
1

PharmaSUG 2023 - Paper SD-325

admiralonco

- the cross-company R package for Oncology admirers

Neharika Sharma, GlaxoSmithKline, Collegeville, PA, USA
Matthew Marino, GlaxoSmithKline, Collegeville, PA, USA

ABSTRACT

As companies across pharmaceutical industry are focusing on adopting R language for the creation of
submission packages and data analysis, there becomes a growing requirement for coming out of silos
and working collectively and efficiently towards developing functions and utilities that cater to the common
industry-wide need. Through a collaborative effort between pharmaceutical companies like
GlaxoSmithKline, Roche, Amgen, and Bristol Myers Squibb, Admiralonco was developed as an extension
package to the Admiral package to assist in the creation of oncology specific CDISC compliant ADaM
datasets like ADRS, ADTTE etc. In this presentation, we will elaborate the contents and usability of the
package which is readily available to all statisticians and programmers and which we believe which could
help one and all to efficiently increase the usage of R while analyzing clinical data. We will provide an
overview of the capabilities of this project and demonstrate the application of some of the functions within
the package. Briefly taking audience through the concepts of WRAP and Github, we plan to showcase
examples of utilizing these functions in any project. We will also discuss the utilization of Agile working in
a collaborative setup between different companies and the process that was followed in the development
of this package. Finally, we will share our personal experience working on Admiralonco and discuss our
learnings and hardships. Through this presentation, we hope the audience will learn about this package
and consider benefiting from it.

INTRODUCTION

In the past, as drug development was still evolving, clinical trials data was analyzed and reported in
conventional ways. The regulatory asks were limited, and clinical trial budgets allowed flexibility.
However, the pharmaceutical industry, being heavily reliant on science and technology, is currently
witnessing a fast change in the landscape of Clinical Reporting and seeing a trending organizational goal
of using open-source languages like R. With this industry-wide interest, there are efforts being made at
individual organizations to prepare for the shift in paradigm and gear up for the change. As companies in
the pharmaceutical industry focus on adopting R for submission package creation and data analysis,
there is a growing need to break out of silos and work collectively and effectively to develop functions and
utilities that meet the common needs of the entire industry.

In this direction, admiral came into existence as the first cross-company collaboration to develop ADaM in
R Asset library. It is an open-source collaboration initially between GSK and Roche to create ADaMs in R.
Later around eighteen more companies joined the testing. The aim was to foster cross-industry
crowdsourcing by promoting collaboration among individuals from different organizations, rather than
working in isolated groups.

Building on the above, admiralonco is developed as the first Therapeutic area specific extension to the
package of admiral family. It is a complementary open-source toolbox made of re-usable functions and
utilities with individual purpose, wrapped together in a modular way. This modular nature lets you
customize the creation of some of the most complicated oncology specific CDISC compliant ADaMs.
Inheriting the modular nature from admiral has also helped in reusing some of the functions from there
too. admiralonco has been developed in collaboration with four companies GSK, Roche, Amgen, and
Bristol-Myers Squibb. The aim is to develop a package for universal adoption within the industry, thereby
avoiding the need to duplicate the work at each individual company in solving the problem at hand.
This paper is for all those admirers of the core conventions of Oncology therapeutic area, who are
interested in enhancing the usage of R. The purpose of this paper is to provide an overview of the

2

package admiralonco, including its benefits and brief walkthrough of the available scripts. Our goal is to
encourage testing and invite feedback to increase the usability and enhance the package. Embracing the
changing trend of using the open-source languages while dynamically endorsing recent paradigm shift
and upsurging organizational objectives, through this read, we hope to raise awareness of an industry
wide collaboration opportunity of demystifying the use of R, jointly and unitedly.

MAIN GOAL OF ADMIRALONCO

To provide an open source, modularized and complementary (to admiral) toolbox that enables users to
develop oncology disease area specific ADaM datasets in R. One of the key aspects here is its
development by the users for the users. It gives an entry point for all to collaborate, co-create and
contribute to a harmonized approach of developing ADaMs in R across the pharmaceutical industry. The
main idea is that an ADaM dataset is built by a simple to adopt sequence of derivations in a form of
readable and easily constructible ADaM program scripts. Each derivation adds one or more variables or
parameters to the processed dataset. This modular approach makes it easy to adjust code by adding,
removing, or modifying derivations. Each derivation is a function call.

SCOPE

• Build a toolbox of re-usable functions and utilities to create oncology specific ADaM datasets in R in a
modular manner.

• All functions are created based upon the ADaM Implementation Guide and aim to facilitate the
programming of ADaM dataset standards.

• Initially the package will focus on the most common efficacy endpoint needs for solid tumor (using
RECIST v1.1 response criteria), but over time we will look to add extra areas such as: endpoints for
targeted indications, baseline disease characteristics, common sensitivity analyses and
questionnaires.

ADMIRALONCO AT PHARMAVERSE GITHUB

To make usage of admiralonco easier and to facilitate learning, there is enormous documentation
available around the package. A screenshot is shown here from the page on pharmaverse at github. The
landing page helps you understand the scope of the package and how to go about installing the package.
If you navigate to the get started page, it will show you how to start a script and use the admiralonco
templates. The Reference tab has the details of all the functions and utilities that has been added as part
of the package. There are also user guides available separately for each domain as highlighted in the
screenshot, if you go there, you will see vignettes for step-by-step creation of an admiralonco based
ADaM dataset, with some example data to demonstrate and make it easy to follow. Overall, with the
information available on the page you should have all you need to get started and you should be all set!

3

TEST COVERAGE

Whenever an open-source package is talked about, we encounter a
common question which is around the validation of the package.
Hence the introduction to admiralonco wouldn’t be complete without
the mention of the test coverage of the package which is 95%. With
a thorough testing, functions are setup to be follow CDISC and not
violate any rules, ensuring quality of the package. Having said that,
ultimately, it falls on the users/individual organizations to adjudicate
whether that is sufficient or, further testing is required to ensure
CDISC compliance.

BENEFITS OF USING ADMIRALONCO

Having introduced to admiralonco, it is of utmost importance to understand the benefits the package is
bringing before we dive deep into the technical details of the package. To cater to this, lets understand
the scope of area of utility and what new this package is bringing into our current world of clinical
programming.

• In contrast to the traditional data analysis and reporting conventions, the pharmaceutical industry is
now growing an interest towards the use of open-source languages such as R. In this area,
admiralonco comes as an open-source R package, which is freely available to all organizations and
individuals to use.

• The difficulty with most new techniques is usually the need for training. This package, admiralonco,
comes with a huge amount of documentation available on the sites (illustrated ahead and detailed in
the following sections), which makes it quite easy to follow and use without the need for formal
training.

• In each organization we have a mixed pool of programmers, ranging from experienced programmers
well versed in oncology conventions to new and curious minds willing to learn and work in oncology
TA. As admiralonco is based on global guidelines such as RECIST 1.1, it is usable by programmers
who are new to the therapeutic area of oncology and who do not yet have a thorough understanding
of the oncology efficacy requirements. These scripts are written to follow all the standard guidelines
and, with detailed documentation, provide an easier way to work with some of the complex
conventions of oncology.

• As mentioned previously, this is an effective way to increase the use of R in any project and to save a
lot of time in generating the most complicated ADaMs in oncology, which could have taken even
longer in other programming languages like SAS.

