

2

PharmaSUG 2023 - Paper SI-212

R Package Qualification: Automation and Documentation in a Regulated
Environment

Paul Bernecki, MSD, Zurich, Switzerland

Nicole Jones, Merck & Co., Inc., Rahway, NJ, USA

Uday Preetham Palukuru, Merck & Co., Inc., Rahway, NJ, USA

Abhilash Vasu Chimbirithy, Merck & Co., Inc., Rahway, NJ, USA

ABSTRACT
In the recent years, there is an increasing trend in using open-source software, such as R, in clinical trial
analysis and reporting (A&R). The qualification of an R package is a critical step in ensuring its quality
and its compliance within the highly regulated clinical trial environment. Given the sheer number of R
packages, automating qualification process is necessary to ensure consistent quality and increased
efficiency.

Aspects of our company’s R package qualification process were presented in PharmaSUG 2022. The
current paper focuses on some updates made since then. Firstly, an internal R package mkqualify
streamlines the qualification process further while incorporating inputs from human reviewers. This
package generates most of the documentation used to support the qualification. Secondly, the open
source riskmetric package generates the risk scores associated with an R package.

Communicating the qualification process also plays an important part in ensuring user compliance and in
increasing user trust in the qualification process. We discuss internally developed Shiny applications,
which include real time results of qualification, and automation of user qualification requests. Additionally,
we discuss various processes on how to communicate with users about R package qualification including
training and blog posts. The elements of this qualification process are continuously evolving to ensure
adherence to best practices followed industry wide.

INTRODUCTION
The use of compliant and qualified software is a requirement when operating in a highly regulated
environment such as clinical trial development. Open-source software such as R pose a unique challenge
to organizations in ensuring compliance. The recent growth in the adoption of R for clinical trial analysis
and reporting (A&R) makes it a necessity to ensure the open-source software is qualified. The
qualification process ensures that the R packages used are accurate, traceable, and reproducible.

Our organization’s efforts towards the R package qualification process were presented recently in
PharmaSUG 2022 [1]. The end-to-end process presented in the paper offers guidelines on qualifying and
installing internal and external R packages in a regulated R environment. We adopted a risk-based
approach to qualify open-source software based on published sources of R package qualification
processes including the R Validation Hub white paper [2,3]. Our strategy required clear definition of
validation based on R-FDA document [4] and setting the goal of creating documentation that describes
the qualification details of R packages based on predefined criteria. The risk-based strategy qualifies both
internal and external packages based on the type of A&R deliverables generated. Table 1 provides the
common types of A&R deliverables and the associated risk levels (Open, Moderate, Low) used within our
organization.

Type of Deliverables Examples R Package Risk
Expectation

 Electronic Common Technical
Document (eCTD) shared
externally

Clinical Study Report (CSR)
Submission package
Drug labeling
Agency request

Low

Non-eCTD Data monitoring committee Moderate or Low

2

Internal (Outside Department) Manuscript and publication (using clinical data)
Internal committee review or presentation

Exploration analysis/Within
Department

Data exploration
Data quality checks
Exploratory analysis

Open, Moderate,
or Low

Table 1. Examples of A&R deliverables and respective risk categories of the R packages.

The internally developed R packages follow established Standard Operating Procedures (SOP) based on
a properly defined software development lifecycle (SDLC).
To qualify external R packages into each risk category, we established 5 criteria:

• c1: Package is developed and maintained by a trusted vendor or organization.

• c2: Package is user-facing with sufficient SDLC evidence equivalent to internal SDLC
requirement.

• c3: Package is not user-facing and all packages dependent on this R package are qualified.

• c4: Package is user-facing with additional internal work to complete necessary steps following
internal SDLC requirements.

• c5: Package maintained by a trusted person or organization.

A low risk R package needs to meet at least one of the first 4 criteria(c1-c4) and one criterion is sufficient
to qualify. A moderate risk R package can be qualified by any of the five criteria (c1-c5). An open-risk R
package is any R package available on CRAN, Bioconductor or other repositories not qualified under
either low risk or moderate risk. To establish trusted vendors/organizations for c1 criterion, the SDLC
documentation provided by the vendors/organization is carefully reviewed and periodic audits of the
SDLC documentation are undertaken by our organization. The term “user-facing” used in c2, c3 and c4
criteria indicates that a user interacts directly with the package during an R session. The non-user-facing
R package is defined as a package that runs in the background as sub-routines during an R session.

