
1

PharmaSUG 2023 - Paper SI-139

Integrating Practices: How Statistical Programmers Differ and Align Within
User Groups

Valeria Duran, Radhika Etikala, and Haimavati Rammohan, SCHARP at Fred Hutchinson
Cancer Center, Seattle, Washington

ABSTRACT
An expectation in the pharmaceutical industry is that every entity within an organization is aligned on day-
to-day practices. Our organization strives to streamline processes to achieve traceable and reproducible
outputs for Statistical Programmers coding in different languages, such as R and SAS®. Although the
fundamentals in programming practices are aligned, the day-to-day workflow deviates at departmental
levels: stakeholders have different expectations for how data is processed and how workflows should
proceed. This paper takes a closer look at (1) Statistical Programming practices, specifically with
Validation, Version Control, Coding Practices, and Verification, (2) the tools and techniques that have
contributed to the success of our analogous workflow, and (3) future work towards further alignment. The
insight from this paper has implications for how different entities within a workplace can work towards the
same goals while meeting regulatory standards.

INTRODUCTION
In statistical programming, SAS has been a predominant tool used by researchers and practitioners. SAS
has established itself as the gold standard for statistical programming with its proprietary source code and
extensively researched and implemented methods. Over the years, SAS has been able to adapt and
refine its language to meet the needs and expectations of healthcare industry professionals. However, in
recent times, the open-source programming language R has gained significant traction in the industry. R's
widespread availability of documentation sources, the ability to create packages tailored to users' specific
needs, and the fact that it is free to have all contributed to the increasing popularity of R. Our organization
employs a combination of SAS and R statistical programmers, a blend that strengthens our statistical
analysis capabilities. These strengths include but are not limited to programming validation, verification,
version control, and code maintenance. This paper describes the implementation of the SAS and R
programming paradigm in our organization, its impact, and future steps to continue strengthening our
organization.

STATISTICAL PROGRAMMING PRACTICES WITHIN THE ORGANIZATION
In this section, we will focus on the most common programming practices used by statistical programmers
within the organization. Programmers are responsible for a variety of tasks, including software validation
(Performance Qualification) using SAS and R programming languages, version control, dataset and
reports generation, verification, maintaining code, creating, and reviewing data specifications for derived
datasets, and maintaining or creating template codes and scripts. We hope that this paper will help
statistical programmers and organizations to develop high-quality software systems efficiently and
produce reliable datasets and reports for analysis.

Validation of software is an essential aspect of statistical programming, as it ensures that the software
meets the required quality standards. Risk assessment is another critical stage, which involves identifying
and managing potential risks associated with the software development process. In addition,
requirements gathering is a vital step in statistical programming, where the requirements are collected
from stakeholders to ensure that the software meets their needs. We will discuss the best practices for
developing test cases and test code to ensure the efficient functioning of the software.

Version control is an important aspect of statistical programming, which involves managing changes to
the codebase. We will discuss two popular version control systems - Git and SVN - and their benefits for
statistical programmers.

2

Coding practices are also critical in statistical programming, and we will focus on the coding practices in
two widely used statistical programming languages - R and SAS. We will discuss the best practices for
writing clean, efficient, and maintainable code in these languages.

Finally, we will explore different modes of verification that statistical programmers can use to ensure the
quality of their datasets and reports. We will discuss techniques such as data validation, data verification,
report verification, and code reviews.

VALIDATION
There are two common software applications used for data analysis and statistical modeling: R and SAS.
In our organization programmers use the same validation methods for both languages to ensure the
validity of their results.

