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ABSTRACT 
An expectation in the pharmaceutical industry is that every entity within an organization is aligned on day-
to-day practices. Our organization strives to streamline processes to achieve traceable and reproducible 
outputs for Statistical Programmers coding in different languages, such as R and SAS®. Although the 
fundamentals in programming practices are aligned, the day-to-day workflow deviates at departmental 
levels: stakeholders have different expectations for how data is processed and how workflows should 
proceed. This paper takes a closer look at (1) Statistical Programming practices, specifically with 
Validation, Version Control, Coding Practices, and Verification, (2) the tools and techniques that have 
contributed to the success of our analogous workflow, and (3) future work towards further alignment. The 
insight from this paper has implications for how different entities within a workplace can work towards the 
same goals while meeting regulatory standards. 

INTRODUCTION 
In statistical programming, SAS has been a predominant tool used by researchers and practitioners. SAS 
has established itself as the gold standard for statistical programming with its proprietary source code and 
extensively researched and implemented methods. Over the years, SAS has been able to adapt and 
refine its language to meet the needs and expectations of healthcare industry professionals. However, in 
recent times, the open-source programming language R has gained significant traction in the industry. R's 
widespread availability of documentation sources, the ability to create packages tailored to users' specific 
needs, and the fact that it is free to have all contributed to the increasing popularity of R. Our organization 
employs a combination of SAS and R statistical programmers, a blend that strengthens our statistical 
analysis capabilities. These strengths include but are not limited to programming validation, verification, 
version control, and code maintenance. This paper describes the implementation of the SAS and R 
programming paradigm in our organization, its impact, and future steps to continue strengthening our 
organization. 

STATISTICAL PROGRAMMING PRACTICES WITHIN THE ORGANIZATION 
In this section, we will focus on the most common programming practices used by statistical programmers 
within the organization. Programmers are responsible for a variety of tasks, including software validation 
(Performance Qualification) using SAS and R programming languages, version control, dataset and 
reports generation, verification, maintaining code, creating, and reviewing data specifications for derived 
datasets, and maintaining or creating template codes and scripts. We hope that this paper will help 
statistical programmers and organizations to develop high-quality software systems efficiently and 
produce reliable datasets and reports for analysis.  

Validation of software is an essential aspect of statistical programming, as it ensures that the software 
meets the required quality standards. Risk assessment is another critical stage, which involves identifying 
and managing potential risks associated with the software development process. In addition, 
requirements gathering is a vital step in statistical programming, where the requirements are collected 
from stakeholders to ensure that the software meets their needs. We will discuss the best practices for 
developing test cases and test code to ensure the efficient functioning of the software.  

Version control is an important aspect of statistical programming, which involves managing changes to 
the codebase. We will discuss two popular version control systems - Git and SVN - and their benefits for 
statistical programmers. 
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Coding practices are also critical in statistical programming, and we will focus on the coding practices in 
two widely used statistical programming languages - R and SAS. We will discuss the best practices for 
writing clean, efficient, and maintainable code in these languages. 

Finally, we will explore different modes of verification that statistical programmers can use to ensure the 
quality of their datasets and reports. We will discuss techniques such as data validation, data verification, 
report verification, and code reviews.  

VALIDATION 
There are two common software applications used for data analysis and statistical modeling: R and SAS. 
In our organization programmers use the same validation methods for both languages to ensure the 
validity of their results.  

There are three distinct stages of validation, IQ (Installation Qualification), PQ (Performance 
Qualification), and OQ (Operational Qualification); these are important steps in ensuring the quality and 
reliability of SAS and R code. These stages of validation provide a systematic approach to verifying the 
code and systems are functioning correctly, and that they are meeting specified requirements. The focus 
of this paper will be on PQ validation. PQ validation is the second stage of software validation and is used 
to verify that code and systems are performing as expected. This includes writing expected requirements 
for the software performance, test cases to demonstrate that each requirement, and test code to verify 
the success of the test cases and therefore requirements. This ensures that the software package is 
meeting specified performance requirements, and that the system is responding correctly to different 
inputs and conditions. SAS programmers specifically, base SAS functions and procedures are used for 
PQ validation. These functions and procedures are designed to test the performance of the SAS code 
and systems, and to ensure that they are meeting the requirements and specifications set out in the PQ 
validation process. In contrast, R programmers use Valtools for PQ validation, designed to help meet 
regulatory authority requirements, such as those imposed by the FDA, by automating the validation of R 
software through useful templates and unit testing, as described in the Pharmaceutical Users Software 
Exchange (PHUSE) Valtools site (Hughes, et al., 2021).  