• Finally, in different organizations we follow standard guidelines, but we still have many company-
specific standards or methods for collecting and processing efficacy endpoints. It may therefore be
intuitive to question the scope and usability of the package in all cases. The answer lies in the
foundations of the package. As mentioned earlier, this package is developed using a modular
approach, which means that the intention is not to automate the creation of ADaMs, but to provide
users with a set of reusable and modifiable functions and utilities that allow them to feed into their
own company-specific conventions or practices. Later in this document we will see how these scripts
can handle the pre/post processing of data where any necessary changes can be made easily.

CONTENTS OF THE PACKAGE

This package is developed in an Agile way. This indicates that we have addressed the issue in hand by
catering to the common needs first and will continue adding to the package over time. We have started
with RECIST 1.1 which involves the most common efficacy endpoints in oncology. The package will grow
over time.

4

CURRENT CONTENTS

The currently available scripts are:

• ADRS (ADaM dataset for Tumor Response Analysis)

• ADTTE (ADaM dataset for Time to Event Analysis)

• ADTR (ADaM dataset for Tumor Results Analysis)

In this section we will illustrate various functions that are developed as part of these scripts:

Functions related to derivations for adding Parameters:

1. derive_param_bor()

Calculates and adds a parameter for Best Overall Response (BOR) parameter without
confirmation, as detailed below.

Records after PD can be removed using the source_pd and source_datasets arguments.

• All CR, PR and PD response records are considered for Best Overall Response.

• All SD or NON-CR/NON-PD records where ADT >= reference_date + ref_start_window
are also considered for Best Overall Response.

• Subjects with ONLY an SD or NON-CR/NON-PD records where ADT < reference_date +
ref_start_window are assigned a Best Overall Response of NE.

• The Best Response, from the records in steps 1 to 3, is then selected in the following
order of preference: CR, PR, SD, NON-CR/NON-PD, PD, NE, MISSING

• The AVAL column is added and set using the aval_fun(AVALC) function

• The columns specified by the set_values_to parameter and records are added to the
dataframe passed into the dataset argument

Note: Any responses of SD or NON-CR/NON-PD that occur before reference_date +
ref_start_window are ignored in the calculation of BOR. All other responses are included in the
calculation of BOR, irrespective of the number of days from the reference date.

Also Note: All columns from the input dataset are kept. For subjects with no records in the input
dataset (after the filter is applied) all columns are kept from ADSL which are also in the input
dataset. Columns which are not to be populated for the new parameter or populated differently
(e.g., RSSTRESC, VISIT, PARCATy, ANLzzFL, ...) should be overwritten using the set_values_to
parameter.

2. derive_param_clinbenefit()

Calculates and adds a parameter for Clinical Benefit. Clinical benefit/disease control is first
identified by looking for subjects having response status, and then derived for subjects that have
at least one evaluable non-PD response assessment prior to first PD (Progressive Disease) (i.e.,
responses inclusive of CR, PR, SD, and NON-CR/NON-PD) and after a specified amount of time
from a reference date (ref_start_window).

Note: The user input values they wish to include when determining clinical benefit using the
argument clinben_vals. The default values for this are CR, PR, SD, and NON-CR/NON-PD, as
listed above. In the below example, eligible values be limited to CR and PR.

Example: clinben_vals <- c("CR", "PR")

• The input dataset (dataset) is restricted to the observations matching filter_source and to
observations before or at the date specified by source_pd.

5

• This dataset is further restricted to include user-generated response assessments from
clinben_vals or include response assessments of CR, PR, SD, and NON-CR/NON-PD,
exclude missing response assessments, and exclude those less than ref_start_window
after reference_date. The earliest assessment by ADT is then selected.

• The dataset identified by dataset in source_resp is restricted according to its filter
argument. The variable corresponding to the date parameter of source_resp is
considered together with ADT from the previous step.

• For the observations being added to dataset, ADT is set to the earlier of the first
assessment date representing an evaluable non-PD assessment prior to first PD, or the
date representing the start of response.

• For the observations being added to dataset, AVALC is set to

o Y for those subjects in the dataset meeting the criteria for clinical benefit above

o N for subjects not meeting the clinical benefit criteria in dataset or the dataset
identified in source_resp

o N for subjects present in dataset_adsl but not present in dataset or the dataset
identified in source_resp.

• AVAL is derived using AVALC as input to the function specified in aval_fun.

• The variables specified by set_values_to are added to the new observations with values
equal to the values specified in the same.

• The new observations are added to dataset. Variables held in common between dataset
and dataset_adsl are kept for the new observations and are populated with their values
from dataset_adsl.

3. derive_param_confirmed_bor()

Adds a Parameter for Confirmed Best Overall Response.

• The input dataset (dataset) is restricted to the observations matching filter_source and to
observations before or at the date specified by source_pd.

• The following potential confirmed responses are selected from the restricted input
dataset:

o "CR": An assessment is considered as complete response (CR) if

▪ AVALC == "CR",

▪ there is a confirmatory assessment with AVALC == "CR" at least
ref_confirm days after the assessment,

▪ all assessments between the assessment and the confirmatory
assessment are "CR" or "NE", and

▪ there are at most max_nr_ne "NE" assessments between the
assessment and the confirmatory assessment.

o "PR": An assessment is considered as partial response (PR) if

▪ AVALC == "PR",

▪ there is a confirmatory assessment with AVALC %in% c("CR", "PR") at
least ref_confirm days after the assessment,

▪ all assessments between the assessment and the confirmatory
assessment are "CR", "PR", "SD", or "NE",

6

▪ there is no "PR" assessment after a "CR" assessment in the confirmation
period,

▪ there are at most max_nr_ne "NE" assessments between the
assessment and the confirmatory assessment, and

▪ if the accept_sd argument is set to TRUE, one "SD" assessment in the
confirmation period is accepted. Otherwise, no "SD" assessment must
occur within the confirmation period.

o "SD": An assessment is considered as stable disease (SD) if

▪ AVALC %in% c("CR", "PR", "SD") and

▪ the assessment is at least ref_start_window days after reference_date.

o "NON-CR/NON-PD": An assessment is considered as NON-CR/NON-PD if

▪ AVALC = "NON-CR/NON-PD" and

▪ the assessment is at least ref_start_window days after reference_date.

o "PD": An assessment is considered as progressive disease (PD) if AVALC ==
"PD".

o "NE": An assessment is considered as not estimable (NE) if

▪ AVALC == "NE" or

▪ AVALC %in% c("CR", "PR", "SD", "NON-CR/NON-PD") and the
assessment is less than ref_start_window days after reference_date.

o "ND": An assessment is considered as not done (ND) if AVALC == "ND".

o "MISSING": An assessment is considered as missing (MISSING) if a subject has
no observation in the input dataset.

If the missing_as_ne argument is set to TRUE, AVALC is set to "NE" for these
subjects.

• For each subject, the best response as derived in the previous step is selected, where
"CR" is best and "MISSING" is worst in the order above. If the best response is not
unique, the first one (with respect to ADT) is selected. If the selected record is from the
input dataset, all variables are kept. If the selected record is from dataset_adsl, all
variables which are in both dataset and dataset_adsl are kept.

• The AVAL variable is added and set to aval_fun(AVALC).

• The variables specified by the set_values_to parameter are added to the new
observations.

• The new observations are added to input dataset.

4. derive_param_confirmed_resp() - Adds a Parameter for Confirmed Response

Adds a Parameter for Confirmed Response.

• The input dataset (dataset) is restricted to the observations matching filter_source and to
observations before or at the date specified by source_pd.