There are three distinct stages of validation, IQ (Installation Qualification), PQ (Performance
Qualification), and OQ (Operational Qualification); these are important steps in ensuring the quality and
reliability of SAS and R code. These stages of validation provide a systematic approach to verifying the
code and systems are functioning correctly, and that they are meeting specified requirements. The focus
of this paper will be on PQ validation. PQ validation is the second stage of software validation and is used
to verify that code and systems are performing as expected. This includes writing expected requirements
for the software performance, test cases to demonstrate that each requirement, and test code to verify
the success of the test cases and therefore requirements. This ensures that the software package is
meeting specified performance requirements, and that the system is responding correctly to different
inputs and conditions. SAS programmers specifically, base SAS functions and procedures are used for
PQ validation. These functions and procedures are designed to test the performance of the SAS code
and systems, and to ensure that they are meeting the requirements and specifications set out in the PQ
validation process. In contrast, R programmers use Valtools for PQ validation, designed to help meet
regulatory authority requirements, such as those imposed by the FDA, by automating the validation of R
software through useful templates and unit testing, as described in the Pharmaceutical Users Software
Exchange (PHUSE) Valtools site (Hughes, et al., 2021).

In both languages, PQ validation consists of four components: risk assessments, requirements, test
cases, and test code. Each component is vital to validating and ensuring our systems and code are up to
standard. The descriptions of each component are as follows:

1. Risk assessments:

As with every validation effort, a risk assessment strategy helps mitigate potential business and
compliance risks within a given process, system, or environment. The risk for a requirement/function can
broadly be categorized as:

a. Critical – An error could be detrimental to system functionality.

a. If a system can continue to function relatively normally, even if the function is completely
compromised, then it is a low critical risk.

b. If a system fails to complete a primary requirement, then it is a high critical risk.

b. Detectable – The ease of detecting an issue arising with a particular function is inversely related
to the risk.

a. The lower the ease of detectability, the higher the risk.
b. High chances of detectability correspond to lower risk.

c. Probable – The probability of an issue arising with a particular function is correlated to the risk.
a. Low probability means there is little chance that the function will fail.
b. High probability means there is a high chance that the function will fail.

Our organization has a risk assessment matrix that is used across statistical programming departments,
but the implementation might look different depending on the needs of the department and of the specific
program. Table 1 is a generalized risk assessment matrix:

3

Overall Risk Likelihood

Impact Low Medium High

Low L L M

Medium L M H

High M H H

Table 1. Risk assessment matrix.
2. Requirements:

Requirements are statements that describe what a software system must do. They specify the functional,
non-functional, and performance characteristics of the software system. Requirements are all important
aspects of validation. Functional requirements ensure that the code performs the expected operations,
while non-functional requirements ensure that the code is maintainable and portable. Performance
requirements ensure that the code can manage large datasets and multiple users, while also running
within a specified amount of time.

Risk assessments are established for each requirement, and a description of the potential effects of the
risk are created. Table 2 is an example of risk assessments for different requirements. The risk for text file
ingestion is medium; therefore, a mitigation plan is provided. No mitigation plan is needed for the text file
output, which is considered low risk.

Requirement Name Requirement ID Risk Assessment

Data Ingestion – Text Files 1.1 Medium Risk – Base R by
default will guess column types.
Mitigate by evaluating test cases
with a variety of variable
classes.

Data Output – Text Files 1.2 Low Risk

Table 2. Risk assessment.
3. Test Cases:

Test cases are a set of tests that are designed to validate the requirements of the software system. They
are used to validate the software system's behavior and ensure that it produces the expected results.

Requirements provide a clear understanding of what the software system must do, and test cases are
used to validate that the software system meets these requirements. Together, requirements and test
cases ensure the reliability, accuracy, and quality of the software system.

4. Test Code:

Test code is an important part of validation as it helps to ensure that the code meets the requirements
and passes the test cases. Test code plays a crucial role in identifying any issues in the code and
allowing developers to fix them before deployment. Figure 1 is a test code example.

4

Figure 1. Test code example.
In this example, the requirement is to calculate the average of a list of numbers correctly. The test case is
to create a list of numbers and check if the R code returns the correct average for that list. The test code
uses an assertion to check if the calculated average is equal to the expected value of 3.

Figure 2 shows a high-level overview of the validation process:

Figure 2. Validation process.

