
1

PharmaSUG 2023 - Paper SD-257

Using R to Create Population Pharmacokinetic Data Set

Yangwei Yan, Prema Sukumar, and Neelima Thanneer, Bristol-Myers Squibb

ABSTRACT

Population Pharmacokinetic (PopPK) analyses are essential to evaluate the drug safety and efficacy
among population subgroups in drug development. One of the key steps in PopPK modeling is to provide
a structured input data set for NONMEM® and/or other modeling software. While SAS® has long been a
dominant tool for statistical programming and analysis in the pharmaceutical industry, R has become a
trending programming tool and is widely used in multiple areas due to its power and flexibility in
supporting statistical analysis and advanced visualization. However, the use of R in PopPK data set
preparation has not been discussed much.

This paper demonstrates a step-by-step process to generate data sets for PopPK analyses in RStudio
using R markdown with example study data. It offers flexibility to use another programming language for
programmers and pharmacometricians. We utilized typical R packages including tidyverse, lubridate, etc.
and source data sets such as ADaM ADPC, ADEX, ADSL, etc. to create an ADPPK data set. It complies
with the latest ISoP (International Society of Pharmacometrics) standard that’s in the process of
becoming CDISC ADaM PopPK Data set. The paper will mainly focus on the process of handling the
variables with date and time format, conducting dose time imputation, and deriving time-varying variables.
We also briefly summarize the advantages of using R in preparing PopPK analyses data set.

INTRODUCTION

Population pharmacokinetic (PopPK) analyses have been widely used to evaluate safety and efficacy of
drugs, optimize dosing regimen and predict plasma concentrations in individual patients (FDA 1999, p1).
The success of PopPK analyses relies heavily on the quality and structure of the data set used as input.
Historically, SAS® has been utilized as the primary programming language in the pharmaceutical industry
due to its robustness in dealing with complex data sets. However, R is increasingly being adopted by
statisticians and data scientists because it offers more flexibility than SAS®. R is an open-source
statistical software package with extensive libraries designed for various types of statistical analyses, data
wrangling, and data visualization, which makes it suitable for exploring large data sets quickly and
efficiently. Moreover, R offers better integration with other languages like Python through Application
Programming Interface (API) calls which allows users to easily incorporate external scripts into their
workflows thus reducing development effort significantly.

In this paper we will discuss how one can use RStudio along with typical packages available from
CRAN/GitHub repository such as “tidyverse”, “lubridate” etc., to create a structured data set specifically
tailored towards Population Pharmacokinetic (PopPK) modeling tasks while complying with ISoP
standards that’s currently in the process of becoming CDISC ADaM PopPK (ADPPK) data set (ISoP
2020). We will mainly focus on explaining the steps required to create the ADPPK data set, performing
date/time format handling, conducting dose time imputation, and deriving time-varying variables.

POPULATION PHARMACOKINETIC DATA SET PREPARATION USING RSTUDIO

Our program’s primary output is a structured input data set called ADPPK for PopPK analyses, which
conforms to the latest ISoP standard. In the example study described in this paper, subjects received
intravenous doses once daily on days 1 through 7 of a 28-day cycle. For all subjects, PK samples were
collected on days 5,6, and 7 of cycle 1. The primary source to generate ADPPK is subject-level
information (ADSL), dosing data (ADEX), and PK concentration samples (ADPC).

We begin by installing the required R packages and importing source data into the R environment. It’s
always recommended to perform initial exploratory analysis before proceeding further towards building
actual data set as this will help identify any issues related to missing values/outliers etc., which might
result in erroneous results downstream. After successful importation, we follow five steps to create the

2

ADPPK data set: 1. Preparing the baseline data set. 2. Preparing the dosing data set. 3. Preparing the PK
data set. 4. Combining the dosing and PK data set and conducting dose imputation. 5. Preparing the
standard PopPK data set.

We use the following required R packages throughout the paper:

library(tidyverse)

library(haven)

library(labelled)

library(lubridate)

library(hms)

STEP1: PREPARE BASELINE DATA SET

For PopPK analysis data sets, baseline covariates such as age, sex, race, country, baseline weight,
baseline height, etc. are typically sourced from ADSL. Extracting subject-level variables from the source
data is straightforward as these variables are in a standard format.

