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ABSTRACT  

Population Pharmacokinetic (PopPK) analyses are essential to evaluate the drug safety and efficacy 
among population subgroups in drug development. One of the key steps in PopPK modeling is to provide 
a structured input data set for NONMEM® and/or other modeling software. While SAS® has long been a 
dominant tool for statistical programming and analysis in the pharmaceutical industry, R has become a 
trending programming tool and is widely used in multiple areas due to its power and flexibility in 
supporting statistical analysis and advanced visualization. However, the use of R in PopPK data set 
preparation has not been discussed much. 

This paper demonstrates a step-by-step process to generate data sets for PopPK analyses in RStudio 
using R markdown with example study data. It offers flexibility to use another programming language for 
programmers and pharmacometricians. We utilized typical R packages including tidyverse, lubridate, etc. 
and source data sets such as ADaM ADPC, ADEX, ADSL, etc. to create an ADPPK data set. It complies 
with the latest ISoP (International Society of Pharmacometrics) standard that’s in the process of 
becoming CDISC ADaM PopPK Data set. The paper will mainly focus on the process of handling the 
variables with date and time format, conducting dose time imputation, and deriving time-varying variables. 
We also briefly summarize the advantages of using R in preparing PopPK analyses data set. 

INTRODUCTION  

Population pharmacokinetic (PopPK) analyses have been widely used to evaluate safety and efficacy of 
drugs, optimize dosing regimen and predict plasma concentrations in individual patients (FDA 1999, p1). 
The success of PopPK analyses relies heavily on the quality and structure of the data set used as input. 
Historically, SAS® has been utilized as the primary programming language in the pharmaceutical industry 
due to its robustness in dealing with complex data sets. However, R is increasingly being adopted by 
statisticians and data scientists because it offers more flexibility than SAS®. R is an open-source 
statistical software package with extensive libraries designed for various types of statistical analyses, data 
wrangling, and data visualization, which makes it suitable for exploring large data sets quickly and 
efficiently. Moreover, R offers better integration with other languages like Python through Application 
Programming Interface (API) calls which allows users to easily incorporate external scripts into their 
workflows thus reducing development effort significantly. 

In this paper we will discuss how one can use RStudio along with typical packages available from 
CRAN/GitHub repository such as “tidyverse”, “lubridate” etc., to create a structured data set specifically 
tailored towards Population Pharmacokinetic (PopPK) modeling tasks while complying with ISoP 
standards that’s currently in the process of becoming CDISC ADaM PopPK (ADPPK) data set (ISoP 
2020). We will mainly focus on explaining the steps required to create the ADPPK data set, performing 
date/time format handling, conducting dose time imputation, and deriving time-varying variables. 

POPULATION PHARMACOKINETIC DATA SET PREPARATION USING RSTUDIO 

Our program’s primary output is a structured input data set called ADPPK for PopPK analyses, which 
conforms to the latest ISoP standard. In the example study described in this paper, subjects received 
intravenous doses once daily on days 1 through 7 of a 28-day cycle. For all subjects, PK samples were 
collected on days 5,6, and 7 of cycle 1. The primary source to generate ADPPK is subject-level 
information (ADSL), dosing data (ADEX), and PK concentration samples (ADPC). 

We begin by installing the required R packages and importing source data into the R environment. It’s 
always recommended to perform initial exploratory analysis before proceeding further towards building 
actual data set as this will help identify any issues related to missing values/outliers etc., which might 
result in erroneous results downstream. After successful importation, we follow five steps to create the 
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ADPPK data set: 1. Preparing the baseline data set. 2. Preparing the dosing data set. 3. Preparing the PK 
data set. 4. Combining the dosing and PK data set and conducting dose imputation. 5. Preparing the 
standard PopPK data set. 

We use the following required R packages throughout the paper: 

library(tidyverse) 

library(haven) 

library(labelled)  

library(lubridate) 

library(hms) 

STEP1: PREPARE BASELINE DATA SET  

For PopPK analysis data sets, baseline covariates such as age, sex, race, country, baseline weight, 
baseline height, etc. are typically sourced from ADSL. Extracting subject-level variables from the source 
data is straightforward as these variables are in a standard format. 

