
1

PharmaSUG 2023 - Paper SD-335

Low-Code Approach to Clinical Application Development Using SAS
Custom Step

David Olaleye, SAS

ABSTRACT

The SAS Custom Step feature offers a quick low-code application development platform that
programmers can use to create code snippets and a user interface on top of the code snippets. It can be
used to create dynamic user interfaces (UI) for end users with little or no programming experience to gain
access to data assets at their site and perform tasks such as data exploration, analysis, and visualization.
Custom steps come with cascading prompts and prompt hierarchies that enable the creation of data
dependencies between control objects, thus enhancing the user experience as they query data and
interact with the application. In this paper, I will show how to create a stand-alone SAS custom step for a
demographic table and subgroup summary report and present another custom step for performing a
propensity score match analysis. Finally, the two custom steps are added to a SAS® Studio Flow to show
how custom steps can facilitate and enhance a reporting and analysis process workflow.

INTRODUCTION

Low-code and no-code tools are becoming increasingly popular for automating business processes and
workflows. They offer developers and users a quick and easy way to build custom applications. Custom
steps are a feature in SAS Studio that enables users with minimal coding skills to create code snippets
and user interfaces on top of the code snippets to automate complex and repetitive tasks. These
snippets, which can contain SAS or python code, are known as custom steps. To use custom steps,
users need either a SAS Studio Analyst or a SAS Studio Engineer license. The options available to users
depend on the version of the SAS Studio license available at their site. For more information, visit
https://documentation.sas.com/doc/en/sasstudiocdc/default/webeditorcdc/webeditorsteps/n1rlf6jqdi2dt4n1
ur1avntzf2q0.htm.

OVERVIEW OF SAS CUSTOM STEPS

WHAT IS A CUSTOM STEP

A custom step enables you to create a user interface for users with minimal or no code experience in
SAS programming language to complete a specific task. There are three benefits to using custom step
functionality for your next code development project.

• No Code Low Code (NCLC) – The Step Designer UI enables the step creator to build a point-
and-click user interface on top of their code snippets or create a stand-alone application that
enables users to access information from different data sources at their site.

• Code Reusability and Shareability – Custom step is tightly integrated with SAS Studio, thereby
allowing step creators to save their work to any file system on a SAS server or in SAS Content,
which makes the steps available to SAS Studio users.

• Git Repository and Team Collaboration – Step creators can create, publish, and share their work
on GitHub with the community. GitHub provides opportunity to collaborate, share knowledge,
experience, and best practices with other step authors. There is also a custom step repository
(https://github.com/sassoftware/sas-studio-custom-steps) on GitHub featuring published custom
steps from simple to advanced data transformation steps, to statistical, data and text mining
steps.

SAS CUSTOM STEP AS A LOW-CODE SOLUTION DEVELOPMENT TOOL

Custom steps are accessed via SAS Studio, which users can access through a web browser. The step
creator can use the step Designer UI and other controls to create a simple application or a customized

https://documentation.sas.com/doc/en/sasstudiocdc/default/webeditorcdc/webeditorsteps/n1rlf6jqdi2dt4n1ur1avntzf2q0.htm
https://documentation.sas.com/doc/en/sasstudiocdc/default/webeditorcdc/webeditorsteps/n1rlf6jqdi2dt4n1ur1avntzf2q0.htm

2

user interface for end-users to perform a custom task such as run a report, query a database, or perform
statistical data analyses.

CREATING A CUSTOM STEP

There are two parts to creating or authoring a new custom step. The first one is defining the UI using the
Designer interface. The second is writing the SAS or python code, which is done in the Program tab of
the custom step definition. For every custom step, the UI syntax is an object in JSON. This code is
generated by SAS Studio when you create a custom step using the Designer tab. Step creators with
knowledge of JSON syntax can also create custom steps by adding JSON code to the Prompt UI tab. (I
provide an example of how to do this in the paper.)