VERSION CONTROL
Version control systems (VCS) are software systems that manage and track changes to a set of files over
time. They allow teams to collaborate on software development projects by tracking changes to the code,
maintaining a history of modifications, and managing different versions of the code. SVN (Subversion)
and Git are two of the most popular version control systems in use today.

SVN
Subversion (SVN) is a centralized version control system that was created to manage software
development projects. In SVN, all changes to the codebase are stored on a central server, and

5

developers must check out a copy of the code from the server to make changes. When a developer has
updated their local copy of the code, they can then commit those changes back to the central server.

One of the advantages of SVN is that it is easy to use, especially for smaller development teams. The
central repository makes it easy for developers to collaborate, and it is also easy to revert to a previous
version of the code if necessary. It also provides tools for resolving conflicts and for managing the
repository.

GIT
Git is a version control system that tracks any changes to shared files, including reports sent to
stakeholders and both input and output data. It provides an effective tool to work collaboratively and
ensure that any modifications made to code and data are traceable. Git can be installed and maintained
on local machines, benefiting programmers who maintain repositories – which can be thought of as
storage folders containing the files – on both local and secured internal servers. Git provides privacy and
support to maintain files used for internal purposes.

Programmers also use GitHub, a cloud-based platform which hosts the Git software. GitHub’s web
interface allows users to visualize and interact with files and any changes through graphics. GitHub
provides the required functionality to host R packages, whether created for data processing within an
organization or analysis packages to produce results shared outside of the organization. The combined
functionality of Git and GitHub can be leveraged to accommodate a spectrum of data privacy and
confidentiality requirements.

CODING PRACTICES

R
R Reproducibility – DataPackageR
DataPackageR, an R package hosted by ROpenSci, an organization which aims to foster open and
reproducible research through reusable software, most notably in the form of R packages, allows users to
preprocess and tidy raw data into versioned and packaged analysis-ready data sets (Finak, et al., 2018).
It is currently used to address reproducibility by one department at SCHARP which primarily employs R.
The package streamlines the process of sharing all necessary support and development documentation
and files with stakeholders. Data packages built by DataPackageR hold raw data, Rmarkdown
preprocessing scripts, Quality Control reports, and analysis-ready datasets derived from the
preprocessing scripts. Installing a DataPackageR created data package allows the user to view the
preprocessing scripts and QC reports as vignettes, access the built data objects, and view data
versioning of the built objects.

During the data package building process, the user can toggle which scripts to have active for package
build and add additional scripts. This is useful since, in our paradigm, study data will typically arrive in a
staggered timeframe and require constant data repackaging. Rebuilt data objects will have a new hash
key – a unique identifier associated with a unique piece of data – to determine data versions. In contrast,
static data objects will remain with the same hash key throughout the package rebuilds. Figure 3 shows
the data package skeleton structure, Figure 4 shows a high-level process flow using DataPackageR, and
Output 1 shows an example of the Data Digest file content after building the package using
DataPackageR.

6

Figure 4. Process flow with DataPackageR.

DataVersion: 0.1.1
dataset_1: e1de5z44385d13e7f8129k1922w29c6d

Output 1. Data Digest output file from DataPackageR.

Company-Specific R Packages
Frequently, study data are received in a standardized format. For our organization, this is often true of
immuno-assays which are regularly processed by our R programming team. Data for common assay
types are often transmitted similarly regardless of source. Previously, our programming teams would
script and verify novel code for each assay delivery which led to the need for redundant verification
activities and could have been more efficient. We noted these inefficiencies and identified a need to
formalize commonly used functions into company-specific R packages.

In addition to decreasing redundancy, creating reusable company-specific R packages could ensure that
all incoming data, regardless of the study or source, is processed the same way every time. This, in turn,
decreases turnaround time, as functions and processes would not start from scratch build each time. R
programmers across teams throughout our organization now share validated R packages for assay
processing as well as a supplemental utility package. These packages allow R Statistical Programmers to

Figure 3. Package skeleton structure.

