
1 

PharmaSUG 2023 - Paper SD-232 

Tired of Manual Language Translation?  Give it a REST! 
 

Shawn Hopkins and Matthew Ness, Seagen Inc.  

ABSTRACT  
Working in a global environment or partnership settings, we are bound to encounter situations where we need to 
translate content from one language to another in order to analyze clinical trial data.  With respect to SAS data sets 
with content in a foreign language, the FDA requires a verified English translation, which is often performed by a third 
party.  However, this may take considerable time and could squeeze programming development too much to meet 
upcoming timelines.  With that in mind, is there a way to get a "good-enough" data set translation in place quickly and 
efficiently, so programming can start development long before the official translation enters the scene? 

In this paper we’ll share an innovative, fully automated approach to informal translation of SAS data sets received in 
Extended Unix Code simplified Chinese characters (EUC-CN) into UTF-8 encoding in English. Using Seagen’s 
Microsoft Azure subscription with Text Translation service (free to try), we translated both the variable labels and the 
content of character variables in each data set using the cloud-based REST API via PROC HTTP.  This setup can 
immediately support translations to and from over 100 different languages, and it has been tremendously helpful to 
get an early start on analysis programming to comfortably meet our timelines well before third-party translations are 
available. 

Keywords: Azure Cognitive Services, Web API, Text Translation, PROC HTTP 

INTRODUCTION 
A recent partnership with an organization in Asia resulted in the receipt of SAS data sets containing multi-
byte encoded character variables in simplified Chinese. Ideally, a third party would provide English 
translated data sets, however, that process would likely take months and our programming team needed 
to work with the data immediately. 

This paper describes how we created English translated data sets by using SAS in combination with 
Microsoft Azure Translation service. We will also describe challenges related to data set encoding and 
how we overcame them. 

ENCODING CHALLENGES 
The data sets we received from our partner contained Chinese characters and were encoded in UTF-8, 
which is a variable width, multibyte encoding.  Unfortunately, session encoding in our SAS environment is 
set to WLATIN1, which is a single-byte character set (SBCS) that only supports ASCII/ANSI characters 
correctly. Therefore, users could not access the data programmatically nor could they view the contents 
of the data sets.  

We were unable to modify the production server encoding as that would require re-validation of the entire 
SAS system. As an interim solution, IT created several virtual machines with a local installation of PC 
SAS configured to use UTF-8 encoding and language support for simplified Chinese characters. Even 
though this was only a development environment it was sufficient to enable us to work with the data in an 
unofficial capacity. 

AZURE COGNITIVE SERVICES 
Depending on a vendor to perform the official translation of the content required a significant amount of 
time.  To get a version of the data that we could work with quickly, IT and Statistical Programming 
collaborated on a strategy using Azure Cognitive Services’ Translator API. 

Within Microsoft Azure’s AI + Machine Learning Services, there is a Cognitive Services category, under 
which users can create a text translation service. Since patient data would be exposed, we implemented 
a containerized translation service in the company’s Azure Cloud environment rather than utilizing a 
public Web API.  



 
 

2 

This cloud-based REST API can be called directly from SAS using PROC HTTP. The GET endpoint 
returns a JSON response that lists all the available languages, featuring over 100 supported languages. 
The POST endpoint accepts a JSON body as a collection of key-value pairs and returns a JSON 
response with values translated into the destination language.  

Once the API is created, you will need the URL and some required information in the headers of the 
request. If you do not have access to the Azure portal, the administrator will need to provide you with the 
subscription key and region. 

• Ocp-Apim-Subscription-Key: the translation service key from Azure portal 

• Ocp-Apim-Subscription-Region: the region where the resource was created. 

• Content-Type: application/json or charset=UTF-8. 

An API client application like Postman makes it simple to test the implementation of the web services like 
Azure Translator. 

The root location URL for translation service is specific to the organization and will need to be provided by 
the Azure administrator. There are several endpoints supported by the API with many options (see API 
Guide for comprehensive documentation). The two used for this solution were the languages and 
translate endpoints.  

 

Action Endpoint Response Example 

GET languages Returns a list of supported languages 
for translation 

/languages?api-
version=3.0&scope=translation 

POST translate Returns the translation of a text 
collection specified in the request body 

/translate?api-
version=3.0&to=en&from=Zh-
hans 

Table 1. Azure Cognitive Services Translator Endpoints 
   

AVAILABLE LANGUAGES 
The languages endpoint returns the list of supported languages available for translation. At the time of 
this paper, there were 111 available. See a table displaying available languages and an example of how 
to use that languages endpoint in GitHub. 

TESTING THE SERVICE 
To confirm the translation service is implemented and your authentication is working, test the endpoints 
using a client application. Postman is the easiest, but if it’s not installed, you can use the cURL utility 
available at the command prompt.  