In both languages, PQ validation consists of four components: risk assessments, requirements, test 
cases, and test code. Each component is vital to validating and ensuring our systems and code are up to 
standard. The descriptions of each component are as follows:    

1. Risk assessments: 

As with every validation effort, a risk assessment strategy helps mitigate potential business and 
compliance risks within a given process, system, or environment. The risk for a requirement/function can 
broadly be categorized as: 

a. Critical – An error could be detrimental to system functionality. 

a. If a system can continue to function relatively normally, even if the function is completely 
compromised, then it is a low critical risk. 

b. If a system fails to complete a primary requirement, then it is a high critical risk. 

b. Detectable – The ease of detecting an issue arising with a particular function is inversely related 
to the risk. 

a. The lower the ease of detectability, the higher the risk. 
b. High chances of detectability correspond to lower risk. 

c. Probable – The probability of an issue arising with a particular function is correlated to the risk. 
a. Low probability means there is little chance that the function will fail.  
b. High probability means there is a high chance that the function will fail. 

Our organization has a risk assessment matrix that is used across statistical programming departments, 
but the implementation might look different depending on the needs of the department and of the specific 
program. Table 1 is a generalized risk assessment matrix: 
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Overall Risk Likelihood 

Impact Low Medium High 

Low L L M 

Medium L M H 

High M H H 

Table 1. Risk assessment matrix. 
2. Requirements: 

Requirements are statements that describe what a software system must do. They specify the functional, 
non-functional, and performance characteristics of the software system. Requirements are all important 
aspects of validation. Functional requirements ensure that the code performs the expected operations, 
while non-functional requirements ensure that the code is maintainable and portable. Performance 
requirements ensure that the code can manage large datasets and multiple users, while also running 
within a specified amount of time. 

Risk assessments are established for each requirement, and a description of the potential effects of the 
risk are created. Table 2 is an example of risk assessments for different requirements. The risk for text file 
ingestion is medium; therefore, a mitigation plan is provided. No mitigation plan is needed for the text file 
output, which is considered low risk. 

 

Requirement Name Requirement ID Risk Assessment 

Data Ingestion – Text Files 1.1 Medium Risk – Base R by 
default will guess column types. 
Mitigate by evaluating test cases 
with a variety of variable 
classes. 

Data Output – Text Files 1.2 Low Risk 

Table 2. Risk assessment. 
3. Test Cases: 

Test cases are a set of tests that are designed to validate the requirements of the software system. They 
are used to validate the software system's behavior and ensure that it produces the expected results.  

Requirements provide a clear understanding of what the software system must do, and test cases are 
used to validate that the software system meets these requirements. Together, requirements and test 
cases ensure the reliability, accuracy, and quality of the software system. 

4. Test Code: 

Test code is an important part of validation as it helps to ensure that the code meets the requirements 
and passes the test cases. Test code plays a crucial role in identifying any issues in the code and 
allowing developers to fix them before deployment. Figure 1 is a test code example.  
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Figure 1. Test code example. 
In this example, the requirement is to calculate the average of a list of numbers correctly. The test case is 
to create a list of numbers and check if the R code returns the correct average for that list. The test code 
uses an assertion to check if the calculated average is equal to the expected value of 3. 

Figure 2 shows a high-level overview of the validation process: 

 

 
Figure 2. Validation process. 

VERSION CONTROL 
Version control systems (VCS) are software systems that manage and track changes to a set of files over 
time. They allow teams to collaborate on software development projects by tracking changes to the code, 
maintaining a history of modifications, and managing different versions of the code. SVN (Subversion) 
and Git are two of the most popular version control systems in use today. 