To manage a reproducible R environment our organization also adopted the shared baseline strategy [5].
This shared baseline strategy allows users to easily share and re-run work in an environment and allows
users to access the same set of installed packages using a common library. The centralized library used
within our organization is termed the global R library – refer to our previous paper [1] for more details. The
global R library has a nested structure as shown in Figure 1. The low risk packages are also part of
moderate risk and open risk directories, similarly the moderate risk packages are part of the open risk
libraries.

Figure 1. Global R Library nested directories for low, moderate, and open risk levels.

2

The generation and maintenance of documentation is another critical step ensuring a complaint and
regulated clinical trial data analysis environment. The qualification strategy employed at our organization
also emphasizes the maintenance of qualification documents to support both internal audits and
inspections by regulatory agencies. The summary and individual package level documentation for low risk
and moderate risk R packages qualified for a particular global R library update are generated and
maintained on our computing platform. The summary level document lists all packages in the respective
risk category along with metadata information such as R version, source repository, etc. The individual
package level document contains details regarding the package qualification including package
information, dependencies, code coverage, qualification details such as criteria fulfilled and details of
qualification criteria.

In this paper, we focus on updates made to the R package qualification process employed in our
organization since our previous publication in May 2022. An internal R package mkqualify was developed
to streamline the qualification process by automating parts of testing and document generation, while
incorporating inputs from human reviewers. The open source riskmetric package was also integrated into
the qualification process to generate risk scores associated with an R package. We provide an overview
of internally developed R Shiny based applications that are used to communicate real-time results of
qualification as well as automate user qualification requests. We also discuss complementary processes
that employ blog posts and training to better communicate to users about the R package qualification.

AUTOMATION OF QUALIFICATION PROCESS
In order to automate some of the steps in the qualification process, an internally developed R package
mkqualify is used. The main goal of this package is to provide tools for evaluating R packages and
generate documentation to support package qualification. The current functions in mkqualify provide a
variety of tools to assess package quality and validate the package output. These functions can be split
into two categories:

• Functions to create libraries: These functions help the user create various risk libraries as well as
check the installation status of the libraries

• Functions to generate qualification documents: These functions help the user in generating
qualification documents for each package by providing details about package including description,
dependencies, qualification criteria and code coverage

The current workflow for the package qualification is as follows:
1. Create initial request form (packages and their versions to install) and define risk level for each of

them. If package is low/moderate risk, then user needs to enter pre-specified criteria(c1-c5), that will
be used for qualifying. Depending on use case, package might meet several criteria.

2. Commence dry-run installation:
a. Each installation is done on a test server, before deploying it to production. This ensures that

all low or moderate packages are installed and working without issues. To accomplish this,
we use built-in R CMD functionality, that allows installation in a batch and at the same time
creates one installation log. Depending on source of packages, log’s length can vary from
130,000 lines (if installing pre-compiled binaries) to over 230,000 lines (in case of compiling
source code).

b. After installation, logchecker() function is run, that scrapes the log for error messages. For
easier viewing and storage, enhanced log report is saved along with original log, as an R
data (.rda) file.

3. Run vignettes files for generating qualification documents. Each package listed in the initial request
form will have corresponding documentation created. Elements of a qualification document include
risk categories, package code coverage, scraped NEWS/NEWS.md file, and risk metric scores
generated by the riskmetric package.

4. Initial qualification review team classifies a package as statistical/non-statistical in nature. If package
is identified as statistical in nature, additional review and documentation is required.

5. After review has been completed, final request form file is created, which is used to request formal
installation.

2

Once the dry-run installation is complete and qualification documents are created, documentation for
each package is reviewed. The initial request form is revised for a variety of reasons including:

• Installation errors

• Package incompatibility with R version.

• R package not meeting the qualification criteria (For example: risk is too high, provided
documentation is insufficient)

After this step, the final request form is generated for submission to IT team. Compared to previous
version, changes were made to reflect the possibility of updating the request form after generating the
qualification documents. After SME review a package might not meet the risk level requirements, resulting
in an update to the documented risk level. The updated qualification workflow is shown in Figure 2.

Figure 2. Updated R package qualification workflow.