7

streamline assay data processing. R programmers also have department-specific R packages that
address their partners’ specific needs.

Data Specifications
Data specifications are used to define the structure, format, and content of data. Specifications serve as a
communication tool between functional teams which may include the data management team,
statisticians, and programmers as well as others. Data specifications ensure that everyone is working
from the same data definitions and formats, which is critical to producing accurate and reliable results.

Data specifications are also important for supporting good team relations as they provide a clear and
consistent understanding of the data requirements for the study. This allows all teams to work together
more effectively and efficiently with fewer misunderstandings, which is particularly important in large,
complex clinical trials.

In addition, data specifications are used for data manipulation, derivation, and analysis. They provide a
blueprint for the creation of the database and the data management plan, which includes the data
cleaning, coding, and analysis procedures. Data specifications also provide guidelines for the creation of
analysis datasets, tables, figures, and listings, which are used for statistical analysis and reporting.

Template Processing Scripts
Template processing scripts provide a standardized and efficient approach to data manipulation and
analysis. These scripts are pre-written code that can be easily adapted to different datasets and analysis
requirements, which saves programming time and reduces the risk of errors. We use a repository to
maintain the template processing scripts.

In addition to standardizing code/script across multiple studies, template processing scripts can also help
ensure reproducibility of results. By using a standardized script, others can easily reproduce the analysis
and results. This is particularly important in clinical research where reproducibility and traceability are
essential.

SAS
Legacy Code and Company-Specific Macros
As with most of the industry, SAS has been the preferred programming language for manipulating and
analyzing clinical trials data within our organization, consequently, much of the legacy code is in SAS and
we are still expected to maintain robust SAS-programming capabilities. As the demand for more studies,
quicker turnover and more robust programming increased, we began to explore options for greater
efficiency. Company-specific macros were developed to reduce the coding effort for functions that would
be used across multiple groups and a code repository was created. Examples include but are not limited
to SAS macros for qualitative statistics (to calculate frequencies, mean, median, percentiles, interquartile
range, etc.), proc report templates, proc compare reports.

Data Specifications
In our organization data specifications are created and maintained through collaboration between the
programmer and the statistician. The nuance of this collaboration differs slightly between groups
depending on team needs and requirements. In some groups, the statistician creates and maintains the
data specifications with feedback and updates from the programmer, while in other groups, the
responsibilities are reversed, and the programmer creates and maintains the specifications with feedback
provided by the statistician.

The data specification details, and the dataset structures are determined in part by the required content of
the TLF mock shells and, depending on the purpose of the analyses, conform to CDISC ADaM standards.
Most analysis datasets follow the BDS structure.

8

VERIFICATION
Verification, like validation, is determined by a risk assessment matrix. However, the verification process
details differ by User groups and whether they are using SAS, R, or both. We will describe the risk
assessment matrix and the different verification forms.

 Table 3 summarizes the user groups, and the type of verifications usually conducted.

 User Groups

 Predominantly SAS SAS and R Predominantly R

Code Legacy code in SAS Legacy code in SAS, now
moving to R

Legacy code in R

Validated environment SAS version 9.4 SAS version 9.4
Base R version 4.0.4

Base R version 4.0.4

Version Control SVN git

Verification level
determined by a risk-

based matrix

Double programming
Targeted checks

Code review

Double programming/
code review

Double programming/
code review

Table 3. Summary of verification by user groups.

Risk Assessment Matrix
All high-risk datasets are double programmed. The verification level of the TLF programs is determined by
the projected impact erroneous data could have on the endpoint analyses as well as the perceived
likelihood for the occurrence of that error. Table 4 is a verification risk assessment matrix.

OVERALL RISK

LIKELIHOOD (of datapoint correctness)
Low Medium High

IMPACT
(Study and

Endpoint Risk)

Low

Data review Data review Code review +
Data review

Medium

Data review Code review +
Data review

Independent
verification +
Data review

High

Code review +
Data review

Independent
verification + Data

review

Independent
verification +
Data review

Table 4. Verification risk assessment matrix.
Impact on study and endpoint:

a. Low risk: Correcting errors requires light documentation and has limited impact on SCHARP and
our collaborators.

