Director, Data Science Development, CDISC (contract through Lex Jansen Consulting LLC)
Email: lexjansen@gmail.com or l[jansen@cdisc.org

All code used in this paper can be found at GitHub:

https://github.com/lexjansen/sas-papers/tree/master/pharmasug-2023

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

23

https://www.cdisc.org/standards/foundational/define-xml/conformance-rules-define-xml-v2-1
https://www.cdisc.org/standards/foundational/define-xml/conformance-rules-define-xml-v2-1
https://www.cdisc.org/standards/foundational/sdtm/sdtm-metadata-submission-guidelines-v2-0
https://www.cdisc.org/standards/foundational/sdtm/sdtm-metadata-submission-guidelines-v2-0
mailto:lexjansen@gmail.com
mailto:ljansen@cdisc.org
https://github.com/lexjansen/sas-papers/tree/master/pharmasug-2023