As a pre-processing step, we run the R codes below to convert blank character variables to NA, the
corresponding R representation of missing values:

adsl <- adsl %>%

 mutate(across(where(is.character), na_if, ""))

To facilitate the wrangling of baseline covariates, we utilize commonly used functions from the “tidyverse”
package as follows:

baseline <- adsl %>%

 select(USUBJID, STUDYID, ARM, AGE, SEX, RACE, BLWEIGHT) %>%

 rename(WTB = BLWEIGHT) %>%

 mutate(

 SEXN = ifelse(SEX == "Female", 2, 1),

 RACEN = case_when(

 RACE == "White" ~ 1,

 RACE == "Others" ~ 4,

 RACE == "Unknown" ~ 5,

 TRUE ~ NA_real_

),

BMIB = WTB / ((HTB / 100)^2)

) %>%

arrange(USUBJID)

The “select” function allows for the selection of relevant variables, while the “mutate” function can be used
to modify and derive variables as necessary. We also use the “rename” function to rename variable
names and the “arrange” function to sort the data set by the “USUBJID” variable. Typical tools for creating
values that depend on different conditions include “ifelse” and “case_when” functions. The primary
difference is that “ifelse” only allows for two possibilities, while “case_when” can handle multiple
conditions.

STEP2: PREPARE DOSING DATA SET

Before delving into the programming details, it is essential to comprehend the structure of the source
data. A sample of the ADEX domain with the variables of interest is presented in Figure 1. Each record in
the data set represents a dosing record for a single day.

3

Figure 1. Sample ADEX domain

To obtain the desired output, the following R scripts are employed to derive the required variables:

dosing <- adex %>%

 select(ID, EXDY, EXDT, EXSTTM, EXENTM, EXDOSE) %>%

 rename(AMT = EXDOSE, ADY = EXDY, DATE = EXDT, TIME = EXSTTM) %>%

 filter(!is.na(DATE)) %>%

 mutate(

 DTTM = ymd_hms(paste(DATE, TIME)),

 EDTTM = ymd_hms(paste(DATE, EXENTM)),

 DOSEDUR = difftime(EDTTM, DTTM, units = "hours"),

 DOSEDUR = as.numeric(DOSEDUR),

 RATE = AMT / DOSEDUR

)

Following variable selection, doses with missing dosing dates are excluded using the "filter" function as
actual time after the dose cannot be calculated without the dosing date. In the "mutate" section, DTTM is
created as the dosing date and time, while EDTTM is derived as the dosing end date and time. For
intravenous drug administration, infusion duration (DOSEDUR) is calculated using the dosing start time
(DTTM) and dosing end time (EDTTM), and infusion rate (RATE) is computed using the equation
AMT/DOSEDUR.

The "lubridate" package is utilized in this step to handle date and time format variables. The "ymd_hms"
function recognizes and parses date and time components such as year, month, day, hour, and minute. It
facilitates the transformation of character or numeric vectors of dates and times into POSIXct objects,
which are the most common type of date-time variables in R. The "difftime" function is used to calculate
the time difference between two date/time objects. Since it returns an object of class "difftime" with an
attribute indicating the units, it is preferable to convert DOSEDUR to a numeric vector using the
"as.numeric" function.

Figure 2 demonstrates a desired output for dosing data set:

4

Figure 2. Output dosing data set

STEP3: PREPARE PK DATA SET

PK concentration and sampling date and time are sourced from the ADPC dataset. Figure 3 illustrates the
structure of ADPC and the variables required for preparing the PK data set. Each row corresponds to a
single PK sample, with PCSTRESC and PCSTRESN indicating the concentration in character and
numeric values, respectively, and PCDTC representing the actual sampling date and time. The nominal
sampling time point after the dose is provided by PCTPT and PCTPTNUM, as defined in the protocol. For
this study, pre-dose PK samples are collected on Cycle 1 days 5 and 6, while post-dose PK samples are
collected on Cycle 1 day 7.

Figure 3. Sample ADPC domain

The goal of PK data preparation is to format the concentration and sampling date and time in a way that
is suitable for modeling. To this end, the following code snippets can be used to generate concentration-
related variables, such as the PK concentration results (DV), the logarithm of concentration values
(LOGDV), missing concentration values (MDV), and concentration flag (BLQFN), which indicates the
samples that fall below the limit of quantification (ISoP 2020).

pk = adpc %>%

 select(

 ID, PCSEQ, PCSTRESC, PCSTRESN, PCDTC, PCTPT, PCTPTNUM, VISIT,

 VISITDY

)%>%

 rename(NPRELTM = PCTPTNUM, DV = PCSTRESN) %>%

 mutate(

 EVID = 0,

 LOGDV = log(DV),

 MDV = ifelse(DV > 0 & !is.na(DV), 0, 1),

 BLQFN = ifelse(PCSTRESC == "< 1.00", 1, 0)