SAS CUSTOM STEP BUILDING BLOCKS

The building blocks for creating a new custom step consist of the Designer tab, the Prompt UI tab, and
the Program tab. In this section, I give a brief description of what each tab does. In the example use case
section, I provide a detailed walk-through on how to use these components to build and create a custom
summary report and perform a statistical analytical task.

The Designer tab contains the visual and non-visual controls that the step creator can use to build the
user interface for their code snippets. The step author uses the controls to capture input and display
information to the user. As shown in Display 1, the controls library displays the UI elements that can be
used to select and create pages, access tables in SAS libraries, files in directories,, columns from a
table, drop-down lists, radio button and check box objects for users to interact with the step at run-time.
The Designer UI also enables the step creator to establish dependencies amongst the UI elements.

Display 1. SAS Custom Step Designer

The Dependencies feature enables the step author to specify the state of one control based on the
values of other controls. For example, the selection of a check box control could result in the visibility of a
drop-down list control. If the check box control is not selected, the drop-down list control remains hidden.

The Prompt Hierarchies feature is used to create a hierarchy of dynamic controls. The hierarchy feature
indicates how the value of one dynamic control affects the available values in another or subsequent
dynamic control. For example, if the user selects the matching variable for the propensity score model,

3

the corresponding values or levels of the selected matching variable are displayed in the drop-down list
object below.

The Prompt UI tab contains the JSON code generated by SAS Studio when controls are added to the
Designer UI. Step creators who are familiar with JSON code can also create a custom step by writing this
JSON code themselves. To view the JSON code for each control, open the Prompt UI tab.

The Program tab defines the code section part of the step. In this tab, the step creator adds the SAS
code for the step. After you add the custom step to a flow and the flow runs, the SAS code runs. When
the flow runs, macro variables are generated for each control on the Designer tab. When writing the SAS
code, use the macro variables to reference the prompts. The SAS macro variables represent values
specified by the user in the UI at run-time.

RUNNING A SAS CUSTOM STEP

A custom step can be executed either in a stand-alone mode or when added as part of a SAS Studio
flow.

RUNNING A CUSTOM STEP IN STAND-ALONE MODE

Running a custom step in stand-alone mode means that the user is presented with a new tab in SAS
Studio that contains the UI for the custom step. The user fills in the required fields and clicks the run
button. The results, either an output table or a report generated by the SAS code, are shown in the SAS
Studio UI. An example of what the step results might look like is shown in Figure 1. Using stand-alone
mode to execute a step gives the user the option to refresh the custom step definition, view the code and
the generated log, and to save the custom step as a SAS program. After a custom step is executed, the
results appear in the tab for the custom step. Graphical output appears on the Results tab, and output
data appears on the Output Data tab. The user can open the same custom step multiple times in the
SAS Studio workspace. When there are multiple instances of the custom step open at the same time, the
user can provide different values for the controls and quickly compare the results.

Figure 1. Results from a custom step in stand-alone mode

4

RUNNING A CUSTOM STEP IN SAS STUDIO FLOW

Running a custom step in flow mode enables the user to perform a sequence of operations on data using
a graphical flow builder. SAS Studio provides an out-of-the-box library with steps that perform operations
on data. Figure 2 shows an example of a custom step defined as part of a SAS Studio flow.

Figure 2. Results from a custom step as part of a SAS Studio flow

EXAMPLE USE CASES

I provide two example use cases to show how to create stand-alone SAS custom steps: the first one is for
a demographic table and subgroup summary report and the second use case highlights a custom step
for performing a propensity score match analysis.

USING A CUSTOM STEP TO CREATE A DEMOGRAPHIC TABLE AND SUBGROUP
SUMMARY REPORT

This example uses a custom step to create the user interface that generates the demographic table and
subgroup summary report. The report uses the %TABLEN SAS macro written by Jeff Myers and
presented at PharmaSUG 2020. As stated by Jeff, the %TABLEN macro is a tool developed to compute
distribution statistics for continuous variables, date variables, discrete variables, univariate survival time-
to-event variables, and univariate logistic regression variables and combine them into a table for
publication. To use this macro in its present form requires knowledge of how SAS macro language works.
A user must also supply the required parameters for the %TABLEN macro. This example uses the

5

custom step feature to create a UI to make the macro easily accessible and usable for end-users with
little or no SAS code or macro programming language background.