1. Create a JSON file with a single key-value pair inside of an array. Save the file locally as 
helloworld.json. 
Example: [{"text":"this is only a test"}] 
 

2. Open the CMD prompt from the same folder, and invoke the cURL utility and pass the required 
headers and parameters: 
 
CURL "your api root/translate?api-version=3.0&from=en&to=fr" -H 
"Content-type:application/json" -H "Ocp-Apim-Subscription-Key:your key" 
-H "Ocp-Apim-Subscription-Region:your region" -X POST -d 
@helloworld.json 

https://learn.microsoft.com/en-us/azure/cognitive-services/translator/reference/rest-api-guide
https://learn.microsoft.com/en-us/azure/cognitive-services/translator/reference/rest-api-guide
https://github.com/hopkinss/pharmasug2023-example/blob/main/languages.md
https://github.com/hopkinss/pharmasug2023-example/blob/main/hello-world.sas


 
 

3 

3. If the request was successful, the translated value and the TO language code are returned as a 
JSON array in the response.  

[{"translations":[{"text":"Esto es sólo una prueba","to":"es"}]}] 

TRANSLATING A SAS DATA SET 
Using the same logic from previous example, we can call the API directly from SAS using PROC HTTP. 

First assign the API root and required headers in macro variables. For demonstration, the arguments are 
assigned directly in the SAS program, securing these values is out of scope for this paper. The code for 
the following program is available in its entirety in GitHub. 

%let api=[your API root]; 
%let key=[your subscription key]; 
%let region=[your Azure region e.g. westus2]; 

INPUT DATA SET 
The source data sets contained a mix of character values in Simplified Chinese encoding and a variety of 
numeric variables including integers, floating point, and date values. The translation needed to convert 
the character values with the original variable names and retain the numeric values without modification.  

 

 
Table 2: Source Data for Translation 
 

It is critical that the SAS environment encoding is UTF-8 and supports the multi-byte character set of the 
source language to allow the data set to be read.  

CAPTURE THE METADATA FROM THE INPUT DATA SET 
The metadata from the input data set should be captured so the translation can be automated, specifically 
a list of all the character variables, numeric variables, and the counts of each. This will enable the 
reconstruction of the data with the translated character variables and the unchanged numeric variables:  
  %*---------------------------------------------------------------------* 
  | Sort character variables first by name. Used to rename response data  
  | from translation API 
  *----------------------------------------------------------------------*; 
  proc contents data=&dsn. out=&dsn._md(keep=name type length)  
                nodetails noprint; 
  run; 
  %*---------------------------------------------------------------------* 
  | Create mvar with all variables in sequence to maintain the original  
  | order of the variables within the dataset 
  *----------------------------------------------------------------------*; 
  proc sql noprint; 
    select name into :original_order separated by ' ' 

https://github.com/hopkinss/pharmasug2022-example/blob/main/pharmasug-ex.sas


 
 

4 

    from &dsn._md 
    order by varnum; 
  quit; 
 
  %*---------------------------------------------------------------------* 
  | Capture metadata for character and numeric variables in macro variables 
  *----------------------------------------------------------------------*; 
  proc sort data=&dsn._md; 
    by descending type  name; 
  run;  data _null_; 
    length cvars nvars $5000; 
    retain cvars nvars; 
    set &dsn._md end=eof; 
    by descending type name; 
    %*-------------------------------------------------------------------* 
    | Build a list of character variables 
    *--------------------------------------------------------------------*; 
    if type=2 then do; 
      cvars = catx(" ", cvars, name); 
      ncvars+1; 
    end; 
    %*-------------------------------------------------------------------* 
    | Build a list of numeric variables 
    *--------------------------------------------------------------------*; 
    else do; 
      nvars = catx(" ",strip(nvars),strip(name)); 
      nnvars+1; 
    end; 
    if eof then do; 
      call symputx("cvars",cvars); 
      call symputx("nvars",nvars); 
      call symputx("ncvars",ncvars); 
      call symputx("nnvars",nnvars); 
    end; 
  run; 

BUILD THE JSON FILE 
A JSON file is created from the character variables in the input data set using the CVARS macro variable 
to write values to the JSON file, for every observation. 

Create the JSON file in the WORK folder to dispose of the file upon successful disconnection from the 
workspace session.  

The DO loop writes the key-value pairs in the expected format as a JSON array. Since the number of 
character variables is known, it’s easy to transpose back into observations once the text is translated.  

 
  filename jbody "%sysfunc(pathname(work))\jbody.json" encoding="UTF-8"; 
 
  data _null_; 
    length _line $2000; 
    set &dsn.(keep=&cvars.) end=eof; 
    file jbody; 
    array _v[*] &cvars.; 
    if _n_=1 then put '['; 
    call missing(line); 
    do i = 1 to dim(_v);   



 
 

5 

      if ^missing(_v[i]) then do;    
         _line = catx(",",_line, "{'text':"||catx(_v[i],"'","'}")); 
      end; 
    end; 
    put _line; 
    if eof then put ']'; 
    else put ','; 
  run; 
 
Figure 1 shows an example the body of the JSON file. 
 