• A subject is considered as responder if there is at least one observation in the restricted
dataset with

o AVALC == "CR",

o there is a confirmatory assessment with AVALC == "CR" at least ref_confirm
days after the assessment,

7

o all assessments between the assessment and the confirmatory assessment are
"CR" or "NE", and

o there are at most max_nr_ne "NE" assessments between the assessment and
the confirmatory assessment.

o or at least one observation with

o AVALC == "PR",

o there is a confirmatory assessment with AVALC %in% c("CR", "PR") at least
ref_confirm days after the assessment,

o all assessments between the assessment and the confirmatory assessment are
"CR", "PR", "SD", or "NE",

o there is no "PR" assessment after a "CR" assessment in the confirmation period,

o there are at most max_nr_ne "NE" assessments between the assessment and
the confirmatory assessment,

o if the accept_sd argument is set to TRUE, one "SD" assessment in the
confirmation period is accepted. Otherwise, no "SD" assessment must occur
within the confirmation period.

• For responders AVALC is set to "Y" and ADT to the first date where the response criteria
are fulfilled. For all other subjects in dataset_adsl AVALC is set to "N" and ADT to NA.

• The AVAL variable is added and set to aval_fun(AVALC).

• The variables specified by the set_values_to parameter are added to the new
observations.

• The new observations are added to input dataset.

5. derive_param_response()

Adds a Parameter Indicating If a Subject Had a Response before Progressive Disease

• The Date of the end of the assessment period (e.g., Progressive disease, as defined by
pd_source) is added to the response dataset.

• The response dataset is restricted to observations occurring before ** or on ** the date of
progressive disease.

• For each subject (with respect to the variables specified for the subject_keys parameter),
the first observation (with respect to ADT) where the response condition (filter_source
parameter) is fulfilled is selected.

• For each observation in dataset_adsl a new observation is created.

o For subjects with a response AVALC is set to "Y", AVAL to 1, and ADT to the first
date (ADT) where the response condition is fulfilled.

o For all other subjects AVALC is set to "N", AVAL to 0 and ADT to NA.

• The variables specified by the set_values_to parameter are added to the new
observations.

• The new observations are added to input dataset.

8

Advanced Functions:

Pre-Defined Time-to-Event Sources

tte_source objects defined by {admiralonco} that can be used as input for
admiral::derive_param_tte()

• death_event

• lastalive_censor

• pd_event

• lasta_censor

• rand_censor

• trts_censor

To see the definition of the various objects simply print the object in the R console, e.g.,
print(death_event). For details of how to use these objects please refer to
admiral::derive_param_tte().

Printing an object will display input dataset_name, filter (if applicable), date variable, and
appropriate values for EVNTDESC, CNSDTDSC, SRCDOM, SRCVAR, and SRCSEQ.

Utility Functions:

Utilities for Formatting Observations

• aval_resp(): Map Character Response Values to Numeric Values

Utilities for Dataset Checking

• get_crpr_dataset() : Get CR Records Followed by PR That Led to a Prior Error

Some admiralonco function check that the in the source records CR is not followed by PR
and throw an error otherwise. The get_crpr_dataset() function allows one to retrieve the
duplicate records that lead to an error.

Note that the function always returns the dataset of duplicates from the last error that has
been thrown in the current R session. Thus, after restarting the R sessions
get_crpr_dataset() will return NULL and after a second error has been thrown, the
dataset of the first error can no longer be accessed (unless it has been saved in a
variable).

• signal_crpr() : Signal CR Records Followed by PR

Utilities for Filtering Observations

• filter_pd() : Filter up to First PD (Progressive Disease) Date

The input dataset (dataset) is restricted by filter.

For each subject, the first PD date is derived as the first date (source_pd$date) in the
source pd dataset (source_datasets[[source_pd$dataset_name]]) restricted by
source_pd$filter.

The restricted input dataset is restricted to records up to first PD date. Records matching
first PD date are included. For subject without any first PD date, all records are included.

Utilities for Catching Errors

• call_aval_fun() : Creates AVAL from AVALC by Calling User Function

The new variable AVAL is set to aval_fun(AVALC).

9

FUTURE PLANS

As mentioned earlier, this package is being developed using an agile methodology, which means that it
will continue to grow in the coming years. Over time, we plan to add additional areas to the scope, such
as endpoints for targeted indications like iRECIST (immune RECIST) and the International Myeloma
Working Group (IMWG) for response assessment in multiple myeloma. We have also started to explore
the possibility of adding the derivation of the first anti-cancer therapy date. There are many other items on
our list, such as the handling of common sensitivity analysis, etc. The order of implementation of these
planned elements may change depending on our strategy and alignment with the subsequent admiral
releases.

HOW TO USE THE PACKAGE

Having understood the contents of the package, next is to learn how to use it. To understand how to
benefit from this package, lets dive deep into the coding. This section will have a step-by-step guide to
create ADaM datasets using the scripts available as part of admiralonco. At every stage, a sample data is
provided to illustrate the concept and implementation better.

INSTALLATION

The package is available from CRAN and can be installed by running

install.packages("admiralonco").

To install the latest development version of the package directly from GitHub use the following code:

if (!requireNamespace("remotes", quietly = TRUE)) {

 install.packages("remotes")

}

remotes::install_github("pharmaverse/admiralonco", ref = "devel")

STARTING A SCRIPT

For the oncology ADaM data structures, an overview of the flow and example function calls for the most
common steps are provided by the following vignettes:

• Creating ADRS (ADaM dataset for Tumor Response Analysis)

• Creating ADTTE (ADaM dataset for Time to Event Analysis)

• Creating ADTR (ADaM dataset for Tumor Results Analysis)

{admiralonco} also provides template R scripts as a starting point. They can be created by calling
use_ad_template() from {admiral}, e.g.,

library(admiral)

use_ad_template(

 adam_name = "adrs",

 save_path = "./ad_adrs.R",

 package = "admiralonco"

)

A list of all available templates can be obtained by list_all_templates() from {admiral}:

list_all_templates(package = "admiralonco")

#> Existing ADaM templates in package 'admiralonco':

#> • ADRS

#> • ADTR

#> • ADTTE

10

CREATING ADRS

Source: https://github.com/pharmaverse/admiralonco/blob/main/vignettes/adrs.Rmd

Example Script: https://github.com/pharmaverse/admiralonco/blob/main/inst/templates/ad_adrs.R

Introduction

This article describes creating an ADRS ADaM with common oncology endpoint parameters based on
RECIST v1.1. Therefore, response values are expected as either CR, PR, SD, NON-CR/NON-PD, PD or
NE. Examples are currently presented and tested using ADSL (ADaM) and RS, TU (SDTM) inputs.
However, other domains could be used. The functions and workflow could similarly be used to create an
intermediary ADEVENT ADaM.

Note: All examples assume CDISC SDTM and/or ADaM format as input unless otherwise specified.

Read in Data

To start, all data frames needed for the creation of ADRS should be read into the environment. This will
be a company specific process. Some of the data frames needed may be ADSL, RS and TU.