SVN 
Subversion (SVN) is a centralized version control system that was created to manage software 
development projects. In SVN, all changes to the codebase are stored on a central server, and 
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developers must check out a copy of the code from the server to make changes. When a developer has 
updated their local copy of the code, they can then commit those changes back to the central server.  

One of the advantages of SVN is that it is easy to use, especially for smaller development teams. The 
central repository makes it easy for developers to collaborate, and it is also easy to revert to a previous 
version of the code if necessary. It also provides tools for resolving conflicts and for managing the 
repository. 

GIT  
Git is a version control system that tracks any changes to shared files, including reports sent to 
stakeholders and both input and output data. It provides an effective tool to work collaboratively and 
ensure that any modifications made to code and data are traceable. Git can be installed and maintained 
on local machines, benefiting programmers who maintain repositories – which can be thought of as 
storage folders containing the files – on both local and secured internal servers. Git provides privacy and 
support to maintain files used for internal purposes.  

Programmers also use GitHub, a cloud-based platform which hosts the Git software. GitHub’s web 
interface allows users to visualize and interact with files and any changes through graphics. GitHub 
provides the required functionality to host R packages, whether created for data processing within an 
organization or analysis packages to produce results shared outside of the organization. The combined 
functionality of Git and GitHub can be leveraged to accommodate a spectrum of data privacy and 
confidentiality requirements.  

CODING PRACTICES 

R 
R Reproducibility – DataPackageR 
DataPackageR, an R package hosted by ROpenSci, an organization which aims to foster open and 
reproducible research through reusable software, most notably in the form of R packages, allows users to 
preprocess and tidy raw data into versioned and packaged analysis-ready data sets (Finak, et al., 2018). 
It is currently used to address reproducibility by one department at SCHARP which primarily employs R. 
The package streamlines the process of sharing all necessary support and development documentation 
and files with stakeholders. Data packages built by DataPackageR hold raw data, Rmarkdown 
preprocessing scripts, Quality Control reports, and analysis-ready datasets derived from the 
preprocessing scripts. Installing a DataPackageR created data package allows the user to view the 
preprocessing scripts and QC reports as vignettes, access the built data objects, and view data 
versioning of the built objects.  

During the data package building process, the user can toggle which scripts to have active for package 
build and add additional scripts. This is useful since, in our paradigm, study data will typically arrive in a 
staggered timeframe and require constant data repackaging. Rebuilt data objects will have a new hash 
key – a unique identifier associated with a unique piece of data – to determine data versions. In contrast, 
static data objects will remain with the same hash key throughout the package rebuilds. Figure 3 shows 
the data package skeleton structure, Figure 4 shows a high-level process flow using DataPackageR, and 
Output 1 shows an example of the Data Digest file content after building the package using 
DataPackageR. 
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Figure 4. Process flow with DataPackageR. 
 
 

DataVersion: 0.1.1 
dataset_1: e1de5z44385d13e7f8129k1922w29c6d 

Output 1. Data Digest output file from DataPackageR. 

Company-Specific R Packages  
Frequently, study data are received in a standardized format. For our organization, this is often true of 
immuno-assays which are regularly processed by our R programming team. Data for common assay 
types are often transmitted similarly regardless of source. Previously, our programming teams would 
script and verify novel code for each assay delivery which led to the need for redundant verification 
activities and could have been more efficient. We noted these inefficiencies and identified a need to 
formalize commonly used functions into company-specific R packages.  

In addition to decreasing redundancy, creating reusable company-specific R packages could ensure that 
all incoming data, regardless of the study or source, is processed the same way every time. This, in turn, 
decreases turnaround time, as functions and processes would not start from scratch build each time. R 
programmers across teams throughout our organization now share validated R packages for assay 
processing as well as a supplemental utility package. These packages allow R Statistical Programmers to 

Figure 3. Package skeleton structure. 
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streamline assay data processing. R programmers also have department-specific R packages that 
address their partners’ specific needs.  

Data Specifications  
Data specifications are used to define the structure, format, and content of data. Specifications serve as a 
communication tool between functional teams which may include the data management team, 
statisticians, and programmers as well as others. Data specifications ensure that everyone is working 
from the same data definitions and formats, which is critical to producing accurate and reliable results. 