In addition to the information already mentioned in previous paper [1], individual package risk scores
calculated using riskmetric package were integrated into the workflow. riskmetric is an open-source
package, that uses various metadata information of a package, and assesses final “risk score” of a
package. The final riskmetric score might vary between 0 and 1 with lower score indicating lower risk.
Currently, the qualification review team takes the riskmetric score into consideration when qualifying a
package. However, it should be noted that the score represents a collection of experimental metrics and
individual organization could have additional workflows for determining the risk of an R package.

The code coverage of a package can be used as supplementary information when assessing the quality.
It indicates the percentage of code used in the package is being covered by tests. The interpretation of
code coverage is inverse to that of riskmetric score, higher values indicate higher code coverage. All unit
tests are executed for packages included in the global library to ensure the package behaves as expected
in our internal environment. The source files of each package are searched to identify if test cases were
exported. If a test folder is present, the tests are executed using the below line of code:

 coverage <- try(covr::package_coverage(source[i]))

Wrapping the covr::package_coverage() function call in the function try() prevents failing tests from
halting the execution of downstream tests. If an error is encountered during the execution of these test
cases, the result is reported and the error message is captured in the exported log. Otherwise, if all unit
tests pass, the total package code coverage is reported. For user-facing packages that have no tests or
failing tests, test cases will be developed in-house to validate the packages for intended use. The below
code is used to generate these outputs:

2

 if(class(coverage) == "try-error") {
 pkgcoverage[i, 1] <- "Test Failure"
 pkgcoverage[i, 2] <- gsub(paste0(path$source, "/"), "", source[i])
 next
 } else {
 covge <- coverage_to_list(coverage)
 pkgcoverage[i, 1] <- covge$totalcoverage
 pkgcoverage[i, 2] <- gsub(paste0(path$source, "/"), "", source[i])
 }

For qualification purposes, the higher the code coverage, the lower the risk level of the package.
However, practice has shown, that relying strictly on test/code coverage might lead to incorrect
interpretation of quality. There is always a possibility that the code might be impossible to test in its
entirety. Another thing worth mentioning is that code coverage does not test the algorithm or logic being
implemented within a source code.

Due to the aforementioned factors, the qualification review team should always be prepared to write
additional tests for certain methods/functionality that are implemented within a package to ensure
accuracy. This enables validation of the package internally and upskilling the team at the same time.
Another element used by reviewers is reviewing the package changelog. The changelog is usually found
within the installed package directory in NEWS.md file. In some cases, the NEWS.md file might not be
found, this would require manual navigation to package source repository (CRAN or GitHub) and check
for the updates. We include the changelog in report, only if one of the following criteria is met:

• Package has not yet been qualified

• Package has an updated risk level

• Package has been updated (compared to previous snapshot)

A document with implemented risk metric score, code coverage and scraped changelog files can be
summarized and presented as a vignette HTML output as seen in Figure 3.

Figure 3. Snippet of qualification document for package openssl.

To generate the document, R Markdown built-in “params” parameter and apply function were used for
looping through a list of qualified package names. To avoid printing pound signs, a combination of

2

comment=NA parameter and cat() function was used in the R Markdown chunk responsible for printing
the NEWS/NEWS.md. The code chunk is shown below:

   ```{r, comment=NA} 
   if (length(changelog$package) > 0) { 
     cat(unlist(changelog$news_file), sep = "\n") 
   }  
   ``` 

To avoid incorrect formatting and ensure NEWS/NEWS.md fits the report’s layout, the results=’asis’ and
echo=FALSE options were used in a separate chunk as shown below:

   ```{r, results='asis', echo=FALSE} 
   if (length(changelog$package) == 0) { 
     cat(paste("> NEWS/NEWS.md file was not found for package", changelog$package)) 
   } 
   ```  


OPEN-SOURCE RISKMETRIC INTEGRATION
The riskmetric package provides a framework for retrieving package metadata, assessing package
metrics, and summarizing the risk that the package might not provide accurate results [6]. Integration of
the riskmetric scores into the package qualification workflow allows for supplemental information to be
provided to the qualification reviewers. The integration is achieved through a workflow that begins with
obtaining the package metadata. Next, a series of 15 assessment functions from the riskmetric package
are called to assess the extracted metadata against different risk criteria. These assessment functions
are named such that they have the prefix of “assess_”. A score is then generated for each assessment
function using the pkg_score() function. This scoring provides meaning to the data returned by the
assessment functions. Finally, the scores are aggregated into an overall risk score where a high score
indicates higher risk. Table 2 shows the different assessment functions and their purpose.

