
1

PharmaSUG 2023 - Paper SI-106
Automation of Dataset Programming Based on Dataset Specification

Liqiang He, Atara Biotherapeutics, Inc.

ABSTRACT
In the clinical trial field, standard datasets, such as SDTM domains and ADaM datasets, are an integral
part of electronic submission package, and are also a prerequisite for TFL generation. Dataset
programming is a time consuming, tedious task for SAS® programmer. A highly efficient, automatic
programming for dataset generation will prevent manual programming typos, save programming time and
resources, and deliver high-quality work. Dataset specification is a detailed instruction for dataset
programming and a major reference for dataset validation. This paper demonstrates a new practical
approach to automate dataset programming based on dataset specification. It is pivotal for successful
auto-programming to rewrite variable derivation to SAS-readable with the aid of keywords and
punctuation marks in the dataset specification.

INTRODUCTION
As CDISC standardized SDTM/ADaM datasets are widely applied in the clinical trial field, more and more
programming automation strategies and techniques are reported in ADaM programming, compliance
checking of metadata against CDISC standards etc on [1-4]. However, automatic programming for SDTM
dataset generation is seldom reported. Compared to ADaM programming, SDTM dataset programming
faces more challenges since SDTM datasets are generated directly from raw datasets, which are not
generated under the CDISC standards.

In general, a primary programmer creates a program based on a written dataset specification, and the
program in turn generates a dataset. This specification is a detailed instruction for the dataset generation,
including variable name, label, data type, length, origin, derivation etc on. On the other hand, this
specification is also a major reference for validation programmer to validate the produced dataset. Thus,
dataset specification may be used as a basis for programming automation.

This paper demonstrates a new approach to automate dataset programming based on dataset
specification. This strategy can be applied to the development of SDTM domains as well as ADaM
datasets.

MAIN STEPS FOR AUTOMATION
In general, a dataset specification is stored in a spreadsheet of an excel file. The following are the main
steps to automate a program from a dataset specification.

STEP 1: REWRITE VARIABLE DERIVATION TO SAS-READABLE
In dataset specification, except for variable derivation, other information can be directly read by SAS. In
general, variable derivation is written in plain language for human reading. To be conveniently read by
SAS, this derivation needs to be rewritten in a standardized format.

The following is a simple model:

VALUE if CONDITION at DATASET where SUBSETTING

In all of them, “if”, “at”, “where” are keywords, which are convenient for SAS to take apart VALUE,
CONDITION, DATASET and SUBSETTING.

VALUE may be:

1. Constant character value. It should be included with " ". Single quote marker ' ' is not fit to be
used as the first string of VALUE since it would not be successfully read into the string.

2. Constant numeric value. It should not be included with ' ' or " ".
3. Variable. It is from DATASET.
4. Function. It accepts variable as arguments.

2

CONDITION is the condition under which, the variable is equal to VALUE. It will be interpreted as “if
statement”. The “if” may be removed when CONDITION has no value.

DATASET is a dataset name. It may be two-level name if the libref is not work. When the DATASET is
the produced dataset, “at DATASET” is not needed.

SUBSETTING is another condition, which is used to select some observations from the dataset
DATASET. It will be interpreted as “where statement”. When SUBSETTING is missing, “where
SUBSETTING” may be removed.

If the same VALUE comes from different datasets, each dataset may be separated by “,” and the model
may be:

VALUE if CONDITION1 at DATASET1 where SUBSETTING1, if CONDITION2 at DATASET2 where
SUBSETTING2, ……

If the VALUE has different values and each comes from a different dataset, then each dataset may be
separated by “;” and the model may be:

VALUE1 if CONDITION1 at DATASET1 where SUBSETTING1; VALUE2 if CONDITION2 at DATASET2
where SUBSETTING2; ……

If the variable derivation is more complicated and it will be better to use a macro, just written as
%MACRO (MACRO is the macro name) instead.

The following is a sample for DSTERM variable in DS domain:
"COMPLETED" at rawdata.ie where not missing(iedat) or not missing(iecrit), or at rawdata.eot where
upcase(EOTTRC) in ("YES") ;

"SCREEN FAILURE" at rawdata.ie where iecrit ^= 'Yes';

"STUDY ENROLLED" at rawdata.ie where ieenroll_std='Y';

"MAIN INFORMED CONSENT OBTAINED" at rawdata.dm where upcase(ICSIGN) in ("Y" "YES");

"ELIGIBILITY CRITERIA MET" at rawdata.ie where upcase(IECRIT_STD)="Y" or iewaiv_std ne ''.