)

As shown in Figure 3, PK sampling date and time is stored in the PCDTC variable. To use it for
calculations in R, it is necessary to convert it to a POSIXct object using “ymd_hms” function. Moreover,
we need to parse the date and time separately to utilize the time of PK samples for imputing dose time.
The functions “date” from “lubridate” and “as_hms” from “hms” are applied to create sampling date
(DATE) and sampling time (TIME) variables as follows:

pk <- pk %>%

5

 mutate(

 DTTM = ymd_hms(PCDTC),

 DATE = date(DTTM),

 TIME = as_hms(DTTM)

)

The example of the output PK data set in this step is shown in Figure 4.

Figure 4. Output PK data set

STEP4: COMBINE DOSING AND PK DATA SET AND CONDUCT DOSE IMPUTATION

Once the daily dosing and PK data sets are ready, we use the function “bind_rows” from “tidyverse” to
simply append the dosing records and PK samples. Figure 5 demonstrates the data set after row binding.

dosepk <- bind_rows(dosing, pk) %>%

 arrange (USUBJID, DTTM, EVID)

Figure 5. Combined dose and PK data set

After combining the dose and PK data sets, we can impute missing dosing times for dose records using
the following general rules (Thanneer N, et al 2014):

1. If a trough PK sample is available on the same day, impute the dose time using the time of the
trough sample.

2. If a post-dose sample is available on the same day, impute the dose time using the time of the
sample minus the nominal sampling time (in this example, a 5-minute post-dose sample is used).

3. If there are no available trough or post-dose samples on the same day, impute the dose time
using the time of the previous administered dose.

4. If there are no available trough, post-dose, or previous dose times on the same day, impute the
dose time using the time of the next administered dose.

6

In this section, we demonstrate how to perform dose time imputation using R functions for rules 1 and 3.
Trough samples are typically collected immediately before the next dose is administered. To impute with
the time of trough PK samples, we begin with extracting the trough samples into a temporary tibble using
the following codes:

imp1_trough <- dosepk %>%

 filter(EVID == 0 & NPRELTM == 0 & !(CYCLE == 1 & VISITDY == 1)) %>%

 rename(TDTTM = DTTM) %>%

 select(ID, DATE, TDTTM)

Next, we add the trough time back to the dosepk data set by performing a "left_join" on the ID and DATE
variables, and perform dose imputation for step 1:

dosepk <- dosepk %>%

 left_join(imp1_trough) %>%

 mutate(

 IMP1_TF = ifelse(

 EVID == 1 & !is.na(AMT) & is.na(DTTM) & !is.na(TDTTM), TRUE, FALSE

),

 DTTM = case_when(

 IMP1_TF ~ TDTTM,

 TRUE ~ DTTM

),

 TIME = case_when(

 IMP1_TF~ as_hms(DTTM),

 TRUE ~ TIME

)

)

The above code ensures that the dose datetime is imputed to be the trough datetime (TDTTM) if they
share the same date. To flag the records that require imputation, we create a variable called "IMP1_TF"
which has a value of 1 for records with a missing dose time and a non-missing trough time. If IMP1_TF is
1, the dose time is imputed with the trough time; otherwise, the original datetime is retained.

After the imputation is complete, it is recommended to remove the temporary tibble:

 rm(imp1_trough)

Table 1 provides an example before and after dose imputation with trough sampling datetime.

ID EVID DTTM_before DTTM_after

6 0 2017-06-12 14:44:00 2017-06-12 14:44:00

6 1 NA 2017-06-12 14:44:00

6 1 2017-06-13 14:15:00 2017-06-13 14:15:00

Table 1. Comparison before and after dose time imputation with trough datetime

To perform step 3 of the imputation process, we run the R codes below:

dosepk <- dosepk %>%

 arrange(ID, EVID, DATE, DTTM) %>%

 group_by(ID, EVID) %>%

 mutate(IMP_TIME_PRE = TIME) %>%

 fill(IMP_TIME_PRE) %>%

 ungroup() %>%

 mutate(

 IMP3_TF = if_else(

 EVID == 1 & !is.na(AMT) & !is.na(DATE) & is.na(DTTM), TRUE, FALSE

),

 TIME = ifelse(IMP3_TF, IMP_TIME_PRE, TIME),

 TIME = as_hms(TIME),

7

 DTTM = case_when(

 IMP3_TF ~ ymd_hms(paste(DATE, TIME)),

 TRUE ~ DTTM

)

)

We use the "group_by" function to group the dosing events (EVID=1) by subject and order them by date
and time. We then create a variable called “IMP_TIME_PRE” and use the "fill" function to fill in missing
values in the "IMP_TIME_PRE" column using the previous entry. Once we obtain the previous dose time,
we use a similar process in the "mutate" section as in the trough time imputation to complete this step.
Table 2 provides an example before and after dose imputation with the previous dose datetime.