Index Assess Function Value Returned Purpose

1 assess_news_current() Logical Contains a logical vector indicating if NEWS file
is up-to-date

2 assess_has_vignettes() Number of discovered
vignette files

Assesses if the package has vignettes

3 assess_has_bug_reports_url() URL To return the URL for the bug report

4 assess_last_30_bugs_status() TRUE/FALSE Logical vector indicating if last 30 bug reports
were closed

5 assess_license() String Returns the string indicating the license under
which the package is released

6 assess_export_help() TRUE/FALSE vector Logical vector indicating if each namespace
export has documentation

7 assess_downloads_1yr() Number of downloads Numeric value indicating the volume of
downloads

8 assess_has_website() Character vector A character vector of website URLs associated
with the package

9 assess_r_cmd_check() Numeric A tally of errors, warnings and notes from
running R CMD check locally

2

10 assess_remote_checks() Numeric A tally of R CMD check results run on different
OS flavors

11 assess_has_maintainer() Character Vector Gets the names of maintainers associated with
the package

12 assess_exported_namespace() List A list of functions and objects exported by a
package

13 assess_has_news() Numeric Numeric value for number of NEWS files
discovered

14 assess_has_source_control() URL Source control URLs associated with the
package

15 assess_covr_coverage() List A list containing the filecoverage (a vector for
coverage of each file) and totalcoverage (a
single value for overall test coverage)

Table 2. Assess Functions used in riskmetric package. The functions not used within our
organization’s qualification workflow are greyed out.

When integrating the riskmetric package we exclude, assess_r_cmd_check(), assess_remote_checks(),
and assess_covr_coverage() as these assessments returned NA values. The remaining 12 assessment
functions are used to generate a risk score. As mentioned above, there are three basic steps in the
workflow of the riskmetric package:

1. Obtain package information using pkg_ref();
2. Assess the package against validation criteria using pkg_assess();
3. Score the assessment criteria using pkg_score()

By default, pkg_assess() will try to assess the package using all 15 assessments in Table 2. The list of
assessments applied to a package can be obtained by using the assessments argument in pkg_assess().
Additionally, some of the assessments will return an error and pkg_score() will not be able to properly
handle the error. The error_handler argument allows end users to define a function to handle the case
when an assessment produces an error. Within our workflow, this error was generated when assessing
last 30 bugs resolution status. If a package did not have a bug report Uniform Resource Locator (URL),
then pkg_assess() would throw an error. The result returned after running pkg_score() is a list containing
values from 0 to 1 for each assessment applied where 0 is a failed assessment and 1 is a perfect
assessment. So, if 5 assessments were applied to the package, the returned list would contain 5 values.
The code below shows the custom error handler we defined and the metrics function.

 error_handle <- function(x) {
 if (class(x)[1] == "pkg_metric_error") {
 return(0)
 }
 }

 list_of_assessments <- riskmetric::all_assessments()

 metrics1 <- function(x) {
 hold <- riskmetric::pkg_ref(x) %>%

 pkg_assess(assessments = list_of_assessments[c(-5, -12, -9, -10, -15)]) %>%
 pkg_score(error_handler = error_handle)

 }

2

 metrics_1 <- lapply(low1$package, metrics1)

In the code above, two assessment functions are excluded in addition to the three assessment functions
already excluded from the workflow. These assessment functions were for assessing the presence of the
license (Index 5) and for assessing the number of exported namespaces (Index 12). These two
assessments need special processing because pkg_score() returns a value of NA despite pkg_assess()
returning a meaningful value.