Data specifications are also important for supporting good team relations as they provide a clear and 
consistent understanding of the data requirements for the study. This allows all teams to work together 
more effectively and efficiently with fewer misunderstandings, which is particularly important in large, 
complex clinical trials. 

In addition, data specifications are used for data manipulation, derivation, and analysis. They provide a 
blueprint for the creation of the database and the data management plan, which includes the data 
cleaning, coding, and analysis procedures. Data specifications also provide guidelines for the creation of 
analysis datasets, tables, figures, and listings, which are used for statistical analysis and reporting. 

Template Processing Scripts   
Template processing scripts provide a standardized and efficient approach to data manipulation and 
analysis. These scripts are pre-written code that can be easily adapted to different datasets and analysis 
requirements, which saves programming time and reduces the risk of errors. We use a repository to 
maintain the template processing scripts.  

In addition to standardizing code/script across multiple studies, template processing scripts can also help 
ensure reproducibility of results. By using a standardized script, others can easily reproduce the analysis 
and results. This is particularly important in clinical research where reproducibility and traceability are 
essential. 

SAS  
Legacy Code and Company-Specific Macros   
As with most of the industry, SAS has been the preferred programming language for manipulating and 
analyzing clinical trials data within our organization, consequently, much of the legacy code is in SAS and 
we are still expected to maintain robust SAS-programming capabilities. As the demand for more studies, 
quicker turnover and more robust programming increased, we began to explore options for greater 
efficiency. Company-specific macros were developed to reduce the coding effort for functions that would 
be used across multiple groups and a code repository was created. Examples include but are not limited 
to SAS macros for qualitative statistics (to calculate frequencies, mean, median, percentiles, interquartile 
range, etc.), proc report templates, proc compare reports. 

Data Specifications  
In our organization data specifications are created and maintained through collaboration between the 
programmer and the statistician. The nuance of this collaboration differs slightly between groups 
depending on team needs and requirements. In some groups, the statistician creates and maintains the 
data specifications with feedback and updates from the programmer, while in other groups, the 
responsibilities are reversed, and the programmer creates and maintains the specifications with feedback 
provided by the statistician. 

The data specification details, and the dataset structures are determined in part by the required content of 
the TLF mock shells and, depending on the purpose of the analyses, conform to CDISC ADaM standards. 
Most analysis datasets follow the BDS structure. 
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VERIFICATION  
Verification, like validation, is determined by a risk assessment matrix. However, the verification process 
details differ by User groups and whether they are using SAS, R, or both. We will describe the risk 
assessment matrix and the different verification forms. 

 Table 3 summarizes the user groups, and the type of verifications usually conducted. 

   User Groups  

   Predominantly SAS SAS and R Predominantly R 

Code Legacy code in SAS Legacy code in SAS, now 
moving to R 

Legacy code in R 

Validated environment SAS version 9.4 SAS version 9.4 
Base R version 4.0.4 

Base R version 4.0.4 

Version Control SVN  git 

Verification level 
determined by a risk-

based matrix 

Double programming 
Targeted checks 

Code review 

Double programming/ 
code review 

 

Double programming/ 
code review 

Table 3. Summary of verification by user groups. 

Risk Assessment Matrix  
All high-risk datasets are double programmed. The verification level of the TLF programs is determined by 
the projected impact erroneous data could have on the endpoint analyses as well as the perceived 
likelihood for the occurrence of that error. Table 4 is a verification risk assessment matrix.  

  
OVERALL RISK 

  

LIKELIHOOD (of datapoint correctness) 
Low Medium High 

IMPACT 
(Study and 

Endpoint Risk) 

 
Low 

Data review Data review Code review + 
Data review 

 
Medium 

Data review Code review + 
Data review 

Independent 
verification + 
Data review 

 
High 

Code review + 
Data review 

Independent 
verification + Data 

review 

Independent 
verification + 
Data review 

Table 4. Verification risk assessment matrix.  
Impact on study and endpoint: 

a. Low risk: Correcting errors requires light documentation and has limited impact on SCHARP and 
our collaborators.  