When a user runs this custom step, the result is a table or a report (or both) that shows the distribution
information such as frequencies for categorical and binary variables, and means, medians, and ranges for
continuous and date variables (see Figure 3). When a BY group variable is provided as a treatment
variable, the custom step report can be used to compare the distributions across the treatment arm and to
determine whether there was any imbalance in the sample populations being compared. Details about the
%TABLEN macro are available here: https://communities.sas.com/t5/SAS-Communities-
Library/Demographic-Table-and-Subgroup-Summary-Macro-TABLEN/ta-p/634030.

Figure 3. Custom Step Designer UI for Demographic Table and Subgroup Summary Report

Overview of Demographic Table and Subgroup Summary Report Custom Step

This example uses the Designer tab, which is available in SAS Studio Analyst and SAS Studio Engineer,
to create the custom step required for this report. The custom step includes these controls:

• three-page controls – the Data page, the Options page, and the About page

• section control – use this control to organize related controls on a page

• an input table control – use this control to select the data to use as input for the step. When the
step is in a flow, this control is available when you click the input port.

• two column selector controls – use these controls to select columns from the input table. The first

control is a multi-variables selection control for selecting the variables to be displayed in the

report, and the second one is a single-variable selection control for selecting the BY group

variable.

https://communities.sas.com/t5/SAS-Communities-Library/Demographic-Table-and-Subgroup-Summary-Macro-TABLEN/ta-p/634030
https://communities.sas.com/t5/SAS-Communities-Library/Demographic-Table-and-Subgroup-Summary-Macro-TABLEN/ta-p/634030

6

• two check box controls – one to control whether the report should be displayed by the BY group
variable (if it is not selected, the summary report is generated for the whole sample), the other
check box control is used to send errors or warnings about the report to the log.

• an output table control - use this control to specify the name and location of the output table.

• four drop-down list controls – use these controls to display report options for enhancing the
report.

Step 1: Define the Controls

1. In the Steps pane, click and select Custom step quick start. A new Custom Step.step tab
opens.

2. In the Control Library, use the + Add Page control to add three pages. Name the pages Data,
Options, and About, in that order.

3. In the Control Library, scroll to the COMMON heading. Double-click or drag-and-drop the Section
control to the canvas. Label the control Demographic Table Summary Report

4. In the Control Library, scroll to the DATA heading. Double-click Input Table to add an input table
control to the canvas.

a. In the Properties: Input Table pane, provide values for the ID (inputds) and Label (Input
Data) for the Input table.

b. Select the Required check box. The other parameters are optional.

5. In the Control Library, scroll to the DATA heading. Double-click Column Selector to add a
column selector control to the canvas.

a. Modify these properties in the Properties: Column Selector pane.

i. In the ID field, enter reportvars

ii. In the Label field, enter Report variables:

iii. From the Link to input table drop-down list, select Input table (inputds).

iv. In the Column type field, select All types.

v. In the Minimum columns field, enter 1.

6. In the Control Library, scroll to the COMMON heading. Double-click or drag-and-drop the Check
Box control to the canvas.

a. Modify these properties in the Properties: Check Box pane.

i. In the ID field, enter byVar_flg.

ii. Label the control Display report by group variable

iii. Select the Checked by default check box.

7. In the Control Library, scroll to the DATA heading. Double-click Column Selector to add a
column selector control to the canvas.

a. Modify these properties in the Properties: Column Selector pane.

i. In the ID field, enter byVar

ii. In the Label field, enter Report group variable:

iii. From the Link to input table drop-down list, select Input table (inputds).

iv. In the Column type field, select All types.