The assess license function returns a character value indicating the type of license being used for the
specified package. If no value is found, an empty string is returned. A modified function was developed to
test if a value is returned by the assessment function is valid. The assessment is then scored, to ensure
the score is of the same format as the previous scores. The NA value is then overwritten with a value of 1.
If no license is found, the assessment is scored and then given a value of 0. The final returned value is a
list containing the result of the license assessment function.

 metrics2 <- function(x) {
 score <- riskmetric::pkg_ref(x) %>%
 pkg_assess(assessments = list_of_assessments[c(5)])
 if (length(score[[1]])) {
 score <- score %>% pkg_score()
 score[[1]] <- 1
 } else {
 score <- score %>% pkg_score()
 score[[1]] <- 0
 }
 return(score)
 }

 metrics_2 <- lapply(low1$package, metrics2)

If functions or objects are found, after running pkg_score() the total number is returned. So, if a package
has 100 exported functions or objects, a value of 100 is returned after using pkg_score(). If no functions
or objects are exported, the value of NA is returned. In our current algorithm, if any functions or objects
are found, a value of 1 is assigned otherwise a value of 0 is assigned for this assessment. In the future, a
more complex algorithm can be designed that may include the number of vignettes compared to the
number of functions. This algorithm can check whether at least one vignette exists for all the exported
functions. This could be used as an additional indicator of a well-documented package.

 metrics3 <- function(x) {
 score <- riskmetric::pkg_ref(x) %>%
 pkg_assess(assessments = list_of_assessments[c(12)]) %>%
 pkg_score()
 if (is.na(score[[1]])) {
 score[[1]] <- 0
 } else {
 score[[1]] <- 1
 }
 return(score)
 }

 metrics_3 <- lapply(low1$package, metrics3)

The three lists are then combined into one large list containing one list per package with the results of all
12 assessments. This is currently done using the Map function:

2

 listf <- Map(c, metrics_1, metrics_2)

 listfinal <- Map(c, listf, metrics_3)

These scores were then weighted and totaled using the function below. Given that the values returned by
pkg_score() are in the format of the list, it is important to first “unlist” the results before aggregating the
scores.

 score <- function(x) {
 weights <- c(.083, .084, .083, .083, .084, .084, .084, .083, .083, .083)
 1 – sum(as.numeric(unlist(x)) * weights, na.rm = T)
 }

 risk_metrics <- lapply(listfinal, score)

The final result is a data frame containing a value ranging from 0 to 1 for each package where a lower
score indicates a more reliable package. In our current state, all assessments are considered of equal
weight where some of the assessments are arbitrarily assigned a value of 0.084 instead of 0.083 to allow
for all the weights to add to 1. Although we are assigning equal weights, not all of the assessments have
the same level of significance regarding the quality of a package. A widely used package that is well
documented but has many unclosed bug reports, might not be as reliable as another widely used
package with less documentation but more frequently closed bug reports. Continued discussions are
needed to define our final internal weights applied for these assessments.

AUTOMATED GENERATION OF QUALIFICATION DOCUMENTS
For package review and audit purposes, we create a set of supporting documentation that is later stored
on the organization’s computing platform. As a standard approach, we use a combination of R scripts and
R Markdown to automate most of the tasks. All of the documents are generated automatically, with little
input from the user, such as the parameters for working directory and R version. The rest of the tasks are
performed in batch run, by running vignettes. The set of documents are listed below:

• Qualification-review document: Purpose of this document is to summarize package qualification
results and compare them with previous snapshot. This helps Subject Matter Expert (SME) to spot
differences between package qualification categories in different snapshots.

• Package Qualification Tracker document: The purpose of this document is to track the status of the
qualification for a given snapshot. A number of the details for each package are automatically
generated including snapshot date used for the global library, previous package risk category, R
version under which the package is qualified, the date that the qualification documents were
generated, criteria used for qualification and general package information. Names of reviewers,
requestors, re-qualification reasons, exceptions and status need to be updated manually. This
document is used to track review activities according to our internal SOPs and may not be applicable
for all organizations.

• Document with an overview for low and moderate risk packages: Each package at low or moderate
risk will have an overview document that contains general package information such as link to CRAN
site, authors, change log, code coverage and riskmetric scores. They also contain associated risk
categories, package dependency and criteria within the present snapshot that were used for
qualification purposes.

• Document with package types: Depending on a package type (statistical/non-statistical), additional
measures are undertaken for package qualification. We differentiate the two package types using the
following criteria:

• Non-statistical packages do not require additional statistical validation. Packages used for:

• Graphing (E.g., visualization functions of ggplot2)

2

• Software engineering/utility (E.g., devtools)

• Data manipulation (E.g., tidyverse)

• Documentation and reporting (E.g., r2rtf, shiny, knitr)

• Statistical packages require additional statistical review to be qualified as low or moderate risk. A
statistician performs a thorough review and provides justification on whether the package is
suitable to be used for a specific purpose. Once the review is complete, it is documented in a
Microsoft Word document (.docx) and is stored on the computing platform.