Examples: Exploratory endpoints for trials of any phase. Pre-clinical studies. Observational studies.

b. Medium risk: Correcting errors requires cross-center effort (e.g., SCHARP and Lab
Center/Leadership Operations Center) but errors, if corrected promptly, are unlikely to have long-
term consequences.

Examples: Primary and secondary endpoints for phase 1 trials.

c. High risk: Correcting errors requires cross-center effort. Consequences of errors may be long-
term and/or impact the reputation and standing of SCHARP and our network partners.

9

Examples: Primary and secondary endpoints for high-profile studies such as efficacy trials or trials in
sensitive populations (e.g., infants). Projects where processed datasets are delivered to non-network
collaborators or shared with the public (e.g., with a manuscript). Datasets which will inform changes
to the design of ongoing trials.

Impact on programming task:
a. Low risk: Minimal or simple programming, so errors are unlikely.

Examples: Refreshing datasets which were previously processed, with no changes to the
requirements. Datasets where the lab mostly or completely derives the analysis variables, such as
pass-through datasets or animal pharmacokinetics studies where time and drug levels variables are
provided by the lab.

b. Medium risk: Programming complexity increases, but data structures are well-known, well-
documented, or simple, and processing errors are due to misuse of code rather than unforeseen
aspects of data.

Examples: Initial processing using validated code libraries or template scripts. Revised processing of
datasets which were previously processed differently.

c. High risk: Programming difficulty increases, and data structures are unfamiliar or complex. Errors
are due to unexpected or unknown aspects of data, or the need for new or complex code.

Examples: New processing code for new or established assays. Any new complex dataset requiring
custom programming (e.g., new pharmacokinetics analysis datasets which combine drug timing
information from multiple CRFs). Initial processing using custom code.

Double Programming / Independent Verification
Double programming is the most rigorous method of verification amongst R and SAS Statistical
Programmers. This strategy requires both a primary programmer and a verification programmer complete
a programming task independently from a common specification and compare results. Both programmers
use the same input files and program the code outlined in the Data Specifications but differ in the use of
functions. For example, if the primary programmer uses company-defined SAS macros, then the verifier
codes in Base SAS or SAS SQL. Within our R environment, the primary programmer may use a verified
template data processing code, if available, and may also code using R’s Tidyverse syntax.

In contrast, the secondary programmer may use base R scripts to verify the primary programmer’s code.
This ensures a standardized verification approach, as the two unique code syntaxes should lead to the
same results. If questions or concerns arise, the programmers can use the same sources for help, such
as the study’s respective statisticians or documentation. Once programming finishes from both ends, the
outputs are compared for discrepancies. Any discrepancies found are resolved prior to finalizing the
processed dataset.

Targeted Checks
Targeted checking is employed when it is determined that only a few high-risk outputs, parameters,
variables derived from raw data, or a low-risk programming and medium risk impact of data issues, are
verified. Targeted checks are similar to double programming / independent verification, differing only in
the volume of data being checked, i.e., key data points alone are verified. This method is often used for
tasks that are relatively simple, but still require a high degree of accuracy.

Code and Data Review
In some lower-risk programming situations, code and data review may be more appropriate than full
independent programming. With this type of verification, two programmers can work on different studies
simultaneously and then alternate the review process. Programmers conduct code reviews followed by
data reviews to ensure that the code used to process study data performs as expected and that the
processed data used for analysis meets quality checks. Below is a checklist a programmer follows while
performing a review:

10

Code Review:

• Code runs

• Code follows programming principles

• Output matches study’s data package objects

• Data package installs without errors

• Processing code matches processing steps in Data Specifications

• Figures, tables, and captions align with study expectations in reports

• Log files are clean (without error or warning messages or unnecessary notes)

• Functions consistently yield expected results (joins, sum, filter)

Data Review:

• Data is complete (e.g., all expected values are in data)

• Data matches what is expected from the Data Specifications and Data Transfer Plans

If there are any discrepancies, the reviewing programmer will follow up with the primary programmer to
clarify questions or comments. Once resolved, the data and code review are considered complete.