 
Figure 1. JSON Body File 
 

CALLING THE TRANSLATION SERVICE 
The translation service is called using PROC HTTP, passing the required headers and the JSON body 
file. The JSON response from the API is captured in a temporary fileref. The response is parsed into SAS 
data format using the JSON engine on the libname statement: 

 
  proc http url="&api/translate?api-version=3.0%nrstr(&from)=&from_lang 
                 %nrstr(&to)=&to_lang" 

    METHOD="POST" 
    AUTH_NEGOTIATE 
    in=jbody 
    ct="application/json" 
    out=outjson; 
    headers "accept"="application/json" 
            'Ocp-Apim-Subscription-Key'="&key" 
            'Ocp-Apim-Subscription-Region'="&region"        
            'content-type'='application/json'; 
  run; 
  libname jsn JSON fileref=outjson; 
 

ASSEMBLING THE FINAL DATA SET 
The data set created from the response is normalized to just a single text variable. Group the 
observations by counting the number of character variables and incrementing the grouping variable once 
that number is exceeded. The data can then be transposed by that grouping variable, restoring the 
original record structure. 
 
  data &dsn._trn; 
    retain id 1; 



 
 

6 

    set jsn.translations; 
    counter+1; 
    if counter>&ncvars. then do; 
      id+1; 
      counter=1; 
    end; 
  run; 
 
  proc transpose data=&dsn._trn out=&dsn._trn_t(drop=_name_) prefix=_var; 
    by id; 
    var text; 
  run; 
 
The original variable names are restored from the CVARS macro variable. Since the translated value may 
be larger than the original string, it is also necessary to identify the longest string for each new variable 
from the grouped data set.  
 
  proc sql noprint; 
    select max(klength(text)) into :len_cvars separated by ' ' 
    from &dsn._trn 
    group by counter; 
  quit; 
 
The restored data set is merged with the original data set, keeping only the unmodified numeric variables 
and a join variable. The final data set has the translated value text values in corresponding variables with 
the original numeric variables. The retain statement maintains the original order of the variables.  
 
  data &dsn._new(drop=_var: id i); 
    retain &original_order.; 
    %do i = 1 %to &ncvars.; 
      length %scan(&cvars,&i,%str( )) $%scan(&len_cvars.,&i.%str( )); 
    %end; 
 
    merge &dsn._trn_t 
          &dsn._in(keep=id &nvars.); 
    by id; 
    array cvars[*] &cvars.; 
    array vars[*] _var:; 
    do i = 1 to dim(vars); 
      cvars[i]=vars[i]; 
    end; 
  run; 
 
The final, translated data set is shown in Table 3. 
 

 
Table 3: Translated Data set 
 



 
 

7 

CONCLUSION  
Using SAS in combination with Azure Cognitive Services Translator to translate the text enabled the 
study team to begin working with the data well in advance of obtaining the officially translated data sets. 
Some content, like adverse event verbatim terms, didn’t translate perfectly, but these peculiarities were 
manageable by the study team. 

While any data sets or output generated based on translated text obtained via this pathway are not 
considered officially translated and hence should not be used in official reports, publications, or 
submissions, this setup is immensely helpful to get a lot of the programming development and testing 
work out of the way which avoids putting delivery timelines at risk. Once the officially translated data sets 
are available, the team simply switches off the Azure-based translation pathway and uses the official 
translations instead! 

REFERENCES  
Microsoft “Azure Cognitive Services” Available at https://azure.microsoft.com/en-us/products/cognitive-
services 

CONTACT INFORMATION  
Your comments and questions are valued and encouraged. Contact the authors at: 

Shawn Hopkins 
Seagen Inc. 
shopkins@seagen.com 
 
Matthew Ness 
Seagen Inc. 
mness@seagen.com  

 
 

mailto:shopkins@seagen.com
mailto:mness@seagen.com

	Abstract
	Introduction
	Encoding challenges
	Azure Cognitive Services
	Available Languages
	Testing the Service
	1. Create a JSON file with a single key-value pair inside of an array. Save the file locally as helloworld.json.
	3. If the request was successful, the translated value and the TO language code are returned as a JSON array in the response.
	[{"translations":[{"text":"Esto es sólo una prueba","to":"es"}]}]


	Translating A SAS Data set
	%let api=[your API root];
	%let key=[your subscription key];
	%let region=[your Azure region e.g. westus2];
	Input data set
	Capture the Metadata from the input data set
	build the json file
	Calling the translation service
	assembling the final data set

	Conclusion
	References
	Contact Information