Examples: Exploratory endpoints for trials of any phase. Pre-clinical studies. Observational studies. 

b. Medium risk: Correcting errors requires cross-center effort (e.g., SCHARP and Lab 
Center/Leadership Operations Center) but errors, if corrected promptly, are unlikely to have long-
term consequences.  

Examples: Primary and secondary endpoints for phase 1 trials.  

c. High risk: Correcting errors requires cross-center effort. Consequences of errors may be long-
term and/or impact the reputation and standing of SCHARP and our network partners. 
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Examples: Primary and secondary endpoints for high-profile studies such as efficacy trials or trials in 
sensitive populations (e.g., infants). Projects where processed datasets are delivered to non-network 
collaborators or shared with the public (e.g., with a manuscript). Datasets which will inform changes 
to the design of ongoing trials. 

Impact on programming task: 
a. Low risk: Minimal or simple programming, so errors are unlikely. 

Examples: Refreshing datasets which were previously processed, with no changes to the 
requirements. Datasets where the lab mostly or completely derives the analysis variables, such as 
pass-through datasets or animal pharmacokinetics studies where time and drug levels variables are 
provided by the lab. 

b. Medium risk: Programming complexity increases, but data structures are well-known, well-
documented, or simple, and processing errors are due to misuse of code rather than unforeseen 
aspects of data.  

Examples: Initial processing using validated code libraries or template scripts. Revised processing of 
datasets which were previously processed differently. 

c. High risk: Programming difficulty increases, and data structures are unfamiliar or complex. Errors 
are due to unexpected or unknown aspects of data, or the need for new or complex code. 

Examples: New processing code for new or established assays. Any new complex dataset requiring 
custom programming (e.g., new pharmacokinetics analysis datasets which combine drug timing 
information from multiple CRFs). Initial processing using custom code. 

Double Programming / Independent Verification 
Double programming is the most rigorous method of verification amongst R and SAS Statistical 
Programmers. This strategy requires both a primary programmer and a verification programmer complete 
a programming task independently from a common specification and compare results. Both programmers 
use the same input files and program the code outlined in the Data Specifications but differ in the use of 
functions. For example, if the primary programmer uses company-defined SAS macros, then the verifier 
codes in Base SAS or SAS SQL. Within our R environment, the primary programmer may use a verified 
template data processing code, if available, and may also code using R’s Tidyverse syntax.  

In contrast, the secondary programmer may use base R scripts to verify the primary programmer’s code. 
This ensures a standardized verification approach, as the two unique code syntaxes should lead to the 
same results. If questions or concerns arise, the programmers can use the same sources for help, such 
as the study’s respective statisticians or documentation. Once programming finishes from both ends, the 
outputs are compared for discrepancies. Any discrepancies found are resolved prior to finalizing the 
processed dataset.  

Targeted Checks  
Targeted checking is employed when it is determined that only a few high-risk outputs, parameters, 
variables derived from raw data, or a low-risk programming and medium risk impact of data issues, are 
verified. Targeted checks are similar to double programming / independent verification, differing only in 
the volume of data being checked, i.e., key data points alone are verified. This method is often used for 
tasks that are relatively simple, but still require a high degree of accuracy. 

Code and Data Review  
In some lower-risk programming situations, code and data review may be more appropriate than full 
independent programming. With this type of verification, two programmers can work on different studies 
simultaneously and then alternate the review process. Programmers conduct code reviews followed by 
data reviews to ensure that the code used to process study data performs as expected and that the 
processed data used for analysis meets quality checks. Below is a checklist a programmer follows while 
performing a review: 
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Code Review: 

• Code runs 

• Code follows programming principles 

• Output matches study’s data package objects 

• Data package installs without errors 

• Processing code matches processing steps in Data Specifications 

• Figures, tables, and captions align with study expectations in reports 

• Log files are clean (without error or warning messages or unnecessary notes) 

• Functions consistently yield expected results (joins, sum, filter) 

Data Review: 

• Data is complete (e.g., all expected values are in data) 

• Data matches what is expected from the Data Specifications and Data Transfer Plans 

If there are any discrepancies, the reviewing programmer will follow up with the primary programmer to 
clarify questions or comments. Once resolved, the data and code review are considered complete.  