SAS AND R ANALOGOUS WORKFLOW
This section focuses on the workflow process of SAS and R programming languages. While these two
programming languages have differences in syntax and implementation, their workflow processes are
similar. One key difference to highlight concerning data processing is the type of data process; when
processing non-assay data, such as clinical study data, SAS is the predominant language, and the
CDISC data submission standards are followed. This contrasts with assay data processing, which only
processes raw data to derived data. In this section, we will discuss the similarities and differences
between the SAS and R programming workflows, and how they are used in statistical programming
practices within the organization. We hope that this will enable readers to gain insights into how they can
improve their statistical programming practices and optimize their use of SAS and R programming
languages. Figure 5 is a flow diagram showing a high-level overview of the process when working with
assay data:

11

FUTURE GOALS
We continue to look toward the future and focus on further improvements to our statistical programming
practices. By implementing these goals, our organization can continuously enhance its programming
practices and remain current with the latest developments in the field. These enhancements include
expanding R packages and template code, adopting DataPackageR in other departments, increasing
training amongst SAS and R programmers, continuing SAS and R validation, building and adopting more
tools for use regardless of language, and formalizing our verification procedures across languages.

R USER IMPLEMENTATIONS

Expand R Packages
R Statistical Programmers are currently expanding our library of R packages used for incoming assay
data. We have validated packages that are tailored to our historically most frequent incoming assay data.
However, as we receive new data from other types of assays, we aim to expand our validated package
suite to support these assays. Priority of package creation will depend on incoming data frequency and
current available documentation.

Expand Template Code
There is an ongoing need to further expand our template code. Our organization maintains a substantial
amount of SAS macros and R template scripts. Existing processes often depend on template code;
therefore, continued maintenance of those packages is imperative. However, handling code-base can be
difficult, as it may be poorly documented, and lack sufficient modern validation. Additionally, the code
might have dependencies, especially with package versions; when these packages are updated and
incompatible with the code, the code is broken and requires the user to update with each application.
Creating new template code will help streamline and align processes and ensure better confidence in
code performance. Template code also provides higher visibility since multiple people will be using it; this,
in turn, will allow for more frequent refactoring to stay up to date with current procedures.

Figure 5. Programming process.

12

Expand DataPackageR Usage
Currently, DataPackageR is used by a limited subset of our programming teams. However, due to the
ability to track data object versioning through the package using the hash key, we would like to expand
DataPackageR to other departments. This would also allow other departments and stakeholders to keep
track of data object versions, increasing reproducibility and verification efforts.

Training
Although R Statistical Programmers perform daily tasks similarly across departments, specific procedures
might vary by department. One goal to allow continuous learning and growth in the organization is to
allow R Statistical Programmers to rotate through all departments. This is useful as R Statistical
Programmers who usually work with, for example, preclinical data could learn the practices and
procedures used for higher phase clinical trials. Programmers who usually go through double
programming could learn to conduct code and data reviews and vice versa. This will allow more flexibility
and provide more redundancy among skillsets which will contribute to better team resilience.

CONTINUING R VALIDATION
An ongoing effort exists to expand and validate the R ecosystem within our organization. Base R version
4.4 validation was completed at the end of 2022, and efforts are ongoing to validate more current
versions of R. Additionally, validation of other R packages consistently used in the organization, such as
Tidyverse, is highly prioritized. However, the extent of validation still needs to be determined as other
external resources have already produced robust documentation for these packages. As we continue to
train SAS programmers to use R and further expand the use of R across our organization, ensuring that
all packages are validated, and that our approach for validation aligns with requirements for regulatory
submission are of high priority. Another high priority is validating packages used by individual
departments giving users more confidence in the output.