For example, purpose, the SDTM and ADaM datasets (based on CDISC Pilot test data)—which are
included in {admiral.test}—are used.

library(admiral)

library(admiralonco)

library(dplyr)

library(admiral.test)

library(lubridate)

library(stringr)

data("admiral_adsl")

data("admiral_rs")

data("admiral_tu")

adsl <- admiral_adsl

rs <- admiral_rs

tu <- admiral_tu

rs <- convert_blanks_to_na(rs)

tu <- convert_blanks_to_na(tu)

At this step, it may be useful to join ADSL to your RS domain. Only the ADSL variables used for
derivations are selected at this step. The rest of the relevant ADSL would be added later.

adsl_vars <- exprs(RANDDT)

adrs <- derive_vars_merged(

 rs,

 dataset_add = adsl,

 new_vars = adsl_vars,

 by_vars = exprs(STUDYID, USUBJID)

)

USUBJID RSTESTCD VISIT RSDTC RANDDT

01-701-1015 OVRLRESP WEEK 6 2014-02-12 2014-01-02

01-701-1015 OVRLRESP WEEK 6 2014-02-12 2014-01-02

01-701-1015 OVRLRESP WEEK 6 2014-02-12 2014-01-02

01-701-1015 OVRLRESP WEEK 12 2014-03-26 2014-01-02

01-701-1015 OVRLRESP WEEK 12 2014-03-26 2014-01-02

https://github.com/pharmaverse/admiralonco/blob/main/vignettes/adrs.Rmd
https://github.com/pharmaverse/admiralonco/blob/main/inst/templates/ad_adrs.R

11

Pre-processing of Input Records

The first step involves company-specific pre-processing of records for the required input to the
downstream parameter functions. Note that this could be needed multiple times (e.g., once for
investigator and once for Independent Review Facility (IRF)/Blinded Independent Central Review (BICR)
records). It could even involve merging input data from other sources besides RS, such as ADTR.

This step would include any required selection/derivation of ADT or applying any necessary partial date
imputations, updating AVAL (e.g. this should be ordered from best to worst response), and setting
analysis flag ANL01FL. Common options for ANL01FL would be to set null for invalid assessments or
those occurring after new anti-cancer therapy, or to only flag assessments on or after date of first
treatment/randomization, or rules to cover the case when a patient has multiple observations per visit
(e.g. by selecting worst value). Another consideration could be extra potential protocol-specific sources of
Progressive Disease such as radiological assessments, which could be pre-processed here to create a
PD record to feed downstream derivations.

For the derivation of the parameters, it is expected that the subject identifier variables (usually STUDYID
and USUBJID) and ADT are a unique key. This can be achieved by deriving an analysis flag (ANLzzFL).
See Derive ANL01FL for an example.

The below shows an example of a possible company-specific implementation of this step.

Select Overall Response Records and Set Parameter Details

In this case we use the overall response records from RS from the investigator as our starting point. The
parameter details such as PARAMCD, PARAM etc. will always be company-specific, but an example is
shown below so that you can trace through how these records feed into the other parameter derivations.

adrs <- adrs %>%

 filter(RSEVAL == "INVESTIGATOR" & RSTESTCD == "OVRLRESP") %>%

 mutate(

 PARAMCD = "OVR",

 PARAM = "Overall Response by Investigator",

 PARCAT1 = "Tumor Response",

 PARCAT2 = "Investigator",

 PARCAT3 = "Recist 1.1"

)

USUBJID RSTESTCD RSEVAL VISIT PARAM
CD

PARAM PARCAT1 PARCAT2 PARCAT3

01-716-1024 OVRLRESP INVESTIG
ATOR

WEEK
6

OVR Overall
Response by
Investigator

Tumor
Response

Investigator Recist 1.1

01-716-1024 OVRLRESP INVESTIG
ATOR

WEEK
12

OVR Overall
Response by
Investigator

Tumor
Response

Investigator Recist 1.1

01-716-1024 OVRLRESP INVESTIG
ATOR

WEEK
18 (T)

OVR Overall
Response by
Investigator

Tumor
Response

Investigator Recist 1.1

01-716-1024 OVRLRESP INVESTIG
ATOR

WEEK
24

OVR Overall
Response by
Investigator

Tumor
Response

Investigator Recist 1.1

Partial Date Imputation and Deriving ADT, ADTF, AVISIT etc.

If your data collection allows for partial dates, you could apply a company-specific imputation rule at this
stage when deriving ADT. For this example, here we impute missing day to last possible date.

adrs <- adrs %>%

 derive_vars_dt(

 dtc = RSDTC,

 new_vars_prefix = "A",

12

 highest_imputation = "D",

 date_imputation = "last"

) %>%

 mutate(AVISIT = VISIT)

USUBJID RSSTRESC RSDTC PARAMCD PARAM ADT ADTF AVISIT

01-701-1015 PD 2014-02-12 OVR Overall Response by
Investigator

2014-02-12

WEEK 6

01-701-1015 CR 2014-03-26 OVR Overall Response by
Investigator

2014-03-26

WEEK 12

01-701-1015 SD 2014-06-18 OVR Overall Response by
Investigator

2014-06-18

WEEK 24

01-703-1086 PD 2012-10-13 OVR Overall Response by
Investigator

2012-10-13

WEEK 6

01-703-1086 PD 2012-11-27 OVR Overall Response by
Investigator

2012-11-27

WEEK 12

Derive AVALC and AVAL

Here we populate AVALC and create the numeric version as AVAL (ordered from best to worst
response). This ordering is already covered within our RECIST v1.1 parameter derivation functions, and
so changing AVAL here would not change the result of those derivations.

adrs <- adrs %>%

 mutate(

 AVALC = RSSTRESC,

 AVAL = aval_resp(AVALC)

)

USUBJID RSSTRESC PARAMCD PARAM AVISIT AVALC AVAL

01-701-1015 PD OVR Overall Response by Investigator WEEK 6 PD 5

01-701-1015 CR OVR Overall Response by Investigator WEEK 12 CR 1

01-701-1015 SD OVR Overall Response by Investigator WEEK 24 SD 3

01-703-1086 PD OVR Overall Response by Investigator WEEK 6 PD 5

01-703-1086 PD OVR Overall Response by Investigator WEEK 12 PD 5

Derive ANL01FL

When deriving ANL01FL this is an opportunity to exclude any records that should not contribute to any
downstream parameter derivations. In the below example this includes only selecting valid assessments
and those occurring on or after randomization date. If there is more than one assessment at a date, the
worst one is flagged.

adrs <- adrs %>%

 restrict_derivation(

 derivation = derive_var_extreme_flag,

 args = params(

 by_vars = exprs(STUDYID, USUBJID, ADT),

 order = exprs(AVAL, RSSEQ),

 new_var = ANL01FL,

 mode = "last"

),

 filter = !is.na(AVAL) & ADT >= RANDDT

)

13

USUBJID RANDDT PARAMCD PARAM ADT AVISIT AVALC ANL01FL

01-701-1015 2014-01-02 OVR Overall Response
by Investigator

2014-02-12 WEEK 6 PD Y

01-701-1015 2014-01-02 OVR Overall Response
by Investigator

2014-03-26 WEEK 12 CR Y

01-701-1015 2014-01-02 OVR Overall Response
by Investigator

2014-06-18 WEEK 24 SD Y

01-703-1086 2012-09-02 OVR Overall Response
by Investigator

2012-10-13 WEEK 6 PD Y

01-703-1086 2012-09-02 OVR Overall Response
by Investigator

2012-11-27 WEEK 12 PD Y

Here is an alternative example where those records occurring after new anti-cancer therapy are
additionally excluded (where NACTDT would be pre-derived as first date of new anti-cancer therapy).

adrs <- adrs %>%

 mutate(

 ANL01FL = case_when(

 !is.na(AVAL) & ADT >= RANDDT & ADT < NACTDT ~ "Y",

 TRUE ~ NA_character_

)

)

Note here that we do not filter out records after first PD at this stage, as that is specifically catered for in
the {admiralonco} parameter derivation functions in the below steps, via source_pd arguments.

