
1

PharmaSUG 2023 - Paper SS-140

Working with Biomedical Concepts and SDTM Dataset Specializations for
Define-XML v2.1 using SAS© openCST

Lex Jansen, CDISC1

ABSTRACT

Biomedical Concepts are units of knowledge that relate to real-world entities. Getting Biomedical
Concepts off the ground has been a long and challenging journey. There is little to debate that in theory
Biomedical Concepts make sense, but implementation has been a great challenge with little to no
realization of benefits. Perhaps that is because the scope has been too large and complex, making
implementation extremely difficult. For this reason, CDISC has developed a simplified approach and
model which includes an abstract conceptual layer that provides semantics as well as a simplified
implementation layer of preconfigured Dataset Specializations (CDASH, SDTM, ...) linked to Biomedical
Concepts. SDTM Dataset Specializations are ready to use building blocks for Define-XML. This provides
immediate benefits to SDTM programmers and opens the door to efficient programming and automation.
Biomedical Concepts are now available in CDISC Library via the API. This paper shows how SAS© can
work with Biomedical Concepts and SDTM Dataset Specializations. This paper will show how SDTM
Dataset Specializations can be used by the Open Source release of SAS Clinical Standards Toolkit
(openCST) for the creation of Value Level Metadata in Define-XML v2.1.

Keywords: CDISC, Biomedical Concepts, SDTM Dataset Specializations, Define-XML, define.xml, Value
Level Metadata, metadata

INTRODUCTION

CDISC kicked off the Conceptual and Operational Standards Metadata Services (COSMoS) project in
2022 [1], taking a pragmatic, iterative approach to creating Biomedical Concepts (BCs) and representing
them in the Foundational Standards as Dataset Specializations with Value Level Metadata definitions.
Biomedical Concepts fill gaps in the current standards by adding semantics, variable relationships, and
the detailed metadata needed to generate Case Report Forms (CRFs) or a Define-XML document.

CDISC Biomedical Concepts include a two layered approach:

¶ Conceptual/abstract layer which provides a standards-agnostic, unambiguous semantic definition
largely based on concepts from the NCIt (National Cancer Institute Thesaurus).

¶ Implementation layer based on valid CDISC Dataset specializations that provide value level
metadata definitions and facilitate metadata driven automation.

The data model is flexible and can accommodate other standards (e.g., CDASH, HL7 FHIR) by defining
additional dataset specializations.

This paper will concentrate on the implementation layer, which is based on CDISC Dataset
Specializations. Especially, we show how SDTM Dataset Specializations can be used as building blocks
for Value Level Metadata (VLM) in Define-XML v2.1.

All code used in this paper is available on GitHub: https://github.com/lexjansen/sas-papers

CDISC BIOMEDICAL CONCEPTS

What is a Biomedical Concept? We use the definition from the following text:

BCs address metadata gaps in the current CDISC standards. They provide the conceptual definitions
supporting the existing CDISC Foundational Standards metadata. This conceptual metadata is
necessary to generate operationally ready Data Elements (DE). These operational DEs represent the

1 Contract through Lex Jansen Consulting LLC

https://github.com/lexjansen/sas-papers

2

detail needed to create the dataset variable definitions and value level metadata needed to generate
a Define-XML document.

A BC is a unit of knowledge created by a unique combination of characteristics. As noted above, BCs
complement the existing standards, but omit the operationalization of the standards. That is, BCs
exist independent of any given standards implementation, such as SDTMIG v3.2 or CDASHIG v2.0. A
BC specifies an observation concept, or what should be observed for a specific subject assessment
in a clinical study, but not how to capture the data or how to group observations together [2].

The CDISC Biomedical Concepts are a pragmatic and simplified implementation that takes inspiration
from the ISO 11179 standard. The following quote is also from [2]:

An observation concept consists of one or more Data Element Concepts (DEC) as defined in the
ISO 11179 standard [3]. DECs represent the meaning of a variable and consist of a concept code
identifier and a definition. DEs, or operational variables, consist of a unique pairing of a DEC and
a Value Domain (VD). A VD is the domain of possible values for a DE which include data types,
formats, and constraints. A DE is formed when a DEC takes on a specific representation or VD.
Display 1 illustrates the ISO 11179 model.