BUILDING MORE LANGUAGE-AGNOSTIC TOOLS
Building language agnostic tools that allow data and code to be easily transferred between SAS and R,
can help to reduce the time spent on data conversions and data preparation, increase productivity and
collaboration, and make data analysis more accessible to a wider range of users. Here are examples of
language agnostics tools:

Jupyter Notebook is an open-source web application that allows you to create and share documents that
contain live code, equations, visualizations, and narrative text. Jupyter supports multiple programming
languages including R and SAS.

Git is a version control system that is used to manage and track changes to code. Git supports multiple
programming languages including R and SAS.

Quarto is an advanced version of R Markdown with syntax alignment towards Pandoc that supports
multiple languages such as R, Python, Julia, and more through Jupyter notebooks. Using Jupyter kernels
when creating documents with Quarto allows the user to choose their programming language while still
being able to output the same document. This Quarto is extremely useful for SAS and R programmers
who wish to align on report formatting and increases reproducibility amongst the languages.

FORMALIZING VERIFICATION ACROSS LANGUAGES
Programming teams in our organization follow slightly different verification process based on the
complexity of data and output and intended purpose of the output. We are working to align the verification
process across languages by establishing standards for verifying data that are applicable to both SAS
and R. This includes a clear definition of what data should be verified, how it should be verified, and what
the acceptable levels of accuracy and consistency are.

Automated verification tools can be used to check the accuracy of data produced in SAS and R. For
example, automated tests can be run to ensure that data meets specified accuracy and consistency
standards.

13

Cross-checking results between SAS and R can help to ensure that the data produced in both languages
is consistent and accurate. For example, if a data analysis is performed in SAS, the same analysis can be
performed in R, and the results can be compared to ensure that they are the same.

Documenting the verification processes used for data produced in SAS and R can help to ensure that the
verification process is consistent and repeatable.

Regularly reviewing the verification processes used for data produced in SAS and R can help to identify
and resolve any problems or inconsistencies.

CONCLUSION
This paper describes considerations and strategies for teams working to bring R into a traditionally SAS-
predominant environment. The synergy of R and SAS in statistical programming can provide a powerful
tool for data analysis if the benefits and limitations of each are acknowledged and appropriately
addressed in the development of standard procedures and a strategy for application. While SAS provides
a reliable platform for data submissions, R offers a wide range of open-source techniques that allow for
easier collaboration. Together, these tools allow for more efficient support of clinical trials and other
exploratory studies. Further, as the industry becomes more accepting of the use of open-source
languages for submissions, it is imperative that programming practices are considered and developed to
meet all requirements.

Additionally, this paper outlines the statistical programming practices within an organization that employs
both SAS and R and how teams can differ and align within that organization depending on the language
of choice. We discussed the roles and responsibilities of statistical programmers, workflow processes of
SAS and R programming languages, and best practices for efficient and maintainable coding.

Our analysis highlighted the importance of software validation, version control, and verification of datasets
and reports to ensure the quality and compliance of the organization's outputs. Moreover, we identified
several areas for future work, such as expanding R Packages and template codes, cross-training SAS
and R programmers, continuously conducting software validation and following coding best practices,
building more language-agnostic tools, and formalizing processes across programming languages.
Implementing these enhancements will allow our organization to grow and improve practices
continuously, thus further improving the quality of our deliverables to our stakeholders.

Overall, this paper provides insights into statistical programming practices that can benefit any
organization that relies on statistical programming for data analysis and decision-making. By leveraging
the strengths of both SAS and R and adopting best practices for software validation and version control,
statistical programmers can support more effective and efficient data analysis, leading to better decision-
making and improved outcomes.