SAS AND R ANALOGOUS WORKFLOW  
This section focuses on the workflow process of SAS and R programming languages. While these two 
programming languages have differences in syntax and implementation, their workflow processes are 
similar. One key difference to highlight concerning data processing is the type of data process; when 
processing non-assay data, such as clinical study data, SAS is the predominant language, and the 
CDISC data submission standards are followed. This contrasts with assay data processing, which only 
processes raw data to derived data. In this section, we will discuss the similarities and differences 
between the SAS and R programming workflows, and how they are used in statistical programming 
practices within the organization. We hope that this will enable readers to gain insights into how they can 
improve their statistical programming practices and optimize their use of SAS and R programming 
languages. Figure 5 is a flow diagram showing a high-level overview of the process when working with 
assay data: 
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FUTURE GOALS 
We continue to look toward the future and focus on further improvements to our statistical programming 
practices. By implementing these goals, our organization can continuously enhance its programming 
practices and remain current with the latest developments in the field. These enhancements include 
expanding R packages and template code, adopting DataPackageR in other departments, increasing 
training amongst SAS and R programmers, continuing SAS and R validation, building and adopting more 
tools for use regardless of language, and formalizing our verification procedures across languages.   

R USER IMPLEMENTATIONS 

Expand R Packages 
R Statistical Programmers are currently expanding our library of R packages used for incoming assay 
data. We have validated packages that are tailored to our historically most frequent incoming assay data. 
However, as we receive new data from other types of assays, we aim to expand our validated package 
suite to support these assays. Priority of package creation will depend on incoming data frequency and 
current available documentation. 

Expand Template Code 
There is an ongoing need to further expand our template code. Our organization maintains a substantial 
amount of SAS macros and R template scripts. Existing processes often depend on template code; 
therefore, continued maintenance of those packages is imperative. However, handling code-base can be 
difficult, as it may be poorly documented, and lack sufficient modern validation. Additionally, the code 
might have dependencies, especially with package versions; when these packages are updated and 
incompatible with the code, the code is broken and requires the user to update with each application. 
Creating new template code will help streamline and align processes and ensure better confidence in 
code performance. Template code also provides higher visibility since multiple people will be using it; this, 
in turn, will allow for more frequent refactoring to stay up to date with current procedures.  

Figure 5. Programming process. 
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Expand DataPackageR Usage 
Currently, DataPackageR is used by a limited subset of our programming teams. However, due to the 
ability to track data object versioning through the package using the hash key, we would like to expand 
DataPackageR to other departments. This would also allow other departments and stakeholders to keep 
track of data object versions, increasing reproducibility and verification efforts. 

Training 
Although R Statistical Programmers perform daily tasks similarly across departments, specific procedures 
might vary by department. One goal to allow continuous learning and growth in the organization is to 
allow R Statistical Programmers to rotate through all departments. This is useful as R Statistical 
Programmers who usually work with, for example, preclinical data could learn the practices and 
procedures used for higher phase clinical trials. Programmers who usually go through double 
programming could learn to conduct code and data reviews and vice versa. This will allow more flexibility 
and provide more redundancy among skillsets which will contribute to better team resilience.  

CONTINUING R VALIDATION  
An ongoing effort exists to expand and validate the R ecosystem within our organization. Base R version 
4.4 validation was completed at the end of 2022, and efforts are ongoing to validate more current 
versions of R. Additionally, validation of other R packages consistently used in the organization, such as 
Tidyverse, is highly prioritized. However, the extent of validation still needs to be determined as other 
external resources have already produced robust documentation for these packages. As we continue to 
train SAS programmers to use R and further expand the use of R across our organization, ensuring that 
all packages are validated, and that our approach for validation aligns with requirements for regulatory 
submission are of high priority. Another high priority is validating packages used by individual 
departments giving users more confidence in the output. 