Display 1. Overview Model for ISO/IEC 11179 Metadata Registry

The pragmatic CDISC Biomedical Concepts approach, as shown in Display 2 and Display 3, helps
implementers by:

¶ Adding explicit relationships to the existing standards such that they exist as explicit relationships
at the variable and dataset level. For example, a results variable may have a HAS_UNITS
relationship to the units variable. The missing relationships in the standards belong as part of the
standard itself, not added through an additional concept layer.

¶ Adding explicit operational metadata to the existing standards such that they are defined for each
variable. A variable definition should include all the operational metadata needed to create a
Define-XML document. So, each variable should have a specific data type (e.g., integer, decimal,
datetime), significant digits, and length defined. Where appropriate, the appropriate codelist
subset should be associated with the variable.

¶ Associating example values with variables to highlight how a variable might be represented.

The model and schema describing the CDISC Biomedical Concepts and SDTM Dataset Specializations
can be found on GitHub (https://github.com/cdisc-org/COSMoS).

https://github.com/cdisc-org/COSMoS

3

Display 2 shows the class diagrams for the Biomedical Concepts and the SDTM Dataset Specializations.
The red lines show how an SDTM Dataset Specialization has a reference to a Biomedical Concept and
SDTM variables have references to Data Element Concepts.

Display 2. Class diagrams for the Biomedical Concepts and the SDTM Dataset Specializations

Display 3 shows a Biomedical Concept (Systolic Blood Pressure) and an associated SDTM Dataset
Specialization (SYSBP).

4

Display 3. Biomedical Concept (Systolic Blood Pressure) and an associated SDTM Dataset
Specialization (SYSBP)

Table 1 lists some of the attributes that are part of a SDTM Dataset Specialization, together with their
description.

5

Table 1. SDTM Dataset Specialization attributes

Attribute Description

datasetSpecializationId Identifier for SDTM Value Level Metadata group

domain Domain for the SDTM specialization group

shortName SDTM group short name which provides a user friendly and intuitive name for
the datasetSpecializationId

source SDTM VLM Source which categorizes VLM groups by topic variable

sdtmigStartVersion The earliest SDTMIG version applicable to the SDTM dataset specialization

sdtmigEndVersion The last SDTMIG version that is applicable to the SDTM dataset specialization

biomedicalConceptId Biomedical Concept identifier

Every SDTM Dataset Specialization contains one or more variables. Table 2 lists some of the variable
attributes and their description.

Table 2. SDTM Dataset Specialization Variable attributes

Attribute Description

name Variable included in the SDTM dataset specialization

dataElementConceptId Biomedical Concept Data Element Concept identifier

codelist conceptId C-code for a codelist in NCIt

href Link to NCIt for the codelist

submissionValue CDISC submission value for the codelist

subsetCodelist Subset codelist short name

valueList List of SDTM submission values used if subset codelist is not applicable

assignedTerm conceptId C-code for assigned term in NCIt

value Submission value for assigned term in NCIt if it exists, or an assigned
value which will be the default value

role SDTM variable role

relationship Subject Subject in a variable relationship

linkingPhrase Variable relationship descriptive linking phrase

predicateTerm Short variable relationship linking phrase for programming

object Object in a variable relationship

datatype Variable data type

length Variable length

format Variable display format

significantDigits Variable significant digits

originType Variable origin type (Assigned, Collected, Derived, Protocol, Predecessor)

originSource Variable origin source (Investigator, Sponsor, Subject, Vendor)

comparator Comparison operator for SDTM group variables included in VLM (EQ, IN)

vlmTarget Target variable for VLM (true/false)

6

ACCESSING BIOMEDICAL CONCEPTS AND SDTM DATASET SPECIALIZATIONS

CDISC Biomedical Concepts and SDTM Dataset Specializations are published by CDISC as packages
and can be accessed through a REST API in a comparable way as data standards metadata and
controlled terminology can be accessed from the CDISC Library [4]. At the time of the writing of this paper
(April 2023), three packages with Biomedical Concepts and SDTM Dataset Specializations were released
(2022-10-26, 2023-02-13, 2023-03-31). A package is incremental and contains new or updated content.