7

v. In the Minimum columns field, enter 1.

vi. In the Maximum columns field, enter 1.

vii. Scroll down to the Dependencies section. In the Visibility box, enter
“$byvar_flg”. This creates a dependency between the check box and column
selector controls to control whether the report is displayed by the BY group
variable.

8. Navigate to the Options page.

9. In the Control Library, scroll to the COMMON heading. Double-click or drag-and-drop the Drop-
down List control to the canvas.

a. Modify these properties in the Properties: Drop-down List pane.

i. In the ID field, enter pvalue_catgvar

ii. In the Label field, enter P-value option (categorical or binary variables):

iii. Leave the Required check box deselected.

iv. In the Determine where values come from field, select the radio button labeled
Static list.

v. In the Add and organize items field, click Add Many. A list selection window
opens. Enter the following values on each line.

o 0 = No p-value

o 1 = Chi-square

o 2 = Fisher's exact

vi. Click OK to close the list Items window.

vii. In the Add and organize items field, make the following adjustments to the list
items. Enter the value for each option in the Value column for each Label field.
This value is what is passed and processed by the SAS program when a
selection is made.

viii. In the Default item field, select 1=Chi-square as the default.

10. In the Control Library, scroll to the COMMON heading. Double-click or drag-and-drop the Drop-
down List control to the canvas.

a. Modify these properties in the Properties: Drop-down List pane.

i. In the ID field, enter pvalue_contvar

ii. In the Label field, enter P-value option (continuous or date variables):

iii. Leave the Required check box deselected.

8

iv. In the Determine where values come from field, select the radio button labeled
Static list.

v. In the Add and organize items field, click Add Many. A list selection window is
opened. Enter the following values on each line:

o 0 = No p-value

o 1 = Kruskal Wallis

o 3 = Wilcoxon ranks

o 5 = Anova F-test

vi. Click OK to close the list Items window.

vii. In the Add and organize items field, make the following adjustments to the list
 items

 viii. In the Default item field, select 1=Kruskal Wallis as the default.

11. In the Control Library, scroll to the DATA heading. Double-click Output Table to add an output
table control to the canvas.

a. In the Properties: Output Table pane, enter Specify the report output table; as the label.

12. Repeat Step 10 for the remaining two drop-down list controls. In the Control Library, scroll to the
COMMON heading. Double-click or drag-and-drop the Drop-down List control to the canvas.
Make the necessary adjustments to the list items.

a. Modify these properties in the Properties: Drop-down List pane.

i. In the ID field, enter report_odspath, report_orientation, respectively.

ii. In the Label field, enter Report output type, Report orientation, respectively.

13. In the Control Library, scroll to the COMMON heading. Double-click or drag-and-drop the Check
Box control to the canvas.

a. Modify these properties in the Properties: Check Box pane.

i. In the ID field, enter debug_flg

ii. Label the control Display report debugging information to the log

iii. Do not select the Checked by default check box.

9

Step 2: Adding Your SAS Code

The next step is to add the SAS code for the Demographic Table and Subgroup Summary Report.

1. On the Program tab, add the following %TableN SAS code that can be retrieved via this link:
https://communities.sas.com/t5/SAS-Communities-Library/Demographic-Table-and-Subgroup-
Summary-Macro-TABLEN/ta-p/634030

2. The driver macro for the %TableN macro is provided in Appendix A.

Step 3: Save the Step

To save this custom step, click Save as. Though you can save the step to any location that you prefer, it
is recommended that you save this step to a folder in SAS Content. Enter Demographic Table and
Subgroup Summary Report as the name of the step.

Step 4: Add the Custom Step to a Studio Flow

To add the custom step to a new studio flow, perform the following:

1. From the main menu, select New ➔ Flow. A blank flow opens.

2. To add the custom step to the flow, drag and drop the Demographic Table and Subgroup Summary
Report from the Steps pane.