Derive ANL02FL

However, if you prefer not to rely on source_pd arguments, then the user is free to filter out records after
first PD at this stage in a similar way via a ANLzzFL flag, and then you could leave source_pd as null in
all downstream parameter derivation function calls. So, for example the user could create ANL02FL flag
to subset the post-baseline response data up to and including first reported progressive disease. This
would be an alternative and transparent method to the use of source_pd argument approach to create
ADRS parameters below. Using admiral function admiral::derive_var_relative_flag() we could create
ANL02FL as below.

adrs <- adrs %>%

 derive_var_relative_flag(

 by_vars = exprs(USUBJID),

 order = exprs(ADT, AVISITN),

 new_var = ANL02FL,

 condition = AVALC == "PD",

 mode = "first",

 selection = "before",

 inclusive = TRUE

)

Derive Progressive Disease Parameter

Now that we have the input records prepared above with any company-specific requirements, we can
start to derive new parameter records. For the parameter derivations, all values except those overwritten
by set_values_to argument are kept from the earliest occurring input record fulfilling the required criteria.

The function admiral::derive_param_extreme_event() can be used to find the date of first PD.

adrs <- adrs %>%

 derive_param_extreme_event(

 dataset_adsl = adsl,

 dataset_source = adrs,

14

 filter_source = PARAMCD == "OVR" & AVALC == "PD" & ANL01FL == "Y",

 order = exprs(ADT, RSSEQ),

 set_values_to = exprs(

 PARAMCD = "PD",

 PARAM = "Disease Progression by Investigator",

 PARCAT1 = "Tumor Response",

 PARCAT2 = "Investigator",

 PARCAT3 = "Recist 1.1",

 ANL01FL = "Y"

)

)

USUBJID PARAMCD PARAM ADT AVISIT AVALC ANL01FL

01-701-1015 PD Disease Progression by Investigator 2014-02-12 WEEK 6 PD Y

01-703-1086 PD Disease Progression by Investigator 2012-10-13 WEEK 6 PD Y

01-716-1024 PD Disease Progression by Investigator 2012-08-24 WEEK 6 PD Y

01-701-1023 PD Disease Progression by Investigator

Y

01-703-1096 PD Disease Progression by Investigator

Y

For progressive disease, response and death parameters shown in steps here and below, in our
examples we show these as ADRS parameters, but they could equally be achieved via ADSL dates or
ADEVENT parameters. If you prefer to store as an ADSL date, then the function
admiral::derive_var_extreme_dt() could be used to find the date of first PD as a variable, rather than as a
new parameter record. All the parameter derivation functions that use these dates are flexible to allow
sourcing these from any input source using admiral::date_source(). See examples below.

Derive Response Parameter

The next required step is to define the source location for this newly derived PD date.

pd <- date_source(

 dataset_name = "adrs",

 date = ADT,

 filter = PARAMCD == "PD" & AVALC == "Y"

)

An equivalent example if using ADSL instead could be as follows (where PDDT would be pre-derived as
first date of progressive disease).

pd <- date_source(

 dataset_name = "adsl",

 date = PDDT

)

The function derive_param_response() can then be used to find the date of first response. This differs
from the admiral::derive_param_extreme_event() function in that it only looks for events occurring prior to
first PD. In the below example, the response condition has been defined as CR or PR.

adrs <- adrs %>%

 derive_param_response(

 dataset_adsl = adsl,

 filter_source = PARAMCD == "OVR" & AVALC %in% c("CR", "PR") &

ANL01FL == "Y",

 source_pd = pd,

 source_datasets = list(adrs = adrs),

15

 set_values_to = exprs(

 PARAMCD = "RSP",

 PARAM = "Response by Investigator (confirmation not required)",

 PARCAT1 = "Tumor Response",

 PARCAT2 = "Investigator",

 PARCAT3 = "Recist 1.1",

 ANL01FL = "Y"

)

)

USUBJID PARAMCD PARAM ADT AVISIT AVALC ANL01FL

01-701-1015 RSP Response by Investigator
(confirmation not required)

2014-03-26 WEEK 12 Y Y

01-701-1023 RSP Response by Investigator
(confirmation not required)

N Y

01-703-1086 RSP Response by Investigator
(confirmation not required)

N Y

01-703-1096 RSP Response by Investigator
(confirmation not required)

N Y

01-707-1037 RSP Response by Investigator
(confirmation not required)

N Y

Derive Clinical Benefit Parameter

Similarly, we now define the source location for this newly derived first response date.

resp <- date_source(

 dataset_name = "adrs",

 date = ADT,

 filter = PARAMCD == "RSP" & AVALC == "Y"

)

The function derive_param_clinbenefit() can then be used to derive the clinical benefit parameter, which
we define as a patient having had a response or a sustained period of time before first PD. This could
also be known as disease control. In this example the “sustained period” has been defined as 42 days
after randomization date, using the ref_start_window argument.

adrs <- adrs %>%

 derive_param_clinbenefit(

 dataset_adsl = adsl,

 filter_source = PARAMCD == "OVR" & ANL01FL == "Y",

 source_resp = resp,

 source_pd = pd,

 source_datasets = list(adrs = adrs),

 reference_date = RANDDT,

 ref_start_window = 42,

 set_values_to = exprs(

 PARAMCD = "CB",

 PARAM = "Clinical Benefit by Investigator (confirmation for response

not required)",

 PARCAT1 = "Tumor Response",

 PARCAT2 = "Investigator",

 PARCAT3 = "Recist 1.1",

 ANL01FL = "Y"

)

)

16

USUBJID RANDDT PARAMCD PARAM ADT AVISIT AVALC ANL01FL

01-701-1015 2014-01-02 CB Clinical Benefit by
Investigator (confirmation
for response not required)

2014-03-26 WEEK 12 Y Y

01-701-1023 2012-08-05 CB Clinical Benefit by
Investigator (confirmation
for response not required)

N Y

01-703-1086 2012-09-02 CB Clinical Benefit by
Investigator (confirmation
for response not required)

N Y

01-703-1096 2013-01-25 CB Clinical Benefit by
Investigator (confirmation
for response not required)

N Y

01-707-1037 2013-12-20 CB Clinical Benefit by
Investigator (confirmation
for response not required)

N Y

Derive Best Overall Response Parameter

The function derive_param_bor() can be used to derive the best overall response (without confirmation
required) parameter. Similar to the above function you can optionally decide what period would you
consider a SD or NON-CR/NON-PD as being eligible from. In this example, 42 days after randomization
date has been used again.

adrs <- adrs %>%

 derive_param_bor(

 dataset_adsl = adsl,

 filter_source = PARAMCD == "OVR" & ANL01FL == "Y",

 source_pd = pd,

 source_datasets = list(adrs = adrs),

 reference_date = RANDDT,

 ref_start_window = 42,

 set_values_to = exprs(

 PARAMCD = "BOR",

 PARAM = "Best Overall Response by Investigator (confirmation not

required)",

 PARCAT1 = "Tumor Response",

 PARCAT2 = "Investigator",

 PARCAT3 = "Recist 1.1",

 ANL01FL = "Y"

)

)

USUBJID RANDDT PARAMCD PARAM ADT AVISIT AVALC ANL01FL

01-701-1015 2014-01-02 BOR Best Overall Response by
Investigator (confirmation
not required)

2014-03-26 WEEK 12 CR Y

01-701-1023 2012-08-05 BOR Best Overall Response by
Investigator (confirmation
not required)

MISSING Y

01-703-1086 2012-09-02 BOR Best Overall Response by
Investigator (confirmation
not required)

2012-10-13 WEEK 6 PD Y

01-703-1096 2013-01-25 BOR Best Overall Response by
Investigator (confirmation
not required)

MISSING Y

01-707-1037 2013-12-20 BOR Best Overall Response by
Investigator (confirmation
not required)

MISSING Y

17

Note that the above gives pre-defined AVAL values of: "CR" ~ 1, "PR" ~ 2, "SD" ~ 3, "NON-CR/NON-PD"
~ 4, "PD" ~ 5, "NE" ~ 6, "MISSING" ~ 7.