DSTERM has different values such as “COMPLETED”, “SCREEN FAILURE”, “STUDY ENROLLED”,
“MAIN INFORMED CONSENT OBTAINED”, “ELIGIBILITY CRITERIA MET” derived from different raw
datasets, and they are separated by “;”. The value “COMPLETED” is from two datasets IE and EOT,
which are separated by “,”. The values “SCREEN FAILURE”, “STUDY ENROLLED”, “MAIN INFORMED
CONSENT OBTAINED”, “ELLIGIBILITY CRITERIA MET” are from single raw dataset, and their
derivations are written in a simple model, respectively.

STEP 2: DETERMINE THE ORDER AND METHOD OF VARIABLES COMBINING INTO
PRODUCT DATASET
A dataset consists of a variety of variables, and these variables may have different sources, and some
variables may be directly derived from other variables in the product dataset. Therefore, variables are
added to product dataset in a certain order. They may be temporarily stored in some intermediate

3

datasets, and then these intermediate datasets are combined horizontally or vertically, to eventually
assemble into a product dataset. Thus, in the dataset specification, an additional column is needed to
assign variable’s combining order and intermediate dataset’s combining method. For example, in the
right-most column “Combination” of Display 1, “1 set” means that the variable combining order is the first
order and the combining method is by set statement. “2 merge subject” means that the variable
combining order is the second order and the combining method is by merge statement and the variable
“subject” as sorting variable.

Display 1. Partial dataset specification for DS domain

STEP 3: TRANSLATE VARIABLE DERIVATION INTO SAS CODES
Once variable derivation is rewritten and variable combining order and method are assigned in the
dataset specification, next step is to read the spreadsheet into a SAS dataset by IMPORT procedure. The
variable derivation in the column “Mapping Rule (for programming)” (shown in Display 1) is read into a
string for each variable. And then the string can be translated into SAS code (s).

The simple model of variable will be translated to:
 set DATASET;
 where SUBSETTING;
 if CONDITION then VARIABLE=VALUE;

To conveniently organize and export the translated SAS codes, the values for DATASET, SUBSETTING,
VALUE and CONDITION are stored into different variables, respectively, as shown in Table 1.

No. Variable Dataset Subsetting Value

1 VARIABLE DATASET SUBSETTING if CONDITION then VARIABLE= VALUE

Table 1. Disassembly of SAS codes for variable derivation in a simple model

If the same variable derives from different DATASET or SUBSETTING, its codes need to be separated
into different data steps. Thus, the translated SAS codes in complex model should be separated into
multiple records. There will be per DATASET per SUBSETTING per record per variable, as shown in
Table 2.

4

No. Variable Dataset Subsetting Value

1 VARIABLE DATASET1 SUBSETTING1 if CONDITION1 then VARIABLE= VALUE1

2 VARIABLE DATASET2 SUBSETTING2 if CONDITION2 then VARIABLE= VALUE2

Table 2. Disassembly of SAS codes for variable derivation in a complex model

SETP 4: REARRANGE SAS CODES FOR VARIABLE DERIVATION
In STEP 2, variable combining order and method are assigned in the “Combination” column of data
specification. Once variable derivation is translated into SAS codes, the produced codes need to
rearrange based on variable combining order and method to export orderly them. In addition, if different
variables share the same DATASET and SUBSETTING, their codes can be combined into one data step.
Thus, these codes need to be put together to export them correctly. As shown in Display 2, DSSTDTC,
DSTERM, DSSCAT co-exist in the same dataset rawdata.ds, rawdata.eot where
(upcase(EOTTRNCR))="DEATH", rawdata.eot where upcase(EOTTRC) in ("Y" "YES"), etc on. Their
codes are merged into corresponding data steps, as shown in Display 3.

Display 2. SAS codes for variable derivation are rearranged for DS program

5

Display 3. Partial codes for DS program

Furthermore, if variables have the same CONDITION, DATASET and SUBSETTING, their codes can be
combined and simplified as:
 if CONDITION then do;

 variable1=XXX;

 variable2=XXX;

 ……

 end;

In short, SAS codes for variable derivation are rearranged based on variable combining order, method,
and variable sharing in data step to export them orderly to an external file.