BUILDING MORE LANGUAGE-AGNOSTIC TOOLS 
Building language agnostic tools that allow data and code to be easily transferred between SAS and R, 
can help to reduce the time spent on data conversions and data preparation, increase productivity and 
collaboration, and make data analysis more accessible to a wider range of users. Here are examples of 
language agnostics tools: 

Jupyter Notebook is an open-source web application that allows you to create and share documents that 
contain live code, equations, visualizations, and narrative text. Jupyter supports multiple programming 
languages including R and SAS.  

Git is a version control system that is used to manage and track changes to code. Git supports multiple 
programming languages including R and SAS.  

Quarto is an advanced version of R Markdown with syntax alignment towards Pandoc that supports 
multiple languages such as R, Python, Julia, and more through Jupyter notebooks. Using Jupyter kernels 
when creating documents with Quarto allows the user to choose their programming language while still 
being able to output the same document. This Quarto is extremely useful for SAS and R programmers 
who wish to align on report formatting and increases reproducibility amongst the languages. 

FORMALIZING VERIFICATION ACROSS LANGUAGES 
Programming teams in our organization follow slightly different verification process based on the 
complexity of data and output and intended purpose of the output. We are working to align the verification 
process across languages by establishing standards for verifying data that are applicable to both SAS 
and R. This includes a clear definition of what data should be verified, how it should be verified, and what 
the acceptable levels of accuracy and consistency are.  

Automated verification tools can be used to check the accuracy of data produced in SAS and R. For 
example, automated tests can be run to ensure that data meets specified accuracy and consistency 
standards.   
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Cross-checking results between SAS and R can help to ensure that the data produced in both languages 
is consistent and accurate. For example, if a data analysis is performed in SAS, the same analysis can be 
performed in R, and the results can be compared to ensure that they are the same.  

Documenting the verification processes used for data produced in SAS and R can help to ensure that the 
verification process is consistent and repeatable.  

Regularly reviewing the verification processes used for data produced in SAS and R can help to identify 
and resolve any problems or inconsistencies. 

CONCLUSION 
This paper describes considerations and strategies for teams working to bring R into a traditionally SAS-
predominant environment. The synergy of R and SAS in statistical programming can provide a powerful 
tool for data analysis if the benefits and limitations of each are acknowledged and appropriately 
addressed in the development of standard procedures and a strategy for application. While SAS provides 
a reliable platform for data submissions, R offers a wide range of open-source techniques that allow for 
easier collaboration. Together, these tools allow for more efficient support of clinical trials and other 
exploratory studies. Further, as the industry becomes more accepting of the use of open-source 
languages for submissions, it is imperative that programming practices are considered and developed to 
meet all requirements.  

Additionally, this paper outlines the statistical programming practices within an organization that employs 
both SAS and R and how teams can differ and align within that organization depending on the language 
of choice. We discussed the roles and responsibilities of statistical programmers, workflow processes of 
SAS and R programming languages, and best practices for efficient and maintainable coding. 

Our analysis highlighted the importance of software validation, version control, and verification of datasets 
and reports to ensure the quality and compliance of the organization's outputs. Moreover, we identified 
several areas for future work, such as expanding R Packages and template codes, cross-training SAS 
and R programmers, continuously conducting software validation and following coding best practices, 
building more language-agnostic tools, and formalizing processes across programming languages. 
Implementing these enhancements will allow our organization to grow and improve practices 
continuously, thus further improving the quality of our deliverables to our stakeholders. 

Overall, this paper provides insights into statistical programming practices that can benefit any 
organization that relies on statistical programming for data analysis and decision-making. By leveraging 
the strengths of both SAS and R and adopting best practices for software validation and version control, 
statistical programmers can support more effective and efficient data analysis, leading to better decision-
making and improved outcomes. 

 

 

 

 

 

 

 

 

 

 

 



 
 

14 

REFERENCES 
FDA. (2002, January). General Principles of Software Validation: Guidance for Industry and FDA Staff. Retrieved 

from https://www.fda.gov/regulatory-information/search-fda-guidance-documents/general-principles-
software-validation 

FDA. (2003, September). Part 11, Electronic Records; Electronic Signatures - Scope and Application: Guidance for 
Industry. Retrieved from https://www.fda.gov/regulatory-information/search-fda-guidance-documents/part-
11-electronic-records-electronic-signatures-scope-and-application 

FDA. (2015, May). Statistical Software Clarifying Statement. Retrieved from chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.fda.gov/media/161196/download 

Finak, G., Mayer, B., Fulp, W., Obrecht, P., Sato, A., Chung, E., . . . Gottardo, R. (2018). DataPackageR: 
Reproducible data preprocessing, standardization and sharing using R/Bioconductor for collaborative data 
analysis. Gates Open Research, 16. 