Table 3 gives a list of the API endpoints that are currently available. More API endpoints are being
developed by CDISC. To be able to use the API it is required that the user has an API key [5].

Table 3. REST API Endpoints to access Biomedical Concepts and SDTM Dataset Specializations

API Endpoint / Description

/mdr/bc/packages

 Get Biomedical Concept Package List

/mdr/bc/packages/{package}/biomedicalconcepts

 Get Biomedical Concept List

/mdr/bc/packages/{package}/biomedicalconcepts/{biomedicalconcept}

 Get Biomedical Concept

/mdr/specializations/sdtm/packages

 Get SDTM Dataset Specialization Package List

/mdr/specializations/sdtm/packages/{package}/datasetspecializations

 Get SDTM Dataset Specialization List

/mdr/specializations/sdtm/packages/{package}/datasetspecializations/{datasetspecialization}

 Get SDTM Dataset Specialization

The API request returns JSON content by default. Display 4 shows part of the JSON response from the
API request to get the Diastolic Blood Pressure:
 /mdr/specializations/sdtm/packages/ 2022 - 10- 26/datasetspecializations/ SYSBP

The response in Display 4 shows some SDTM Data Specialization metadata, like the
datasetSpecializationId (ñSYSBPò), the domain (ñVSò), and an array of variables.

Display 4. Example SDTM Dataset Specialization JSON Response Fragments from an API Request

Display 5 shows a selection of the variables in the response: VSTESTCD, VSPOS, VSLOC, VSLAT.
These variables have in common that they all have a comparator property equal to either ñINò or ñEQò.

7

Also, they all have an assigned term (VSTESTCD) or a codelist (VSPOS, VSLOC and VSLAT).

Display 5 Example SDTM Dataset Specialization JSON Response Fragments from an API Request

Since the variables VSTESTCD, VSPOS, VSLOC, and VSLAT have a comparator (last property in each
screenshot), they will become conditions in a (composite) WhereClause in Value Level Metadata in a
Define-XML document:

Display 6 shows the VSORRES and VSORRESU variables in the JSON response. These variables both
have the vlmTarget attribute with a value of ñtrueò. This means that these variables are described by
Value Level Metadata. Other variable attributes in the response, like length, datatype, originType,
originSource, codelist, and assignedTerm describe the variable as part of the Value Level Metadata
under the specific condition defined by the WhereClause.

8

Display 6. Example SDTM Dataset Specialization JSON Response Fragments from an API Request

REST API REQUESTS IN SAS

REST API requests are widely supported by software languages. PROC HTTP is a powerful SAS
procedure to issue Hypertext Transfer Protocol (HTTP) requests [6] [7] [8]. The procedure includes a
DEBUG statement, response status macro variables, and the ability to specify a time-out period for
requests.

Below is an example of requesting the SYSBP SDTM Dataset Specialization from the 2022-10-26
package. It is expected that the macro variable &ApiKey contains your personal API key that you created
at the CDISC Library API Management Developer Portal [5].

%let ApiKey=<your_personal_api_key> ;
%let baseURL=https://library.cdisc.org/api;

filename json_out temp;
proc http
 method = 'GET'
 url ="&baseURL/mdr/specializations/sdtm/packages/2022 - 10- 26/datasetspecializations/SYSBP"
 out =json_out;
 headers
 "api - key" = "&ApiKey"
 "Accept" = "application/json" ;
run ;
%put %sysfunc (jsonpp(json_out, log));

filename json_map temp;
libname json_out json map=json_map automap=create fileref=json_out;

proc copy in = json_out out = work;
run ;

9

This code results in 10 SAS datasets, some of which need to be merged to get the expected SAS dataset
with SDTM Dataset Specialization metadata.