ID EVID DTTM_before DTTM_after

6 1 2017-07-06 15:15:00 2017-07-06 15:15:00

6 1 2017-07-07 15:10:00 2017-07-07 15:10:00

6 1 NA 2017-07-08 15:10:00

Table 2. Comparison before and after dose time imputation with previous dose datetime

Once the dose time imputation process is completed, the subsequent crucial step is to derive time-related
variables such as the actual time after previous dose (APRELTM) and the actual time after first dose
(AFRELTM). To calculate the time-related variables, it is necessary to obtain the first dose time for each
subject as well as the previous dose time for each PK record.

We start with creating a data set containing the first dose, and a variable DOSE1_DTTM indicating the
first dose datetime for each subject:

dosing_1st <- dosepk %>%

 filter(EVID == 1) %>%

 arrange(ID, DTTM) %>%

 group_by(ID) %>%

 mutate(DOSE1_DTTM = DTTM[1]) %>%

 select(ID, DOSE1_DTTM) %>%

 ungroup() %>%

 distinct()

dosepk <- left_join(

 dosepk,

 dosing_1st,

 by = "ID"

)

As shown in the code snippet provided above, once the data set is sorted by subject (ID) and datetime
(DTTM), we can easily obtain the first dose datetime by using “DOSE1_DTTM = DTTM[1]” within each ID
group. This step enables us to extract the value on the first row for each subject. Subsequently, we add
back the first dose datetime into the dosepk data set.

Once we obtain the first dose time, we can run the following R codes to obtain the previous dose time for
each PK record and derive AFRELTM and APRELTM:

dosepk <- dosepk %>%

 arrange(ID, DTTM, EVID) %>%

 group_by(ID) %>%

 # Get the previous dose datetime for each pk record.

 mutate(

 PDOSE_DTTM = case_when(

 EVID == 1 & AMT > 0 & !is.na(DTTM) ~ DTTM

)

) %>%

 fill(PDOSE_DTTM) %>%

8

 ungroup() %>%

 mutate(

 AFRELTM = difftime(DTTM, DOSE1_DTTM, units = "hours"),

 AFRELTM = as.numeric(AFRELTM),

 APRELTM = difftime(DTTM, PDOSE_DTTM, units = "hours"),

 APRELTM = as.numeric(APRELTM)

)

In this section, the variable “PDOSE_DTTM” is created to store the previous dose time, and the "fill"
function is employed to fill in missing values using the previous entry within each group ID. We once
again use “difftime” to calculate the time difference in hours between the current PK sampling time and
the first/previous dose time. Subsequently, the calculated values are converted into numeric format. By
the end of step 4, the dose and PK data set should be in good shape, as demonstrated in Figure 6.

Figure 6. Combined dose and PK output

STEP5: PREPARE STANDARD POPPK DATA SET

The final step involves combining the dosepk data set with baseline covariates, and ensure that the
resulting data set meets the requirements of PopPK modeling based on the standard data specification.
Several tasks can be completed within this step, such as deriving the remaining variables, flagging the
records based on exclusion criteria, rounding the numeric variables, and adding variable labels. Below,
we provide some typical sample codes for this step.

Sample codes for combining the dosepk and baseline covariates:

ppk <- left_join(dosepk, baseline, by = "ID")

Sample codes for rounding the numeric variables to 0.01 as necessary:

rou001_vars <- c("AFRELTM", "APRELTM", "BMIB", "BSAB")

rnd001 <- function(x) {

 floor(x * 100 + 0.5) / 100

}

ppk <- ppk %>% mutate_at(rou001_vars, rnd001)

It is important to note that the "round" function in R always rounds half-way decimals to the nearest even
number, while SAS® always rounds up. Therefore, the sample code provided above helps to align with
the rounding rule in SAS®.
Sample codes for adding variable labels using the function “set_variable_labels” from “labelled” package:

ppk <- ppk %>%

 set_variable_labels(

 STUDYID = "Study Identifier",

9

 USUBJID = "Unique Subject Identifier",

 AFRELTM = "Actual Rel Time From First Dose[hr]",

 DV = "Analysis Value[ng/mL]"

)

Figure 7 illustrates the structure of final standard PopPK data set with some variables commonly used in
the modeling.