To add the Basic Example step to the flow, drag and drop the Basic Example step from the Steps pane.
(See Figure 2.) At the right of the canvas, the user can see part of the user interface defined using the
step Designer UI.

Step 5: Running the Custom Step as a Stand-alone

To save this custom step, click Save as. Though you can save the step to any location that you prefer, it
is recommended to save the custom step to your SAS Server or SAS Content folder. [Note: The SAS
code used for this custom step accepts SAS data sets and CAS tables as input data.]

Figures 4 and 5 display the custom step when it is finalized and the output of the custom step when it is
executed as a stand-alone step.

https://communities.sas.com/t5/SAS-Communities-Library/Demographic-Table-and-Subgroup-Summary-Macro-TABLEN/ta-p/634030
https://communities.sas.com/t5/SAS-Communities-Library/Demographic-Table-and-Subgroup-Summary-Macro-TABLEN/ta-p/634030

10

Figure 4. User Interface for Demographic Table and Subgroup Summary Report

Figure 5. Demographic Table and Subgroup Summary Report

11

USING CUSTOM STEP TO PERFORM PROPENSITY SCORE MATCH ANALYSIS

For this example, I used a custom step to create the code snippet and user interface for the propensity
score match analysis. Propensity scoring method is used in outcomes and epidemiological research for
sample selection by matching and analysis of causal effect by stratification. For a detailed explanation of
propensity score matching, consult Rosenbaum (2010) and Rosenbaum and Rubin (1983). [Note: The
code snippet used for creating this custom step requires CAS tables as input data. The step generates
errors when tables in other formats are passed as input tables to the step.]

Figure 6. Custom Step for Propensity Score Match Analysis

BEST PRACTICES FOR CREATING CUSTOM STEP

• Provide the description and key information about the custom step in the About tab to inform
users about the capabilities and limitations of the step.

• Since a custom step can be executed in stand-alone mode or as part of a SAS Studio flow, first
test the step in the stand-alone mode and fix any bugs or errors that are found before adding the
step to a SAS Studio flow.

• Always check the log for errors, warnings, and resolution of macro variable names.

• Use port details to control the output columns.

• When applicable, use the starter custom step templates that are shipped with SAS Studio so that
you don’t have to start from scratch.

• Be part of the Git repository team contributors to showcase your work and share your custom
steps with other users. The repository already contains several custom steps published by SAS
staff.

CONCLUSION

12

SAS Studio Custom Step is a feature in SAS Studio that enables you to create custom code snippets that
can be reused in your SAS programs. These snippets, known as custom steps, can help save time and
streamline your workflow by automating repetitive tasks.

REFERENCES

Myers, Jeff. “Demographic Table and Subgroup Summary Macro %TABLEN”. Accessed March 20,2023.
Available at https://communities.sas.com/t5/SAS-Communities-Library/Demographic-Table-and-
Subgroup-Summary-Macro-TABLEN/ta-p/634030.

Rosenbaum, P. R. (2010). Design of Observational Studies. New York: Springer-Verlag.

Rosenbaum, P. R., and Rubin, D. B. (1983). “The Central Role of the Propensity Score in Observational
Studies for Causal Effects.” Biometrika 70:41–55.

SAS Institute Inc. 2023. SAS® Studio: Working with Custom Steps. Cary, NC: SAS Institute Inc.

ACKNOWLEDGMENTS

This author would like to thank Heather Weinstein and Jim Box with the editing of the paper. Any
mistakes and omissions are solely the responsibility of the author.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

David Olaleye
SAS Institute
David.Olaleye@sas.com

Any brand and product names are trademarks of their respective companies.

https://communities.sas.com/t5/SAS-Communities-Library/Demographic-Table-and-Subgroup-Summary-Macro-TABLEN/ta-p/634030
https://communities.sas.com/t5/SAS-Communities-Library/Demographic-Table-and-Subgroup-Summary-Macro-TABLEN/ta-p/634030