14

REFERENCES
FDA. (2002, January). General Principles of Software Validation: Guidance for Industry and FDA Staff. Retrieved

from https://www.fda.gov/regulatory-information/search-fda-guidance-documents/general-principles-
software-validation

FDA. (2003, September). Part 11, Electronic Records; Electronic Signatures - Scope and Application: Guidance for
Industry. Retrieved from https://www.fda.gov/regulatory-information/search-fda-guidance-documents/part-
11-electronic-records-electronic-signatures-scope-and-application

FDA. (2015, May). Statistical Software Clarifying Statement. Retrieved from chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.fda.gov/media/161196/download

Finak, G., Mayer, B., Fulp, W., Obrecht, P., Sato, A., Chung, E., . . . Gottardo, R. (2018). DataPackageR:
Reproducible data preprocessing, standardization and sharing using R/Bioconductor for collaborative data
analysis. Gates Open Research, 16.

Hughes, E. (2021, 01 19). R Package Validation Framework. Retrieved from Posit: https://posit.co/resources/videos/r-
package-validation-framework/

Hughes, E., Miller, E., Vendettuoli, M., Eshghi, P., & Gans, M. (2021). valtools: Automate Validated Package
Creation. Retrieved from https://github.com/phuse-org/valtools

Stutzman, P. (2016). Handling Interim and Incomplete Data in a Clinical Trials Setting. PharmaSUG 2016
Conference, (p. 13). Seattle, WA. Retrieved from PharmaSUG 2016 Conference:
https://www.pharmasug.org/proceedings/2016/IB/PharmaSUG-2016-IB12.pdf

Vendettuoli, M., Zhang, E., & Zou, R. (2023). Strategies for Code Validation at Statistical Center for HIV/AIDS
Research and Prevention (SCHARP) (accepted). PharmaSUG 2023 Conference, (p. 12). San Francisco.

ACKNOWLEDGMENTS
We would like to thank Amber Randall and Paul Stutzman for their guidance and review.

RECOMMENDED READING
• R Package Digest reference manual: https://cran.r-project.org/web/packages/digest/digest.pdf

• R Package Valtools GitHub repository: https://github.com/phuse-org/valtools

• R Package DataPackageR website: https://docs.ropensci.org/DataPackageR/index.html

• Quatro within RStudio guide: https://quarto.org/docs/tools/rstudio.html

• Jupyter notebook guide: https://docs.jupyter.org/en/latest/start/index.html

• Introduction to Git & GitHub https://product.hubspot.com/blog/git-and-github-tutorial-for-beginners

https://cran.r-project.org/web/packages/digest/digest.pdf
https://github.com/phuse-org/valtools
https://docs.ropensci.org/DataPackageR/index.html
https://quarto.org/docs/tools/rstudio.html
https://docs.jupyter.org/en/latest/start/index.html
https://product.hubspot.com/blog/git-and-github-tutorial-for-beginners

15

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Valeria Duran
Statistical Center for HIV/AIDS Research & Prevention (SCHARP) at Fred Hutchinson Cancer
Center
vduran@scharp.org

Radhika Etikala
Statistical Center for HIV/AIDS Research & Prevention (SCHARP) at Fred Hutchinson Cancer
Center
retikala@scharp.org

Haimavati Rammohan
Statistical Center for HIV/AIDS Research & Prevention (SCHARP) at Fred Hutchinson Cancer
Center
hrammoha@scharp.org

mailto:vduran@scharp.org
mailto:retikala@scharp.org
mailto:hrammoha@scharp.org

	Abstract
	Introduction
	Statistical Programming practices within the organization
	Validation
	Version Control
	SVN
	GIT

	Coding practices
	R
	R Reproducibility – DataPackageR
	Company-Specific R Packages
	Data Specifications
	Template Processing Scripts

	SAS
	Legacy Code and Company-Specific Macros
	Data Specifications

	Verification
	Risk Assessment Matrix
	Double Programming / Independent Verification
	Targeted Checks
	Code and Data Review

	SAS and r analogous workflow
	Future Goals
	R User Implementations
	Expand R Packages
	Expand Template Code
	Expand DataPackageR Usage
	Training

	Continuing R Validation
	Building more language-agnostic tools
	Formalizing verification across languages

	Conclusion
	References
	Acknowledgments
	Recommended Reading
	Contact Information