As a pre-processing step, we run the R codes below to convert blank character variables to NA, the 
corresponding R representation of missing values: 

adsl <- adsl %>% 

  mutate(across(where(is.character), na_if, "")) 

 

To facilitate the wrangling of baseline covariates, we utilize commonly used functions from the “tidyverse” 
package as follows: 

baseline <- adsl %>% 

  select(USUBJID, STUDYID, ARM, AGE, SEX, RACE, BLWEIGHT) %>% 

  rename(WTB = BLWEIGHT) %>% 

  mutate( 

    SEXN = ifelse(SEX == "Female", 2, 1), 

    RACEN = case_when( 

      RACE == "White" ~ 1, 

      RACE == "Others" ~ 4, 

      RACE == "Unknown" ~ 5, 

      TRUE ~ NA_real_ 

    ), 

BMIB = WTB / ((HTB / 100)^2) 

  ) %>% 

arrange(USUBJID) 

 

The “select” function allows for the selection of relevant variables, while the “mutate” function can be used 
to modify and derive variables as necessary. We also use the “rename” function to rename variable 
names and the “arrange” function to sort the data set by the “USUBJID” variable. Typical tools for creating 
values that depend on different conditions include “ifelse” and “case_when” functions. The primary 
difference is that “ifelse” only allows for two possibilities, while “case_when” can handle multiple 
conditions. 

STEP2: PREPARE DOSING DATA SET 

Before delving into the programming details, it is essential to comprehend the structure of the source 
data. A sample of the ADEX domain with the variables of interest is presented in Figure 1. Each record in 
the data set represents a dosing record for a single day. 
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Figure 1. Sample ADEX domain 

To obtain the desired output, the following R scripts are employed to derive the required variables: 

dosing <- adex %>% 

  select(ID, EXDY, EXDT, EXSTTM, EXENTM, EXDOSE) %>% 

  rename(AMT = EXDOSE, ADY = EXDY, DATE = EXDT, TIME = EXSTTM) %>% 

  filter(!is.na(DATE)) %>%  

  mutate( 

    DTTM = ymd_hms(paste(DATE, TIME)), 

    EDTTM = ymd_hms(paste(DATE, EXENTM)), 

    DOSEDUR = difftime(EDTTM, DTTM, units = "hours"), 

    DOSEDUR = as.numeric(DOSEDUR), 

    RATE = AMT / DOSEDUR 

  ) 

Following variable selection, doses with missing dosing dates are excluded using the "filter" function as 
actual time after the dose cannot be calculated without the dosing date. In the "mutate" section, DTTM is 
created as the dosing date and time, while EDTTM is derived as the dosing end date and time. For 
intravenous drug administration, infusion duration (DOSEDUR) is calculated using the dosing start time 
(DTTM) and dosing end time (EDTTM), and infusion rate (RATE) is computed using the equation 
AMT/DOSEDUR. 

The "lubridate" package is utilized in this step to handle date and time format variables. The "ymd_hms" 
function recognizes and parses date and time components such as year, month, day, hour, and minute. It 
facilitates the transformation of character or numeric vectors of dates and times into POSIXct objects, 
which are the most common type of date-time variables in R. The "difftime" function is used to calculate 
the time difference between two date/time objects. Since it returns an object of class "difftime" with an 
attribute indicating the units, it is preferable to convert DOSEDUR to a numeric vector using the 
"as.numeric" function. 

Figure 2 demonstrates a desired output for dosing data set: 
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Figure 2. Output dosing data set 

STEP3: PREPARE PK DATA SET 

PK concentration and sampling date and time are sourced from the ADPC dataset. Figure 3 illustrates the 
structure of ADPC and the variables required for preparing the PK data set. Each row corresponds to a 
single PK sample, with PCSTRESC and PCSTRESN indicating the concentration in character and 
numeric values, respectively, and PCDTC representing the actual sampling date and time. The nominal 
sampling time point after the dose is provided by PCTPT and PCTPTNUM, as defined in the protocol. For 
this study, pre-dose PK samples are collected on Cycle 1 days 5 and 6, while post-dose PK samples are 
collected on Cycle 1 day 7. 