• Final request form: CSV file, that contains final list of packages and their corresponding versions.

• Dry-run installation log: After each installation, a copy of log is saved in the production area. Apart
from install.packages() messages generated by the installation code, this document also contains
values of environmental and session variables which are helpful for solving potential IT-related
issues. The environmental and session variable values are obtained by using the Sys.getenv() and
sessionInfo() functions.

• Log checker results: During installation an .Rout file is generated that contains printed messages from
execution of install.packages(). Due to the fact that length of file varies from a few hundred to few
thousands of lines, a logchecker() function is used to scan the file for potential issues. Regular
expressions are used to search for error and warning messages, which are stored in a list (See

11

• APPENDIX). R Markdown is then used to generate and save a custom HTML document that

contains the results from logchecker(). This HTML file is then reviewed by a programmer and a SME.
If any low/moderate risk package fails installation, this is escalated to IT team.

After each formal dry-run installation, process SMEs commence the post-installation review. This step is
needed to ensure the installation was completed successfully and all requested packages have been
deployed.

INFORMATION DISSEMINATION & UPSKILLING
The results of the qualification process are an important source of information to end users of an R
package as it enables the users to confidently use the package in the appropriate risk categories to
generate requested A&R deliverables. Thus, the dissemination of the qualification process results plays a
vital role in promoting the use of R or other open-source software in clinical trials A&R.
To efficiently distribute the qualification process and global R library update results, a workflow was
developed for information dissemination. First the qualification SME team sends out an email to the user
distribution list making them aware of the changes in the global r library snapshot. Next, the qualification
SMEs also pen a blog post within the internal R portal making users aware of the changes in the global R
library and directing them to the internally developed R Shiny application ‘baamr-monitor’. The
combination of emails, R Shiny application and blog posts help with efficient dissemination of qualification
related to end users as well as maintaining compliance with established SOP. We also have several
internal training modules developed to ensure that users have sufficient knowledge related to package
qualification and implementation. These aspects will be discussed here.

SHINY APPLICATION TO MONITOR QUALIFICATION METRICS
The ‘baamr-monitor’ application allows users to find details and metrics regarding the qualification status
of individual packages. The global R library updates are often released in the middle of development
lifecycle and may impact functionality. ‘baamr-monitor’ allows users to investigate previous global library
snapshots and compare to the current global library to determine what has changed with respect to their
needs. A screenshot of the information displayed when users search a given snapshot for a specific
package is shown Figure 4.

The application also provides a number of metrics for the current global library. These metrics include
package count within each risk category, distribution of criteria usage, and a description of each criterion.
The combination of emails, R Shiny application and blog posts help with efficient dissemination of
qualification related to end users as well as maintaining compliance with established SOP.

12

Figure 4 The ‘baamr-monitor’ application showing the details and metrics of a global library update.

TRAINING AND UPSKILLING
A clinical project may contain different types of deliverables, therefore multiple project-specific R
packages could be required to address analyses needs in a clinical project when packages in global R
library doesn’t meet the needs. A project lead works with a project-specific R Package SME to determine
the risk level of a new external package or package update being used within the clinical project. It is
important for the study team to understand the process to determine the risk levels of the packages that
will be used to support their deliverables. If risk level of a package in the global library needs to be
reassigned, then the programmer must understand the available resources to help achieve the package
qualification. In our organization, we have created several methods such as development of internal R
trainings, creation of SAS/R governance committee team, etc. ensuring that each member has the
knowledge related to package qualification and implementation.

R e-Learning training for Statistics and Statistical programming groups provides details to utilize R
platform and complete A&R work for project-specific package. The training is organized as one set of
slides per topic covered in Analysis and Reporting (A&R) workflow process using R. This training helps
members become familiar with key A&R SDLC components by using examples within R environment. At
the end of each topic knowledge checks are included to gauge the trainee’s level of understanding.