Hughes, E. (2021, 01 19). R Package Validation Framework. Retrieved from Posit: https://posit.co/resources/videos/r-
package-validation-framework/ 

Hughes, E., Miller, E., Vendettuoli, M., Eshghi, P., & Gans, M. (2021). valtools: Automate Validated Package 
Creation. Retrieved from https://github.com/phuse-org/valtools 

Stutzman, P. (2016). Handling Interim and Incomplete Data in a Clinical Trials Setting. PharmaSUG 2016 
Conference, (p. 13). Seattle, WA. Retrieved from PharmaSUG 2016 Conference: 
https://www.pharmasug.org/proceedings/2016/IB/PharmaSUG-2016-IB12.pdf 

Vendettuoli, M., Zhang, E., & Zou, R. (2023). Strategies for Code Validation at Statistical Center for HIV/AIDS 
Research and Prevention (SCHARP) (accepted). PharmaSUG 2023 Conference, (p. 12). San Francisco. 

 

ACKNOWLEDGMENTS 
We would like to thank Amber Randall and Paul Stutzman for their guidance and review. 

RECOMMENDED READING 
• R Package Digest reference manual: https://cran.r-project.org/web/packages/digest/digest.pdf 

• R Package Valtools GitHub repository: https://github.com/phuse-org/valtools  

• R Package DataPackageR website: https://docs.ropensci.org/DataPackageR/index.html 

• Quatro within RStudio guide: https://quarto.org/docs/tools/rstudio.html 

• Jupyter notebook guide: https://docs.jupyter.org/en/latest/start/index.html 

• Introduction to Git & GitHub https://product.hubspot.com/blog/git-and-github-tutorial-for-beginners 

 

 
 

 

 

 

 

 

 

https://cran.r-project.org/web/packages/digest/digest.pdf
https://github.com/phuse-org/valtools
https://docs.ropensci.org/DataPackageR/index.html
https://quarto.org/docs/tools/rstudio.html
https://docs.jupyter.org/en/latest/start/index.html
https://product.hubspot.com/blog/git-and-github-tutorial-for-beginners


 
 

15 

CONTACT INFORMATION 
Your comments and questions are valued and encouraged. Contact the authors at: 

Valeria Duran 
Statistical Center for HIV/AIDS Research & Prevention (SCHARP) at Fred Hutchinson Cancer 
Center  
vduran@scharp.org 
  
Radhika Etikala 
Statistical Center for HIV/AIDS Research & Prevention (SCHARP) at Fred Hutchinson Cancer 
Center  
retikala@scharp.org 
 
Haimavati Rammohan 
Statistical Center for HIV/AIDS Research & Prevention (SCHARP) at Fred Hutchinson Cancer 
Center  
hrammoha@scharp.org 
 

mailto:vduran@scharp.org
mailto:retikala@scharp.org
mailto:hrammoha@scharp.org

	Abstract
	Introduction
	Statistical Programming practices within the organization
	Validation
	Version Control
	SVN
	GIT

	Coding practices
	R
	R Reproducibility – DataPackageR
	Company-Specific R Packages
	Data Specifications
	Template Processing Scripts

	SAS
	Legacy Code and Company-Specific Macros
	Data Specifications


	Verification
	Risk Assessment Matrix
	Double Programming / Independent Verification
	Targeted Checks
	Code and Data Review


	SAS and r analogous workflow
	Future Goals
	R User Implementations
	Expand R Packages
	Expand Template Code
	Expand DataPackageR Usage
	Training

	Continuing R Validation
	Building more language-agnostic tools
	Formalizing verification across languages

	Conclusion
	References
	Acknowledgments
	Recommended Reading
	Contact Information