10

Display 7 shows the resulting root, variables, variables_codelists, variables_valuelist and
variables_assigned_term datasets.

Display 7. Datasets created by the SAS JSON engine

The code above uses the SAS JSON engine libname, which was introduced in SAS 9.4TS1M4 [10].
Using SAS can be cumbersome when dealing with complex JSON files as it requires the merging of
potentially a large number of datasets and dealing with the management of JSON MAP files to correct
decisions that the SAS JSON automapper makes in terms of variable types and variable lengths. Earlier
papers by the author have used PROC LUA to parse JSON files in SAS [4][11][12]. The JSON for SDTM
Dataset Specializations is not too complex. So, for this paper I decided to use the native SAS JSON
engine libname.

As mentioned, there are challenges when combining the various datasets with SDTM Dataset
Specialization endpoints into a single dataset:

¶ When the JSON map is automatically generated (automap=create) the datasets, variables and
length of variables depend on the endpoint. For example, Dataset Specializations will not always
have a valuelist attribute, so there may not be a variables_valuelist dataset.

¶ Since the valuelist attribute is really a JSON array, the number of variables valueList1, valueList2,
é is not known beforehand

The code, which can be found in the repository2, manages these challenges by creating a template for the
expected dataset with all variables and their lengths, checking whether datasets exist and pre-processing
the variables_valuelist dataset before merging.

The following SAS code shows how to combine an unknown number of valuelist1, valuelist2, é variables
into a _valuelist variable using an array:

2 The GitHub repository that supports this paper is located at: https://github.com/lexjansen/sas-papers

https://github.com/lexjansen/sas-papers

11

data work.variables_valuelist(drop=valueList:);
 set work .v ariables_valuelist;
 length _valueList $ 2048;
 array valueList_{*} $ 1024 valueList:;
 valueList = catx(";" , OF valueList{*});
run;

Tables that were extracted from JSON can be joined with the following SAS code:

proc sql ;
 create table out.sdtm_specializations
 as select
 root.datasetSpecializationId
 , root.domain
 , root.source
 , root.shortName
 , var.name
 , var.ordinal_variables as order
 , var.isNonStandard
 , varcl.conceptId as codelist
 , varcl.submissionValue as codelist_submission_value
 , varvl. _valueList as value_list
 , varat.conceptId as assigned_term
 , varat.value as assigned_value
 , var.subsetCodelist
 , var.role
 , var.dataType
 , var.length
 , var.format
 , var.significantDigits
 , var.mandatoryVariable
 , var.mandatoryValue
 , var.originType
 , var.originSource
 , var.comparator
 , var.vlmTarget
 from
 work.root root
 join work.variables var
 on (var.ordinal_root=root.ordinal_root)
 left join work.variables_codelist varcl
 on (varcl.ordinal_variables=va r.ordinal_variables)
 left join work.variables_assignedterm varat
 on (varat.ordinal_variables=var.ordinal_variables)
 left join work.variables_valuelist varvl
 on (varvl.ordinal_variables=var.ordinal_variables)
 order by datasetSpecia lizationId, order
 ;
 ;
quit ;

Display 8 shows part of the merged dataset with metadata for all SDTM Dataset Specializations, showing
the Systolic Blood Pressure (SYSBP) and Temperature (TEMP) specializations.

Using this dataset, we can create Value Level Metadata and codelist metadata, which can then be used
as building blocks to create a Define-XML document.