SAS/R governance committee was established within our organization to review and approve R usage
requests from a study team. It is designed to help staff understand when it is appropriate to use R and
when it is not. This ensures process compliance, traceability, and reproducibility for A&R deliverables
using R. Project teams can benefit from SAS/R governance team by review of pre-approved R usage. It
also reduces the burden to qualify external R packages and connects the study team with R SME for
technical support.

13

PLANNED FUTURE ENHANCEMENTS
While working with external R packages, it was noticed that there are different ways for an end user to
submit a request for package qualification. Most frequently used were:

• Send email to SME mailing list or individual SME

• Submit JIRA ticket

• Write request directly to a tracker (Excel spreadsheet)

Data submitted through these different channels requires additional effort to review and manually
consolidate into one data source which is prone to errors. Also, the request source may be difficult to
trace, and the submitted data may not be sufficient or partly incorrect. In the long run, these issues result
in qualification process being tedious and inefficient.

To avoid errors, data duplication and lack of traceability, we are working on creating a one-stop solution
for requesting a package qualification. The solution is to have end users submit these requests through
an application that is easy to maintain and flexible. Most programmers and statisticians are already aware
of process used for submitting IT-related issues. We plan to take a similar approach and implement it with
R Shiny technological stack. More details about the proposed Shiny application will be discussed in this
section.

PROPOSED SHINY APPLICATION TO PROCESS QUALIFICATION REQUESTS
The application not only simplifies the package request process (for both SMEs and package users), but
also makes the process more transparent and Quality Assurance (QA)/audit ready. The use of R Shiny
technological stack leads to easier application maintenance and integration into already existing R
production space available on the organization’s servers.

The application contains a simple user interface, with a brief introduction and description of risk
categories. For each field (except for “Additional comments”) there is input validation implemented. To
avoid duplicating the qualification process, a solution was designed to check if a package has already
been qualified for a proposed risk criterion. Once entered data is validated and submitted, it is transferred
to a separate data frame. At the same time, generic email is sent to team responsible for package
qualification. If the data is complete and there are no additional comments or requests, SME initiates a
formal package qualification process. Once the qualification process is complete, the data frame is
updated, and requester is notified using provided email address.

Additional steps are needed when a statistical package is requested for qualification. Due to the nature of
the statistical package type, the qualification process is longer and requires a few additional steps to
formally qualify into anan appropriate risk level. The pros and cons of using the Shiny application in
qualification process are listed in Table 3. The user interface of the proposed R Shiny application used for
requesting qualification is shown in Error! Reference source not found..

Pros Cons

• One stop solution for requesting creation of
package qualification (everything is
implemented within R eco-system)

• Reduced manual work in consolidating data
sources

• Fully traceable

• Easier to maintain and automate downstream
qualification process

• Automatically create qualification document
tracker

• Minimum user input required

• Extra steps needed for setting up email
account used for sending messages to
package qualification team (after pressing
"Submit" button)

• Additional time required to develop and test R
Shiny app

• Separate data frame is needed to track
requests

14

• Use can be extended to other open-source
programming languages such as Python

Table 3. The pros and cons of R Shiny application usage in qualification process.

Figure 5 Proposed R Shiny application used for processing qualification requests

CONCLUSION
The process of qualification of open-source software is continuously evolving to ensure adherence to best
practices followed industry-wide and to align with internal organizational requirements. We anticipate that
our qualification process for R packages will require updates to further improve efficiency and reliability.
One of the updates planned is to set up gating criteria for risk scores generated by the riskmetric
package. The gating criteria would help in enhancing the risk-based strategy by associating package risk
levels with risk scores.

The human reviewers play an important role in the qualification process by providing valuable feedback
regarding the quality of the package being qualified as well as reviewing the compliance of the generated

15

qualification documents. The assessment is subjective and there is no standard guidance available for
reviewers to reference when assessing a package for qualification into a given risk level. We hope to
establish a standard guidance document for internal reviewers of package qualification with detailed steps
for reviewing a package for quality and compliance.

Further automation of the qualification process is also possible by automating the processing of new
requests raised by users regarding qualification of R packages. We are focusing on accomplishing this
aspect by integrating the “requests app” into the qualification process. Once request form is submitted by
user, qualification process could be initiated automatically. After the qualification process is completed,
system would notify SMEs about generated documents/data. This would enable faster and efficient
processing of new requests as well as help with adherence to established SOP by automatic generation
of request related documentation.