If you would like to provide your own company-specific ordering here you could do this as follows:

aval_resp_new <- function(arg) {

 case_when(

 arg == "CR" ~ 7,

 arg == "PR" ~ 6,

 arg == "SD" ~ 5,

 arg == "NON-CR/NON-PD" ~ 4,

 arg == "PD" ~ 3,

 arg == "NE" ~ 2,

 arg == "MISSING" ~ 1,

 TRUE ~ NA_real_

)

}

Then add the additional argument aval_fun = aval_resp_new to the above derive_param_bor() call. Be
aware that this will only impact the AVAL mapping, not the derivation of BOR in any way - as the function
derivation relies only on AVALC here.

Derive Best Overall Response of CR/PR Parameter

The function admiral::derive_param_extreme_event() can be used to check if a patient had a response
for BOR.

adrs <- adrs %>%

 derive_param_extreme_event(

 dataset_adsl = adsl,

 dataset_source = adrs,

 filter_source = PARAMCD == "BOR" & AVALC %in% c("CR", "PR") &

ANL01FL == "Y",

 order = exprs(ADT, RSSEQ),

 set_values_to = exprs(

 PARAMCD = "BCP",

 PARAM = "Best Overall Response of CR/PR by Investigator

(confirmation not required)",

 PARCAT1 = "Tumor Response",

 PARCAT2 = "Investigator",

 PARCAT3 = "Recist 1.1",

 ANL01FL = "Y"

)

)

USUBJID PARAMCD PARAM ADT AVISIT AVALC ANL01FL

01-701-1015 BCP Best Overall Response of CR/PR by
Investigator (confirmation not required)

2014-03-26 WEEK 12 CR Y

01-701-1023 BCP Best Overall Response of CR/PR by
Investigator (confirmation not required)

Y

01-703-1086 BCP Best Overall Response of CR/PR by
Investigator (confirmation not required)

Y

01-703-1096 BCP Best Overall Response of CR/PR by
Investigator (confirmation not required)

Y

01-707-1037 BCP Best Overall Response of CR/PR by
Investigator (confirmation not required)

Y

18

Derive Response Parameters requiring Confirmation

Any of the above response parameters can be repeated for “confirmed” responses only. For these the
functions derive_param_confirmed_resp() and derive_param_confirmed_bor() can be used. Some of the
other functions from above can then be re-used passing in these confirmed response records. See the
examples below of derived parameters requiring confirmation. The assessment and the confirmatory
assessment here need to occur at least 28 days apart (without any +1 applied to this calculation of days
between visits), using the ref_confirm argument.

adrs <- adrs %>%

 derive_param_confirmed_resp(

 dataset_adsl = adsl,

 filter_source = PARAMCD == "OVR" & AVALC %in% c("CR", "PR") &

ANL01FL == "Y",

 source_pd = pd,

 source_datasets = list(adrs = adrs),

 ref_confirm = 28,

 set_values_to = exprs(

 PARAMCD = "CRSP",

 PARAM = "Confirmed Response by Investigator",

 PARCAT1 = "Tumor Response",

 PARCAT2 = "Investigator",

 PARCAT3 = "Recist 1.1",

 ANL01FL = "Y"

)

)

confirmed_resp <- date_source(

 dataset_name = "adrs",

 date = ADT,

 filter = PARAMCD == "CRSP" & AVALC == "Y"

)

adrs <- adrs %>%

 derive_param_clinbenefit(

 dataset_adsl = adsl,

 filter_source = PARAMCD == "OVR" & ANL01FL == "Y",

 source_resp = confirmed_resp,

 source_pd = pd,

 source_datasets = list(adrs = adrs),

 reference_date = RANDDT,

 ref_start_window = 42,

 set_values_to = exprs(

 PARAMCD = "CCB",

 PARAM = "Confirmed Clinical Benefit by Investigator",

 PARCAT1 = "Tumor Response",

 PARCAT2 = "Investigator",

 PARCAT3 = "Recist 1.1",

 ANL01FL = "Y"

)

) %>%

 derive_param_confirmed_bor(

 dataset_adsl = adsl,

 filter_source = PARAMCD == "OVR" & ANL01FL == "Y",

 source_pd = pd,

 source_datasets = list(adrs = adrs),

 reference_date = RANDDT,

19

 ref_start_window = 42,

 ref_confirm = 28,

 set_values_to = exprs(

 PARAMCD = "CBOR",

 PARAM = "Best Confirmed Overall Response by Investigator",

 PARCAT1 = "Tumor Response",

 PARCAT2 = "Investigator",

 PARCAT3 = "Recist 1.1",

 ANL01FL = "Y"

)

) %>%

 derive_param_extreme_event(

 dataset_adsl = adsl,

 dataset_source = adrs,

 filter_source = PARAMCD == "CBOR" & AVALC %in% c("CR", "PR") &

ANL01FL == "Y",

 order = exprs(ADT, RSSEQ),

 set_values_to = exprs(

 PARAMCD = "CBCP",

 PARAM = "Best Confirmed Overall Response of CR/PR by

Investigator",

 PARCAT1 = "Tumor Response",

 PARCAT2 = "Investigator",

 PARCAT3 = "Recist 1.1",

 ANL01FL = "Y"

)

)

USUBJID RANDDT PARAMCD PARAM ADT AVISIT AVALC ANL01FL

01-701-1015 2014-01-02 CRSP Confirmed Response by Investigator

N Y

01-701-1023 2012-08-05 CRSP Confirmed Response by Investigator

N Y

01-703-1086 2012-09-02 CRSP Confirmed Response by Investigator

N Y

01-703-1096 2013-01-25 CRSP Confirmed Response by Investigator

N Y

01-707-1037 2013-12-20 CRSP Confirmed Response by Investigator

N Y

Derive Parameters using Independent Review Facility (IRF)/Blinded Independent Central
Review (BICR) responses

All of the above steps can be repeated for different sets of records, such as now using assessments from
the IRF/BICR instead of investigator. For this you would just need to replace the first steps with selecting
the required records, and then feed these as input to the downstream parameter functions.

Remember that a new progressive disease and response source object would be required for passing to
source_pd and source_resp, respectively.

adrsirf <- rs %>%

 filter(RSEVAL == "INDEPENDENT ASSESSOR" & RSEVALID == "RADIOLOGIST 1"

& RSTESTCD == "OVRLRESP") %>%

 mutate(

 PARAMCD = "OVRR1",

 PARAM = "Overall Response by Radiologist 1",

 PARCAT1 = "Tumor Response",

 PARCAT2 = "Radiologist",

 PARCAT3 = "Recist 1.1"

)

20

USUBJID RSTESTCD RSEVAL VISIT PARAM
CD

PARAM PARCAT1 PARCAT2 PARCA
T3

01-701-1015 OVRLRESP INDEPENDENT
ASSESSOR

WEEK
6

OVRR1 Overall
Response by
Radiologist 1

Tumor
Response

Radiologist Recist
1.1

01-701-1015 OVRLRESP INDEPENDENT
ASSESSOR

WEEK
12

OVRR1 Overall
Response by
Radiologist 1

Tumor
Response

Radiologist Recist
1.1

01-701-1015 OVRLRESP INDEPENDENT
ASSESSOR

WEEK
24

OVRR1 Overall
Response by
Radiologist 1

Tumor
Response

Radiologist Recist
1.1

01-703-1086 OVRLRESP INDEPENDENT
ASSESSOR

WEEK
6

OVRR1 Overall
Response by
Radiologist 1

Tumor
Response

Radiologist Recist
1.1

01-703-1086 OVRLRESP INDEPENDENT
ASSESSOR

WEEK
12

OVRR1 Overall
Response by
Radiologist 1

Tumor
Response

Radiologist Recist
1.1

Then in all the calls to the parameter derivation functions you would replace the PARAMCD ==
"OVR" source with PARAMCD == "OVRR1".