12

Display 8. Dataset with metadata for all SDTM Dataset Specializations

SAS OPENCST, FORMERLY KNOWN AS SAS CLINICAL STANDARDS TOOLKIT

The SAS Clinical Standards Toolkit (CST) was published by SAS in 2009 and supports clinical research
activities by providing a framework of SAS macros based functionality to help ensure that standards are
applied to clinical data and metadata. The SAS Clinical Standards Toolkit was designed as a modular
system, able to adapt to new standards and versions of those standards [13][14]. CST focuses on the
registration and use of standards defined by CDISC. SAS stopped development of CST in 2017. The last
version supported by SAS, CST 1.7.2, primarily supported the following capabilities related to CDISC
standards:

¶ Creating/reading CRT-DDS 1.0 (Define-XML v1.0)

¶ Creating/reading Define-XML v2.0 (including Analysis Results Metadata)3

¶ Creating/reading Dataset-XML

¶ Creating/reading ODM v1.3.0 and ODM v1.3.1

¶ Creating/reading CT-XML

¶ Registration of CDASH, SDTM, SEND and ADaM standards metadata

3 The references section includes a paper about the Define-XML v2.0 implementation in CST [16].

13

In 2022 SAS released SAS Clinical Standards Toolkit under an Open Source license as SAS Clinical
Standards Toolkit (openCST). The CDISC Open Source Alliance (COSA) has added openCST to its
repository of Open Source projects [15]. This Open Source release is a direct port of the last production
release 1.7.2 with minor modifications to adapt to new deployment architecture and has product
documentation, installation instructions and details for contribution.

In the rest of this paper when we talk about SAS Clinical Standards Toolkit, we mean the Open Source
version openCST.

Since releasing SAS Clinical Standards Toolkit under an Open Source license, the following additions
have been made:

¶ Updated Define-XML v2.0 stylesheet.

¶ Support for ODM v1.3.2.

¶ Added CT-XML 1.2.0, to be able to support the latest NCI Controlled Terminology.

¶ Added full support for Define-XML v2.1.

SUPPORTING DEFINE-XML V2.1 WITH SAS OPENCST

Each SAS Clinical Standards Toolkit standard provides a SAS representation of the published source
guidelines or source specification. The SAS representation is designed to serve as a model or template of
the source specification. This representation helps with the following points:

Å It supplies an implementation of data models and standards that are based on SAS.

Å It enables you to use SAS routines to assess how well any user-defined set of data and metadata
conforms to the standard.

Å It enables you to use SAS code to read and derive files in other formats (for example, XML).

Since a Define-XML file does not have a 2-dimensional data structure, it is not a trivial task to translate this
hierarchical file to SAS dataset with rows and columns. SAS has defined a relational data model that
represents a Define-XML file.

The source metadata SAS datasets in SAS Clinical Standards Toolkit for Define-XML v2.1 are like the
source metadata SAS datasets for Define-XML v2.0 [16]. For Define-XML v2.1 a source_standards
dataset was added.

For Define-XML v2.1 the following source metadata SAS datasets are defined in SAS Clinical Standards
Toolkit:

¶ source_study

Metadata about the study, such as study name, study description and protocol name.

¶ source_standards

Metadata about the data standards and terminology standards used in the study.

¶ source_tables

Table metadata, such as name, domain, description (label), class, structure, purpose, keys, data
location, comments, and document references.

¶ source_columns

Column metadata, such as name, description (label), order number, datatype, length, codelist,
origin type, origin source, significant digits, display format, derivation (algorithm), comments and
document references.

¶ source_values

Value level metadata (VLM), that has a condition defined in the WHERECLAUSE column.

14

Example WHERECLAUSE values are:

o (LBTESTCD EQ "BILI") AND (LBCAT EQ "CHEMISTRY") AND (LBSPEC EQ "BLOOD")

o VSTESTCD EQ ñHEIGHTò

o PARAMCD IN ("ACITM01","ACITM02","ACITM03")
PARAMCD NOTIN ("ACTOT")

The column which the value level metadata is attached to, is defined by the TABLE and
COLUMN columns. Apart from the WHERECLAUSE column, this dataset has the same kind of
metadata as the source_columns dataset.

¶ source_codelists

Metadata related to Controlled Terminology, such as name, description, datatype, valid values,
decodes, rank, order number, reference to NCI code, and external terminologies.

¶ source_documents:

Metadata related to referenced documents, such as annotated CRF, reviewer guides or other
supplemental documents. Records in this dataset can be linked to source_study,
source_standards, source_tables, source_columns, source_values, source_codelists, or
source_analysisresults datasets. Page numbers and named destinations in PDF files can be
defined in this dataset as well.