REFERENCES

[1] Jane Liao, Fansen Kong, Yilong Zhang “External R Package Qualification Process in Regulated
Environment”. 2022. https://www.lexjansen.com/pharmasug/2022/SI/PharmaSUG-2022-SI-057.pdf

[2] Andy Nicholls, Paulo R. Bargo, John Sims on behalf of the R Validation Hub "A risk-based approach
for assessing r package accuracy within a validated infrastructure" January 23, 2020. Available at
https://www.pharmar.org/white-paper/

[3] Yalin Zhu, Rinki Jajoo, Clare Bai, Sarad Nepal, Daniel Woodie, Keaven Anderson, Yilong Zhang “R
Package Oriented Software Development Life Cycle in Regulated Clinical Trial Environments” 2020.
https://www.lexjansen.com/phuse-us/2020/tt/TT12.pdf

[4] The R Foundation for Statistical Computing c/o Institute for Statistics and Mathematics “R: Regulatory
Compliance and Validation Issues, A Guidance Document for the Use of R in Regulated Clinical Trial
Environments” October 18, 2021. https://www.r-project.org/doc/R-FDA.pdf

[5] Posit Solutions – “Shared Baselines”. https://solutions.posit.co/envs-pkgs/environments/shared/

[6] Juliane Manitz, Douglas Kelkhoff, Eli Miller, Yilong Zhang “Introduction to the R Package riskmetric”
June 09, 2020. https://www.pharmar.org/blog/2020/06/09/2020-06-02-riskmetric-intro-jun-2020/

ACKNOWLEDGMENTS
The authors would like to thank BAAMR and management teams from Merck & Co., Inc., Rahway, NJ,
USA, for their advice on this paper/presentation.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Corresponding Author:
Uday Preetham Palukuru, Ph.D.
Merck & Co., Inc., Rahway, NJ, USA
E-mail: preetham.palukuru@merck.com

Paul Bernecki
MSD, The Circle 66, CH-8058, Zurich Airport, Switzerland
E-mail: paul.bernecki@msd.com

Nicole Jones

Merck & Co., Inc., Rahway, NJ, USA
E-mail: nicole.jones3@merck.com

https://www.lexjansen.com/pharmasug/2022/SI/PharmaSUG-2022-SI-057.pdf
https://www.pharmar.org/white-paper/
https://www.lexjansen.com/phuse-us/2020/tt/TT12.pdf
https://www.r-project.org/doc/R-FDA.pdf
https://solutions.posit.co/envs-pkgs/environments/shared/
https://www.pharmar.org/blog/2020/06/09/2020-06-02-riskmetric-intro-jun-2020/
mailto:preetham.palukuru@merck.com
mailto:paul.bernecki@msd.com
mailto:nicole.jones3@merck.com

16

Abhilash Vasu Chimbirithy
Merck & Co., Inc., Rahway, NJ, USA
E-mail: chimbirithy_abhilash@merck.com

Any brand and product names are trademarks of their respective companies.

APPENDIX

The task of extracting R generated errors strings using regex is split into three parts. below:

• In the first part “error_strings” vector is defined, that contains the errors patterns as shown below:

 error_strings <- c("configuration failed for package",
 "lazy loading failed",
 "compilation failed",
 "is not available for this version of R",
 "is not available for package")

• In the second part the installation log is imported and a combination of lapply() and grep() functions
are used to find all records that contain any of error_strings elements.

• In the third part all the error containing log entries are looped through and package names are
extracted. Since R uses special non-ASCII characters to enclose package name (for example
openssl), a special pattern is defined that can be used for extracting enclosed name as shown below:

 pattern <- "ERROR:.*\u2018 *(.*?) *\u2019.*"

In this case, left and right single quotation marks are being encoded in Unicode, by using u2018 and
u2019 representation, with a backslash as escape character. It is suggested to use this method to
avoid R CMD warnings, as those checks are initiated to find non-ASCII characters.

At the end of this process, package name is extracted along with error message and a line number. This
data is then appended to a list data structure for storage. By adding internal risk levels, the findings can
be presented in HTML format by using R Markdown vignettes. The example of such report can be seen
below:

The report helps in review of the errors that occurred during dry-run installation. The “which_record”
column is helpful while navigating the installation log file and programmatically extracting the snippet
containing the error.

mailto:chimbirithy_abhilash@merck.com