Figure 7. Sample ADDPK data set for a PopPK analysis

ADVANTAGES OF USING R FOR POPPK DATA SET PREAPRATION

As the popularity of R as a statistical programming tool rises, there have been many discussions on the
comparisons of R and SAS® in the pharmaceutical and biotech industries. In this paper, we briefly
summarize some advantages of using R for preparing PopPK data sets.

Due to the widespread use of R in pharmacometric PopPK analyses, it has become necessary to use R
for preparing PopPK data sets, especially for those who work on exploratory analyses without the support
of programmers. The codes provided in this paper can be seamlessly integrated into the workflow of
pharmacometricians, greatly increasing their efficiency by utilizing R and Rmarkdown for preparing
PopPK data sets. Rmarkdown allows users to create dynamic and user-friendly documents that include
text, R codes, output, as well as summaries and graphics used to analyze data sets. It also allows users
to generate a wide range of document formats (pdf, html web pages, MS Word, etc.), which can be easily
shared and collaborated on using version control systems like Git.

In addition, R is designed to work with a wide range of data formats, including CSV, Excel, SQL, and
others, making it more flexible in terms of data integration. This flexibility is particularly useful for users
working in the early clinical trial stage, who may not have access to standard SDTM/ADaM data sets as a
source.

Another key advantage of using R is its large and active community of users, who create and share
packages containing pre-built functions and tools. Such examples are “tidyverse” and “lubridate”, which
provide a wide range of data manipulation techniques, including reshaping, merging, transforming, and
retaining values, which are essential for preparing PopPK data set.

Furthermore, the powerful integrated development environment (IDE) RStudio® offers the ability to call up
potential syntax options and variables names with the tab key, which makes it easier to write new scripts.
Additionally, it offers a convenient interface to view and interact with objects stored in the environment, as
well as debugging tools, syntax highlighting, and version control through integration with Git and GitHub.

Overall, R provides flexibility to non-SAS users in PopPK data set preparation. However, SAS® is still
widely used in many industries and has its own advantages, such as a long-standing reputation for
reliability, support, and compatibility with legacy systems.

CONCLUSION

10

In this paper we explore the use of R for creating a PopPK data set, outlining a five-step process for
preparing and combining the baseline, dosing, and PK data sets. We provide a detailed, step-by-step
programming guide, using an example study, and ensure that the resulting data set is compliant with the
upcoming CDISC standard. We have leveraged the power of interactive IDE RStudio, along with
packages like “tidyverse”, “lubridate”, and “hms”, to facilitate efficient data manipulation. We successfully
tackled some of the challenges associated with handling datetime format variables and perform complex
dose imputations with relatively concise code snippets with R. We believe that our comprehensive guide
will provide significant benefits to pharmacometricians and programmers working on PopPK data set
programming.

REFERENCES

Food and Drug Administration, 1999. “Guidance for industry: population pharmacokinetics.” http://www.
fda. gov/cder/guidance/1852fnl.pdf.

International Society of Pharmacometrics, 2020. “PopPK Data Standard Implementation Guide.” http://go-
isop.org/wp-content/uploads/2020/11/PopPK-Data-Standard-Implementation-Guide.pdf.

Thanneer N, Roy A, Sukumar P, Bandaru J, Carleen E. Oct 12-15, 2014. “Best Practices for Preparation
of Pharmacometric Analysis Data Sets.” Poster session presented at: 5th American Conference on
Pharmacometrics, Las Vegas, NV.

Hadley W. and Garrett G. “R for Data Science.” Accessed March 1, 2023.
https://r4ds.had.co.nz/index.html

ACKNOWLEDGMENTS

The author would like to acknowledge all Bristol-Myers Squibb, Princeton, NJ, USA colleagues who have
provided their valuable inputs on this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Yangwei Yan
Senior Data Scientist
Bristol-Myers Squibb, Princeton, NJ, USA
E-mail: yangwei.yan@bms.com

http://go-isop.org/wp-content/uploads/2020/11/PopPK-Data-Standard-Implementation-Guide.pdf
http://go-isop.org/wp-content/uploads/2020/11/PopPK-Data-Standard-Implementation-Guide.pdf