SETP 5: EXPORT SAS CODES INTO AN EXECUTABLE FILE
Finally, all codes are exported to an external file to form a SAS program. FILENAME statement is used to
set up an external file path and dataset program name. FILE statement and PUT statement are used to
export all codes to an external file to form a complete dataset program. An expected dataset will be
generated if the produced program works well.

When each dataset specification is put into one excel sheet and all datasets (SDTM or ADaM)
specifications are wrapped up in an excel file, all dataset programs can be sequentially generated by
reading these excel sheets.

6

DISCUSSION

CONFLICT ISSUE IN VARIABLE
There may be some inconsistency when the same variable exists in both original dataset and produced
dataset. The inconsistency includes data type, length, and meaning. The following WARNING and NOTE
frequently occur in manual programming. They are caused by variable inconsistency in variable length or
data type, respectively.

WARNING: Multiple lengths were specified for the variable SEX by input data set(s). This can cause truncation of data.

NOTE: Invalid numeric data, 'Unknown' , at line 252 column 37.

Similar scenario also occurs in the auto-programming. If it is not handled in programming, some
unexpected values for the variable will be produced in the produced dataset. It is impractical to modify
SAS code in the auto-programming by the trial-and-error method as used in the manual programming.
Our strategy to this challenge is to check all product dataset variables in each original dataset and find
out all conflicted variables. One solution is to change these variables to temporary variables first, such as
SEX to _SEX, and then drop the original variables of the original dataset on the produced dataset by
keep/drop statement, and then restore the product variable name by renaming such as
rename=(_SEX=SEX) in the produced dataset. In Display 4, RACEOTH is a numeric variable in raw
dataset dm, but it is a character variable in SUPPDM and this character variable is to store the value of
another variable raceos in raw dataset dm. By saving the original raceos value into a temporary variable
_RACEOTH, and finally restore its name to RACEOTH after original RACEOTH in raw dataset dm was
removed.

Display 4. Partial code for DM program

INTERMEDIATE DATASET NAMING AND CALLING IN
 A dataset program may contain plenty of intermediate datasets. How to name them and call them at a
right time to eventually generate a product dataset is also a challenge. Our strategy is to sequentially
name them based on the dataset combining order in the “Combination” column. For example, in DS
dataset program in Display 3, ds_1, ds_2, ds_3, ds_4, etc on. This will easily name them and finally
combine them into product dataset.

CONCLUSION
This paper provides a practical approach for dataset programming automation. It is based on dataset
specification. A SAS-readable variable derivation in the dataset specification is vital for successful
automation. It can be applied to SDTM domain and ADaM dataset programming and save programming
time and resource and deliver high quality datasets.

7

REFERENCES
1. Xiangchen (Bob) Cui, Min Chen, Tathabbai Pakalapati. An Innovative ADaM Programming Tool

for FDA Submission PharmaSUG 2012 - Paper DS20

2. William Wei, Rinki Jajoo, Susan Kramlik. Automation of STDM dataset integration and ADaM
dataset formation PharmaSUG 2018 - Paper AD-32

3. Tracy Sherman, Aakar Shah. Automating ADSL Programming Using Pinnacle 21®
Specifications PharmaSUG 2019 - Paper 158

4. CDISC 360 Project White Paper https: //www.cdisc.org/sites/default/files/2021-
06/CDISC_360_Project_White_Paper.pdf

ACKNOWLEDGMENTS
The author would like to thank Sam Wang, Xiaoming Li from Atara Biotherapeutics, Inc., Thousand Oaks,

 CA, USA for their programming support and this paper’s review and comments.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Liqiang He
lhe@atarabio.com

 Atara Biotherapeutics, Inc.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries.

mailto:lhe@atarabio.com

	Abstract
	Introduction
	Main steps for automation
	Step 1: REwrite variable derivation TO SAS-READABLE
	STEP 2: determine the order and method of variables combining into product dataset
	STEP 3: translate variable derivation into SAS codes
	SETP 4: rearrange sas codes for variable derivation
	SETP 5: export SAS codes into an executable file

	Discussion
	conflict issue in Variable
	Intermediate dataset naming and calling in

	Conclusion
	References
	Acknowledgments
	The author would like to thank Sam Wang, Xiaoming Li from Atara Biotherapeutics, Inc., Thousand Oaks,

	Contact Information