Derive Death Parameter

The function admiral::derive_param_extreme_event() can be used to create a new death parameter using
death date from ADSL. We need to restrict the columns from ADSL as we will merge all required
variables later across all our ADRS records.

adsldth <- adsl %>%

 select(STUDYID, USUBJID, DTHDT, !!!adsl_vars)

adrs <- adrs %>%

 derive_param_extreme_event(

 dataset_adsl = adsldth,

 dataset_source = adsldth,

 filter_source = !is.na(DTHDT),

 set_values_to = exprs(

 PARAMCD = "DEATH",

 PARAM = "Death",

 PARCAT1 = "Reference Event",

 ANL01FL = "Y",

 ADT = DTHDT

)

) %>%

 select(-DTHDT)

USUBJID PARAMCD PARAM ADT AVISIT AVALC ANL01FL

01-701-1015 DEATH Death

Y

01-701-1023 DEATH Death

Y

01-703-1086 DEATH Death

Y

01-703-1096 DEATH Death

Y

01-707-1037 DEATH Death

Y

Derive Last Disease Assessment Parameters

The function admiral::derive_param_extreme_event() can be used to create a parameter for last disease
assessment. We need to set new_var to a dummy variable here, or otherwise the original AVALC value
from the record would be overwritten with "Y".

21

adrs <- adrs %>%

 derive_param_extreme_event(

 dataset_adsl = adsl,

 dataset_source = adrs,

 filter_source = PARAMCD == "OVR" & ANL01FL == "Y",

 order = exprs(ADT, RSSEQ),

 mode = "last",

 new_var = dummy,

 set_values_to = exprs(

 PARAMCD = "LSTA",

 PARAM = "Last Disease Assessment by Investigator",

 PARCAT1 = "Tumor Response",

 PARCAT2 = "Investigator",

 PARCAT3 = "Recist 1.1",

 ANL01FL = "Y"

)

) %>%

 select(-dummy)

USUBJID PARAMCD PARAM ADT AVISIT AVALC ANL01FL

01-701-1015 LSTA Last Disease Assessment by Investigator 2014-06-18 WEEK 24 SD Y

01-703-1086 LSTA Last Disease Assessment by Investigator 2012-11-27 WEEK 12 PD Y

01-716-1024 LSTA Last Disease Assessment by Investigator 2012-12-30 WEEK 24 PD Y

01-701-1023 LSTA Last Disease Assessment by Investigator

Y

01-703-1096 LSTA Last Disease Assessment by Investigator

Y

Derive Measurable Disease at Baseline Parameter

The function admiral::derive_param_exist_flag() can be used to check whether a patient has measurable
disease at baseline, according to a company-specific condition. In this example we check TU for target
lesions during the baseline visit. We need to restrict the columns from ADSL as we will merge all required
variables later across all our ADRS records.

adslmdis <- adsl %>%

 select(STUDYID, USUBJID, !!!adsl_vars)

adrs <- adrs %>%

 derive_param_exist_flag(

 dataset_adsl = adslmdis,

 dataset_add = tu,

 condition = TUEVAL == "INVESTIGATOR" & TUSTRESC == "TARGET" & VISIT

== "BASELINE",

 false_value = "N",

 missing_value = "N",

 set_values_to = exprs(

 PARAMCD = "MDIS",

 PARAM = "Measurable Disease at Baseline by Investigator",

 PARCAT2 = "Investigator",

 PARCAT3 = "Recist 1.1",

 ANL01FL = "Y"

)

)

22

USUBJID PARAMCD PARAM ADT AVISIT AVALC ANL01FL

01-701-1015 MDIS Measurable Disease at Baseline by Investigator

Y Y

01-701-1023 MDIS Measurable Disease at Baseline by Investigator

Y Y

01-703-1086 MDIS Measurable Disease at Baseline by Investigator

Y Y

01-703-1096 MDIS Measurable Disease at Baseline by Investigator

Y Y

01-707-1037 MDIS Measurable Disease at Baseline by Investigator

Y Y

Derive AVAL for New Parameters

For cases where AVALC has been derived for new parameters above as "Y" or "N", we need to set AVAL
to numeric versions such as 1/0.

adrs <- adrs %>%

 mutate(

 AVAL = case_when(

 AVALC == "Y" ~ 1,

 AVALC == "N" ~ 0,

 TRUE ~ AVAL

)

)

USUBJID PARAMCD AVALC AVAL

01-701-1015 RSP Y 1

01-701-1015 CB Y 1

01-701-1015 CRSP N 0

01-701-1015 CCB Y 1

01-701-1015 MDIS Y 1

Assign ASEQ

The function admiral::derive_var_obs_number() can be used to derive ASEQ. An example call is:

adrs <- adrs %>%

 derive_var_obs_number(

 by_vars = exprs(STUDYID, USUBJID),

 order = exprs(PARAMCD, ADT, VISITNUM, RSSEQ),

 check_type = "error"

)

USUBJID VISITNUM PARAMCD ADT AVISIT ASEQ

01-701-1015 9 BCP 2014-03-26 WEEK 12 1

01-701-1015 9 BOR 2014-03-26 WEEK 12 2

01-701-1015 9 CB 2014-03-26 WEEK 12 3

01-701-1015

CBCP

4

01-701-1015 9 CBOR 2014-03-26 WEEK 12 5

Add ADSL variables

If needed, the other ADSL variables can now be added. List of ADSL variables already merged held in
vector adsl_vars.

23

adrs <- adrs %>%

 derive_vars_merged(

 dataset_add = select(adsl, !!!negate_vars(adsl_vars)),

 by_vars = exprs(STUDYID, USUBJID)

)

USUBJID RFSTDTC RFENDTC DTHDTC DTHFL AGE AGEU

01-701-1015 2014-01-02 2014-07-02

63 YEARS

01-701-1015 2014-01-02 2014-07-02

63 YEARS

01-701-1015 2014-01-02 2014-07-02

63 YEARS

01-701-1015 2014-01-02 2014-07-02

63 YEARS

01-701-1015 2014-01-02 2014-07-02

63 YEARS

CREATING ADTTE

Source: https://github.com/pharmaverse/admiralonco/blob/main/vignettes/adtte.Rmd

Example Script: https://github.com/pharmaverse/admiralonco/blob/main/inst/templates/ad_adtte.R

Similar to how ADRS is developed above, the detailed guide for creating ADTTE is available with
common oncology endpoint parameters. The main part in programming a time-to-event dataset is the
definition of the events and censoring times. admiral/{admiralonco} supports single events like death
(Overall Survival) or composite events like disease progression or death (Progression Free Survival).
More than one source dataset can be used for the definition of the event and censoring times.

The majority of the functions used here exist from admiral, except for the tte_sources helper object,
provided as an example from {admiralonco}. In practice, each company would create their own version of
this, as likely the exact specifications such as filtering condition or description metadata will vary.