 

Figure 3. Sample ADPC domain 

The goal of PK data preparation is to format the concentration and sampling date and time in a way that 
is suitable for modeling. To this end, the following code snippets can be used to generate concentration-
related variables, such as the PK concentration results (DV), the logarithm of concentration values 
(LOGDV), missing concentration values (MDV), and concentration flag (BLQFN), which indicates the 
samples that fall below the limit of quantification (ISoP 2020). 

pk = adpc %>% 

  select( 

    ID, PCSEQ, PCSTRESC, PCSTRESN, PCDTC, PCTPT, PCTPTNUM, VISIT, 

    VISITDY 

    )%>% 

  rename(NPRELTM = PCTPTNUM, DV = PCSTRESN) %>% 

  mutate( 

    EVID = 0, 

    LOGDV = log(DV), 

    MDV = ifelse(DV > 0 & !is.na(DV), 0, 1), 

    BLQFN = ifelse(PCSTRESC == "< 1.00", 1, 0)    

  ) 

As shown in Figure 3, PK sampling date and time is stored in the PCDTC variable. To use it for 
calculations in R, it is necessary to convert it to a POSIXct object using “ymd_hms” function. Moreover, 
we need to parse the date and time separately to utilize the time of PK samples for imputing dose time. 
The functions “date” from “lubridate” and “as_hms” from “hms” are applied to create sampling date 
(DATE) and sampling time (TIME) variables as follows: 

pk <- pk %>% 
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  mutate( 

    DTTM = ymd_hms(PCDTC), 

    DATE = date(DTTM), 

    TIME = as_hms(DTTM) 

  ) 

The example of the output PK data set in this step is shown in Figure 4. 

 

Figure 4. Output PK data set 

STEP4: COMBINE DOSING AND PK DATA SET AND CONDUCT DOSE IMPUTATION 

Once the daily dosing and PK data sets are ready, we use the function “bind_rows” from “tidyverse” to 
simply append the dosing records and PK samples. Figure 5 demonstrates the data set after row binding. 

dosepk <- bind_rows(dosing, pk) %>%  

  arrange (USUBJID, DTTM, EVID)  

 

Figure 5. Combined dose and PK data set 

After combining the dose and PK data sets, we can impute missing dosing times for dose records using 
the following general rules (Thanneer N, et al 2014): 

1. If a trough PK sample is available on the same day, impute the dose time using the time of the 
trough sample. 

2. If a post-dose sample is available on the same day, impute the dose time using the time of the 
sample minus the nominal sampling time (in this example, a 5-minute post-dose sample is used). 

3. If there are no available trough or post-dose samples on the same day, impute the dose time 
using the time of the previous administered dose. 

4. If there are no available trough, post-dose, or previous dose times on the same day, impute the 
dose time using the time of the next administered dose. 
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In this section, we demonstrate how to perform dose time imputation using R functions for rules 1 and 3. 
Trough samples are typically collected immediately before the next dose is administered. To impute with 
the time of trough PK samples, we begin with extracting the trough samples into a temporary tibble using 
the following codes: 

imp1_trough <- dosepk %>% 

  filter(EVID == 0 & NPRELTM == 0 & !(CYCLE == 1 & VISITDY == 1)) %>% 

  rename(TDTTM = DTTM) %>% 

  select(ID, DATE, TDTTM) 

Next, we add the trough time back to the dosepk data set by performing a "left_join" on the ID and DATE 
variables, and perform dose imputation for step 1: 

dosepk <- dosepk %>% 

  left_join(imp1_trough) %>% 

  mutate( 

    IMP1_TF = ifelse( 

      EVID == 1 & !is.na(AMT) & is.na(DTTM) & !is.na(TDTTM), TRUE, FALSE 

      ),  

    DTTM = case_when( 

      IMP1_TF ~ TDTTM,  

      TRUE ~ DTTM 

    ), 

    TIME = case_when( 

      IMP1_TF~ as_hms(DTTM), 

      TRUE ~ TIME 

    ) 

  ) 

The above code ensures that the dose datetime is imputed to be the trough datetime (TDTTM) if they 
share the same date. To flag the records that require imputation, we create a variable called "IMP1_TF" 
which has a value of 1 for records with a missing dose time and a non-missing trough time. If IMP1_TF is 
1, the dose time is imputed with the trough time; otherwise, the original datetime is retained. 

After the imputation is complete, it is recommended to remove the temporary tibble: 

  rm(imp1_trough) 

Table 1 provides an example before and after dose imputation with trough sampling datetime. 