13

APPENDIX A

The driver macro for the %TABLEN macro program for executing the demographic table and subgroup
summary report:

************************************;

Macro to get user-supplied values;

************************************;

%macro getvarList(_varnameSelector=);

%global _varlist;

%let _varlist=;

%do j = 1 %to &&&_varnameSelector._count;

%let _varlist = &_varlist. &&&_varnameSelector._&j._name;

%end;

%put &=_varlist;

%mend;

%macro tablen_DemogReport;

%if (%str(&inputds.) eq) %then %goto ERROREXIT;

%if %upcase(%scan(%bquote(&inputds.), 1)) ne WORK |

 %upcase(%scan(%bquote(&inputds.), 1)) ne SASUSER %then %do;

 data work.Table1Report;

 set &inputds.;

 run;

 %let inputds = %str(work.Table1Report);

%end;

%if (%bquote(&reportds) eq) %then %let reportds = %str(reportTableDemog);

%if (&debug_flg eq) %then %let debug_flg=0;

Parse user-selected variables for target cohort;

%getvarList(_varnameSelector=reportvars);

%let reportvars = %str(&_varlist);

%put &=reportvars;

%if %eval(&byVar_flg = 1) %then

%let reportVars=%sysfunc(tranwrd(%str(&reportVars.), &byVar,));

 ** Get the variable contents information**;

proc sql noprint;

%if %sysfunc(exist(work.content_inputds)) %then %do;

 drop table work.content_inputds;

%end;

%if %sysfunc(exist(work.pvaluelist)) %then %do;

 drop table work.pvaluelist;

%end;

quit;

14

%let _rptvars_=;

%let pvalue_list=;

%let vartype_list=;

proc contents data=&inputds.(keep=&reportvars &byvar)

out=work.content_inputds(keep=name type) noprint;

run;

proc sql noprint;

 select count(*), name

 INTO :NVARS trimmed, :_rptvars_ separated by ' '

 FROM work.content_inputds;

 create table work.pvaluelist

 (name char(32), unique_value num);

quit;

%do j=1 %to &nvars;

 %let unique_value=;

 %let rptvar = %sysfunc(kscan(%bquote(&_rptvars_), &j, ' '));

 %let rptvar = &rptvar;

 proc sql noprint;

 insert into work.pvaluelist

select "&rptvar" as name, count(distinct &rptvar.) as unique_value

 from &inputds(Keep=&rptvar);

 quit;

%end;

data work.content_inputds;

 merge

 work.content_inputds

 work.pvaluelist ;

 by name;

 length pvalue_list 8;

 if (type = 2) | (type=1 and unique_value le 4) then do;

 type=2; pvalue_list=&pvalue_catgvar.;

 end;

 else do;

 type = 1; pvalue_list=&pvalue_contvar.;

 end;

run;

proc sql noprint;

 select kstrip(name), type, pvalue_list

 into :_rptvars_ separated by ' ',

 :vartype_list separated by ' ',

 :pvalue_list separated by ' '

 from work.content_inputds;

quit;

%if %eval(&byVar_flg = 0) %then %do;

%tablen(

 DATA = &inputds.

15

 ,VAR = %str(&_rptvars_)

 ,TYPE= %str(&vartype_list)

);

%end;

%if %eval(&byVar_flg = 1) %then %do;

%tablen(

 DATA = &inputds.

 ,VAR = %str(&_rptvars_)

 ,TYPE= %str(&vartype_list)

 ,BY = &byVar

 ,PVALS = %str(&pvalue_list)

);

 %end;

 ** Perform Clean up**;

 %let inputds=;

 %let reportvars=;

 %let byVar_flg=;

 %let byVar=;

 %let pvalue_catgvar=;

 %let pvalue_contvar=;

 %let reportds =;

 %let debug_flg=;

 %let _rptvars_=;

 %let vartype_list=;

 %let pvalue_list=;

 %ERROREXIT:

%mend tablen_DemogReport;