A step-by-step guide to create admiralonco inspired ADTTE is available on pharmaverse at the link
https://pharmaverse.github.io/admiralonco/main/articles/adtte.html

CREATING ADTR

Source: https://github.com/pharmaverse/admiralonco/blob/main/vignettes/adtr.Rmd

Example Script: https://github.com/pharmaverse/admiralonco/blob/main/inst/templates/ad_adtr.R

Similarly, oncology specific ADTR guide is available with common oncology parameters based on
RECIST 1.1. The main part in programming a tumor results dataset is the calculation of the sum of
diameters of all target lesions (lymph nodes & non-lymph nodes), the calculation of nadir, change &
percentage change from baseline, and the analysis flags that could be required for reporting. The tumor
results data could be set up for investigator and/or Independent review facility (IRF)/Blinded Independent
Central Review (BICR) data. The below sample code would need to be updated (for example, update the
Evaluator TR.TREVAL, TU.TUEVAL, and the applicable parameter details PARAM, PARAMCD,
PARCATy) in order to create the acquired data for Independent review facility (IRF)/Blinded Independent
Central Review (BICR).

The source dataset used will depend on each company, this could be solely the TR domain, or you may
merge TU with TR (SDTM inputs) to get additional data variables or to ensure that you are processing the
same lesions as collected.

Individual lesion diameters for each target lesion are required to calculate the sum of diameters for all
target lesions, this data could be taken directly from TR or additional parameters could be created in
ADTR (or similar) depending on the additional processing required (e.g., imputation of dates, re-labeling
of visits) and your company specifications. The majority of the functions used here exist from admiral.

A step-by-step guide to create admiralonco inspired ADTR is available on pharmaverse at the link
https://pharmaverse.github.io/admiralonco/main/articles/adtr.html

https://github.com/pharmaverse/admiralonco/blob/main/vignettes/adtte.Rmd
https://github.com/pharmaverse/admiralonco/blob/main/inst/templates/ad_adtte.R
https://pharmaverse.github.io/admiralonco/main/articles/adtte.html
https://github.com/pharmaverse/admiralonco/blob/main/vignettes/adtr.Rmd
https://github.com/pharmaverse/admiralonco/blob/main/inst/templates/ad_adtr.R
https://pharmaverse.github.io/admiralonco/main/articles/adtr.html

24

CHALLENGES WHILE DEVELOPING ADMIRALONCO

No journey from concept to reality is complete without an understanding of the challenges and obstacles
encountered. Before concluding this paper, we would like to share with you some of the challenges we
have faced in the development and implementation of the admiralonco package.

• First of all, we have coded in SAS for years and if you ask an experienced statistical programmer
to switch to a new coding language, it is often not easy, and one has to get out of the so-called
comfort zone. That is why developing this package in R was a real challenge. It was indeed a
paradigm shift.

• Oncology is a broad therapeutic area with many oncology-specific conventions, standards, and
requirements. It is difficult to cover all the requirements in one package. Therefore, we have taken
a tailored approach by starting with RECIST 1.1 (which is the most common evaluation criterion
in oncology) and expanding our horizon as each new CRAN is released.

• Also, due to the unique nature of oncology, we often found ourselves in a situation where there
was not enough data to test all possible scenarios that were required or mentioned in the
standard guidelines, despite the fact that the package was being tested on different data by
different companies. In these cases, we had to develop dummy data to encompass some unusual
scenarios to ensure that the package could handle what was required by the guidelines.

• All cross-company initiatives are great learnings and require a very high level of collaboration. In
developing this package, we encountered a similar situation and found ourselves at a crossroads
where the conventions were different from organization to organization and each company had
different work standards. So, it took a lot of discussion to come to a consensus and make sure
that the final package took into account the different conventions while still meeting the
standards.

• As mentioned in the development process, to make the creation of this package highly effective
and efficient, we reuse Admiral functions whenever possible and available. We also have
dependencies with other established packages. Therefore, it is essential to monitor updates and
decommissioning of dependent functions.

• Finally, as this package is developed in the Agile framework, it is important to maintain the correct
versions when using on an ongoing project for the same reason. Since we have CRAN releases
every quarter, depending on feedback or expansion plans, improvisations can be introduced.
Therefore, when using this package, please make sure to use the latest version available.

CONCLUSION

This paper is an attempt to raise awareness of the availability of the admiralonco package and the
benefits it brings. If you are interested, join our slack channel and user community for discussions and
updates. The goal of this industry-wide community effort is also for the package to improve with use and
feedback. Through this, we would also like to encourage you to test this package on your studies and
projects. Feel free to give us feedback, there might be derivations that we probably have not considered
yet or there might be more flexibility or customization that you think would be good to add to increase
usability. You can give us feedback, any experiences with bugs, or suggestions for improvement directly
on Github.

Lastly, as this is envisioned as an industry wide collaboration, if you would like to be more than a
consumer this product and would like to contribute by join hands with us, please contact us.

• Slack (https://app.slack.com/client/T028PB489D3/C02M8KN8269) - for informal discussions, Q&A
and building our user community. If you don’t have access, use this link
(https://join.slack.com/t/pharmaverse/shared_invite/zt-yv5atkr4-Np2ytJ6W_QKz_4Olo7Jo9A) to join
the pharmaverse Slack workspace

• GitHub Issues (https://github.com/pharmaverse/admiralonco/issues) - for direct feedback,
enhancement requests or raising bugs

https://app.slack.com/client/T028PB489D3/C02M8KN8269
https://app.slack.com/client/T028PB489D3/C02M8KN8269
https://join.slack.com/t/pharmaverse/shared_invite/zt-yv5atkr4-Np2ytJ6W_QKz_4Olo7Jo9A
https://join.slack.com/t/pharmaverse/shared_invite/zt-yv5atkr4-Np2ytJ6W_QKz_4Olo7Jo9A
https://github.com/pharmaverse/admiralonco/issues
https://github.com/pharmaverse/admiralonco/issues

25

REFERENCES

• Oncology Extension Package for ADaM in R Asset Library • admiralonco (pharmaverse.github.io)
(https://pharmaverse.github.io/admiralonco)

• ADaM in R Asset Library • admiral (pharmaverse.github.io)
(https://pharmaverse.github.io/admiral)

• CRAN - Package admiralonco (rstudio.com) (https://cran.rstudio.com/web/packages/admiralonco)

• GitHub - cran/admiralonco: This is a read-only mirror of the CRAN R package repository.
admiralonco — Oncology Extension Package for ADaM in 'R' Asset Library
(https://github.com/cran/admiralonco)

• ADMIRAL (ADaM in R Asset Library) – Can we Collaborate to Lessen the Burden of ADaM?
(https://phuse.s3.eu-central-
1.amazonaws.com/Archive/2021/Connect/EU/Virtual/VID_HoW_ADMIRAL.mp4)

ACKNOWLEDGMENTS

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Neharika Sharma
GlaxoSmithKline
1250 S. Collegeville Road,
Collegeville, Pennsylvania, US, 19426-0989
Email: neharika.x.sharma@gsk.com; neharikaa.sharma@gmail.com

Any brand and product names are trademarks of their respective companies.

https://pharmaverse.github.io/admiralonco
https://pharmaverse.github.io/admiral
https://cran.rstudio.com/web/packages/admiralonco
https://github.com/cran/admiralonco
https://phuse.s3.eu-central-1.amazonaws.com/Archive/2021/Connect/EU/Virtual/VID_HoW_ADMIRAL.mp4
https://phuse.s3.eu-central-1.amazonaws.com/Archive/2021/Connect/EU/Virtual/VID_HoW_ADMIRAL.mp4
mailto:neharika.x.sharma@gsk.com
mailto:neharikaa.sharma@gmail.com