ID EVID DTTM_before DTTM_after 

6 0 2017-06-12 14:44:00 2017-06-12 14:44:00 

6 1 NA 2017-06-12 14:44:00 

6 1 2017-06-13 14:15:00 2017-06-13 14:15:00 

Table 1. Comparison before and after dose time imputation with trough datetime 

To perform step 3 of the imputation process, we run the R codes below: 

dosepk <- dosepk %>%  

  arrange(ID, EVID, DATE, DTTM) %>% 

  group_by(ID, EVID) %>%  

  mutate(IMP_TIME_PRE = TIME) %>% 

  fill(IMP_TIME_PRE) %>% 

  ungroup() %>%  

  mutate( 

    IMP3_TF = if_else( 

      EVID == 1 & !is.na(AMT) & !is.na(DATE) & is.na(DTTM), TRUE, FALSE 

      ), 

    TIME = ifelse(IMP3_TF, IMP_TIME_PRE, TIME), 

    TIME = as_hms(TIME), 
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    DTTM = case_when( 

      IMP3_TF ~ ymd_hms(paste(DATE, TIME)),  

      TRUE ~ DTTM 

    ) 

  ) 

We use the "group_by" function to group the dosing events (EVID=1) by subject and order them by date 
and time. We then create a variable called “IMP_TIME_PRE” and use the "fill" function to fill in missing 
values in the "IMP_TIME_PRE" column using the previous entry. Once we obtain the previous dose time, 
we use a similar process in the "mutate" section as in the trough time imputation to complete this step. 
Table 2 provides an example before and after dose imputation with the previous dose datetime. 

ID EVID DTTM_before DTTM_after 

6 1 2017-07-06 15:15:00 2017-07-06 15:15:00 

6 1 2017-07-07 15:10:00 2017-07-07 15:10:00 

6 1 NA 2017-07-08 15:10:00 

Table 2. Comparison before and after dose time imputation with previous dose datetime 

Once the dose time imputation process is completed, the subsequent crucial step is to derive time-related 
variables such as the actual time after previous dose (APRELTM) and the actual time after first dose 
(AFRELTM). To calculate the time-related variables, it is necessary to obtain the first dose time for each 
subject as well as the previous dose time for each PK record. 

We start with creating a data set containing the first dose, and a variable DOSE1_DTTM indicating the 
first dose datetime for each subject: 

dosing_1st <- dosepk %>%  

  filter(EVID == 1) %>%   

  arrange(ID, DTTM) %>%   

  group_by(ID) %>%   

  mutate(DOSE1_DTTM = DTTM[1]) %>%   

  select(ID, DOSE1_DTTM) %>%   

  ungroup() %>%   

  distinct() 

 

dosepk <- left_join( 

  dosepk, 

  dosing_1st, 

  by = "ID" 

) 

As shown in the code snippet provided above, once the data set is sorted by subject (ID) and datetime 
(DTTM), we can easily obtain the first dose datetime by using “DOSE1_DTTM = DTTM[1]” within each ID 
group. This step enables us to extract the value on the first row for each subject. Subsequently, we add 
back the first dose datetime into the dosepk data set. 

Once we obtain the first dose time, we can run the following R codes to obtain the previous dose time for 
each PK record and derive AFRELTM and APRELTM: 

dosepk <- dosepk %>% 

  arrange(ID, DTTM, EVID) %>% 

  group_by(ID) %>% 

  # Get the previous dose datetime for each pk record. 

  mutate( 

    PDOSE_DTTM = case_when( 

      EVID == 1 & AMT > 0 & !is.na(DTTM) ~ DTTM 

      ) 

    ) %>% 

  fill(PDOSE_DTTM) %>% 
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  ungroup() %>% 

  mutate( 

    AFRELTM = difftime(DTTM, DOSE1_DTTM, units = "hours"), 

    AFRELTM = as.numeric(AFRELTM), 

    APRELTM = difftime(DTTM, PDOSE_DTTM, units = "hours"), 

    APRELTM = as.numeric(APRELTM) 

  ) 

In this section, the variable “PDOSE_DTTM” is created to store the previous dose time, and the "fill" 
function is employed to fill in missing values using the previous entry within each group ID. We once 
again use “difftime” to calculate the time difference in hours between the current PK sampling time and 
the first/previous dose time. Subsequently, the calculated values are converted into numeric format. By 
the end of step 4, the dose and PK data set should be in good shape, as demonstrated in Figure 6. 
 