¶ source_analysisresults:

Metadata related to analysis displays and results: display identifier, display name, display
description, result identifier, result description, analysis purpose and reason, parameter column,
analysis variables, analysis datasets, selection criteria (WhereClause), Selection criteria for the
records subject to analysis, result programming code and context, result documentation.

There are five key macros that are provided with the SAS Clinical Standards Toolkit that support the
CDISC Define-XML v2.1 standard.

1. The define_sourcetodefine macro creates the SAS tables that contain the SAS representation
of the Define-XML v2.1 file from the study source metadata SAS datasets. This macro, using
SDTM, SEND or ADaM table and column metadata as its source, populates a subset of the
Define-XML v2.1 datasets.

2. The define_write macro creates the Define-XML file from the SAS representation of the CDISC
Define-XML v2.1 file.

3. The cstutilxmlvalidate macro validates that the XML file is syntactically correct according to the
XML schema that is associated with the Define-XML v2.1 standard.

4. The define_read macro creates the SAS representation of the CDISC Define-XML 2.1 file by
importing a Define-XML file.

5. The define_createsrcmetafromdefine macro creates the eight study source metadata SAS
datasets from the SAS representation of the Define-XML v2.1 file.

These macros are called by driver programs that are responsible for properly setting up each openCST
process to perform a task. Sample driver programs are provided with the Define-XML v2.1 standard in
openCST related to the creation and import of the Define-XML file.

Here is the purpose of each of these driver programs:

¶ The create_definexml_from_source.sas driver program sets up the required metadata and
SASReferences dataset for the sample study. It runs the define_sourcetodefine macro to create
the SAS representation of the CDISC Define-XML v2.1 file from the sample study source
metadata datasets. Then it runs the define_write and cstutilxmlvalidate macros to create the
Define-XML v2.1 file. It also validates the XML syntax.

15

¶ The create_sourcemetadata_from_definexml.sas driver program sets up the required
metadata and SASReferences dataset for the sample study. It runs the cstutilxmlvalidate and
define_read macros to validates the XML syntax and reads the Define-XML file into the SAS
dataset representation of the CDISC Define-XML 2.1 file. Then it runs the
define_createsrcmetafromdefine macro to create the study source metadata datasets.

The sample implementation also includes other programs:

¶ migrate_definexml_20_21.sas
Migrates study source metadata from the Define-XML v2.0 format to the Define-XML v2.1 format.
The result may not be a complete representation of the study source metadata for Define-XML
v2.1, since the Define-XML v2.0 study source metadata may not have everything that is required
to create a complete and valid Define-XML v2.1 file. It does give a jump start for creating a
Define-XML v2.1 fille when a Define-XML v2.0 file is available.

¶ create_sourcemetadata_fromsaslib.sas
Creates initial study source metadata for Define-XML v2.1 from a library of SAS datasets. This is
only an attempted approximation of study source metadata. No assumptions should be made that
the result accurately and fully represents the study source metadata that is required to create a
complete and valid Define-XML v2.1 file.

¶ compare_metadata_sasdefine_xpt.sas
Compared the metadata from SAS XPT files with the SAS tables that contain the SAS
representation of the Define-XML v2.1 file that describes the XPT files.

¶ definexml_roundtrip_full_example.sas
Creates study source metadata from a Define-XML v2.1 file and uses that same metadata to
create a Define-XML v2/1 file. The Define-XML file contains full coverage of the supported
Define-XML v2.1 elements and attributes.

These driver programs are examples that are provided with the SAS Clinical Standards Toolkit. You can
use these driver programs or create your own. The names of these driver programs are not important.
However, the content is important and demonstrates how the various SAS Clinical Standards Toolkit
framework macros are used to generate the required metadata files.

Display 9 illustrates the process for creating a Define-XML v2.1 in the SAS Clinical Standards Toolkit.

Display 9. The SAS macro process to create and read a Define-XML v2.1 document