 
Figure 6. Combined dose and PK output 

STEP5: PREPARE STANDARD POPPK DATA SET 

The final step involves combining the dosepk data set with baseline covariates, and ensure that the 
resulting data set meets the requirements of PopPK modeling based on the standard data specification. 
Several tasks can be completed within this step, such as deriving the remaining variables, flagging the 
records based on exclusion criteria, rounding the numeric variables, and adding variable labels. Below, 
we provide some typical sample codes for this step. 

Sample codes for combining the dosepk and baseline covariates: 

ppk <- left_join(dosepk, baseline, by = "ID") 

Sample codes for rounding the numeric variables to 0.01 as necessary: 

rou001_vars <- c("AFRELTM", "APRELTM", "BMIB", "BSAB")  

rnd001 <- function(x) { 

  floor(x * 100 + 0.5) / 100 

} 

ppk <- ppk %>% mutate_at(rou001_vars, rnd001) 

It is important to note that the "round" function in R always rounds half-way decimals to the nearest even 
number, while SAS® always rounds up. Therefore, the sample code provided above helps to align with 
the rounding rule in SAS®. 
Sample codes for adding variable labels using the function “set_variable_labels” from “labelled” package: 

ppk <- ppk %>% 

  set_variable_labels( 

    STUDYID = "Study Identifier", 
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    USUBJID = "Unique Subject Identifier", 

    AFRELTM = "Actual Rel Time From First Dose[hr]", 

    DV = "Analysis Value[ng/mL]" 

  ) 

Figure 7 illustrates the structure of final standard PopPK data set with some variables commonly used in 
the modeling. 

 

Figure 7. Sample ADDPK data set for a PopPK analysis 

ADVANTAGES OF USING R FOR POPPK DATA SET PREAPRATION  

As the popularity of R as a statistical programming tool rises, there have been many discussions on the 
comparisons of R and SAS® in the pharmaceutical and biotech industries. In this paper, we briefly 
summarize some advantages of using R for preparing PopPK data sets. 

Due to the widespread use of R in pharmacometric PopPK analyses, it has become necessary to use R 
for preparing PopPK data sets, especially for those who work on exploratory analyses without the support 
of programmers. The codes provided in this paper can be seamlessly integrated into the workflow of 
pharmacometricians, greatly increasing their efficiency by utilizing R and Rmarkdown for preparing 
PopPK data sets. Rmarkdown allows users to create dynamic and user-friendly documents that include 
text, R codes, output, as well as summaries and graphics used to analyze data sets. It also allows users 
to generate a wide range of document formats (pdf, html web pages, MS Word, etc.), which can be easily 
shared and collaborated on using version control systems like Git. 

In addition, R is designed to work with a wide range of data formats, including CSV, Excel, SQL, and 
others, making it more flexible in terms of data integration. This flexibility is particularly useful for users 
working in the early clinical trial stage, who may not have access to standard SDTM/ADaM data sets as a 
source. 

Another key advantage of using R is its large and active community of users, who create and share 
packages containing pre-built functions and tools. Such examples are “tidyverse” and “lubridate”, which 
provide a wide range of data manipulation techniques, including reshaping, merging, transforming, and 
retaining values, which are essential for preparing PopPK data set. 

Furthermore, the powerful integrated development environment (IDE) RStudio® offers the ability to call up 
potential syntax options and variables names with the tab key, which makes it easier to write new scripts. 
Additionally, it offers a convenient interface to view and interact with objects stored in the environment, as 
well as debugging tools, syntax highlighting, and version control through integration with Git and GitHub. 

Overall, R provides flexibility to non-SAS users in PopPK data set preparation. However, SAS® is still 
widely used in many industries and has its own advantages, such as a long-standing reputation for 
reliability, support, and compatibility with legacy systems. 

CONCLUSION  
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In this paper we explore the use of R for creating a PopPK data set, outlining a five-step process for 
preparing and combining the baseline, dosing, and PK data sets. We provide a detailed, step-by-step 
programming guide, using an example study, and ensure that the resulting data set is compliant with the 
upcoming CDISC standard. We have leveraged the power of interactive IDE RStudio, along with 
packages like “tidyverse”, “lubridate”, and “hms”, to facilitate efficient data manipulation. We successfully 
tackled some of the challenges associated with handling datetime format variables and perform complex 
dose imputations with relatively concise code snippets with R. We believe that our comprehensive guide 
will provide significant benefits to pharmacometricians and programmers working on PopPK data set 
programming. 
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