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ABSTRACT  

Recent advancements in High-throughput next-generation sequencing (NGS) technologies grew 
exponentially in genomic research revolutionizing biological data analysis, and enhancing the study of 
complex biological systems at an unprecedented scale. The technological limitations of the NGS system 
are the deluge of genomic data produced. It’s difficult for a single workstation to execute sequential 
methods and produce results quickly. Efficacy decreases significantly with human interference and to 
mitigate them, we developed an in-house pipeline, with the help of AWS services and tools like 
snakemake, kallisto, etc., for automating RNA-seq data analysis. It’s efficient, scalable, reproducible, 
version-controlled, transparent, and cost-effective for large volumes of data. In this study, we have 
reviewed the RNA-sequencing technique using AWS to analyze gene expression at the transcriptional 
level. The systematic approach allows CROs to transfer raw data using an SFTP server, followed by an 
automated transfer to Simple Storage Service (S3) and preceded by data quality validation. Helper scripts 
then transfer data from S3 to Elastic File System (EFS), launch the Fastq processing pipeline, clone a 
GitHub repo of the corresponding project, and leverages AWS Batch to spin up a dynamic Elastic 
Compute Cloud (EC2) instance as desired. After successful execution, outputs are available in EFS, and 
actual data analysis is performed using RStudio Workbench ending with automated results archival in S3. 

INTRODUCTION  

In recent years, there have been advancements in High-throughput next-generation sequencing (NGS) 
technologies which have made exponential growth in genomic research and have revolutionized biological 
data analysis, allowing researchers to study complex biological systems at an unprecedented scale. (Zhao 
et al., 2017). Biological sciences have been transformed with the combination of NGS technology in 
biological research. It has evolved biological data science into big data science. With the introduction of 
NGS technology, biological research has evolved into a big data field where computations supplement the 
short read and high error rate of experimental research with high-depth coverage sequencing data. The 
capability and resolution of many biological, pharmaceutical, diagnostic, and medical applications, such as 
genome-wide sequencing, quantitative transcriptome analysis (RNA-seq), identification of protein binding 
sites (ChIP-seq), genome-wide methylation profiling, and the assembly of large genome or transcriptome 
data, have recently been significantly impacted by the rapid development of new sequencing technologies. 
RNA-seq is one of the widely used sequencing techniques used to map and identify and understand their 
regulation and roles across species. (Emrich et al., 2007; Lister et al., 2008; Zhang & Jonassen, 2020). 
Functional genomics has marked a significant emphasis on gene expression, a process that has been 
extensively studied. The evolution of genetic information from the genomic DNA template to useful protein 
products is referred to as gene expression(Griffith et al., 2015). For examining relative transcript abundance 
and diversity, RNA sequencing (RNA-seq) has established itself as a standard gene expression analysis. 
Gene expression datasets are readily available in databases like GEO (Barrett et al., 2011) and 
ArrayExpress(Athar et al., 2019) as a result of numerous research that has been conducted utilizing RNA-
Seq. RNA-seq produces short reads from the fragments. Millions of relatively small reads are generated by 
RNA-Seq experiments from the ends of cDNAs created from RNA sample fragments. The reads can be 
utilized in a number of applications such as transcriptome analyses, including transcript 
quantification(Bohnert & Rätsch, 2010)(Trapnell et al., 2010), differential expression testing(Anders & 
Huber, 2010)(Robinson et al., 2010), reference-based gene annotation(Trapnell et al., 2010) (Guttman et 
al., 2010), and de novo transcript assembly(Robertson et al., 2010)(Grabherr et al., 2011)(Li & Dewey, 
2011). When RNA-Seq is employed in a study, the sequencing reads go through several processing and 
analysis procedures. The phases are frequently arranged into a workflow that can be partially or entirely 
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automated. The procedures are as follows: quality control (QC) and trimming, mapping of reads to a 
reference genome (or transcriptome), quantification at the gene (or transcript) level, statistical analysis of 
expression statistics to report genes (or transcripts) that are differentially expressed between two preset 
groups of samples(Stark et al., 2019). Genome alignment requires extensive time and computation which 
has been overcome with the help of pseudo-alignment using different tools. When compared to normal 
alignment it has been demonstrated that pseudo-alignment improves gene expression estimates while also 
being more computationally efficient(Zhang & Jonassen, 2020).  

A gradual evolution of biological sciences has created significant progression in NGS technologies such as 
Whole genome sequencing, RNA sequencing, whole exome sequencing, etc. There is the generation of 
high-volume data which requires powerful computing resources to analyze and process the huge biological 
data. It is getting increasingly difficult for a single workstation to execute sequential methods and produce 
results in a reasonable amount of time. To deal with computationally demanding tasks, cloud computing is 
a possible approach. To automate and streamline the NGS-based technologies such as the RNA-seq data 
analysis process, one can use cloud computing services such as those offered by Amazon Web Services 
(AWS), Google Cloud Platform (GCP), and workflow management tools like Snakemake. AWS offers a 
range of services including Elastic Compute Cloud (EC2) for running computational tasks, Simple Storage 
Service (S3) for storing and accessing data, and Batch for automating and scaling up analysis jobs. 
Snakemake, an open-source workflow management tool, allows to define and execute complex workflows 
in a reproducible and scalable manner. By combining AWS services with Snakemake, the creation of highly 
automated and efficient RNA-seq data analysis pipelines is possible. With the introduction of NGS 
technology, biological research has evolved into a big data science where computational calculations 
supplement the short read and high error rate of experimental research with high-depth coverage 
sequencing data (Kwon et al., 2015). Snakemake is a robust workflow engine that makes workflow 
management simple. It breaks down the entire workflow into rules with each rule carrying out a particular 
step (Zhang & Jonassen, 2020). Each rule has an input for specifying the input files and output for specifying 
the output files and a shell for specifying the command used to generate the output according to the input. 
The execution of a Snakemake pipeline is accomplished through the specification of a single target file 
name. To produce the target output Snakemake determines the flow based on its rules, the file name, and 
the application of the wildcards concept(Mohsen et al., 2022). Snakemake workflows have a wide range of 
applications and can be utilized to automate bioinformatics tasks efficiently. 

In this paper we illustrate the concepts and principles of cloud computing and describe an instance of RNA-
seq data analysis on cloud services computing with integration to snakemake. In addition, we surveyed 
challenges caused by data generated through RNA-seq and have proposed a promising solution to 
overcome the limitations related to storage, manual error, time, and performance by integrating cloud 
computing. The introduction of cloud computing in large-scale RNA-seq data analysis has helped users 
perform their tasks efficiently without expending time and resources. It also offers them an alternative to 
the traditional methods of analysis. 

BACKGROUND 

"Cloud computing" refers to the on-demand distribution of IT resources and applications through the Internet 
with pay-as-you-go billing. Cloud computing is a concept for providing ubiquitous, on-demand access to a 
shared pool of customizable computing resources (e.g., networks, servers, storage, applications, and 
services) that can be deployed and released quickly with minimal administration effort. Cloud computing 
eliminates the need for expensive hardware and management. Cloud services, such as AWS, provide 
network-connected hardware as well as the optimal computational specifications required to accomplish 
the task(Mrozek, 2020). With AWS, you can instantly access as many resources as you require and only 
pay for what you request and own. Networks, servers, storage, applications, and services are examples of 
computing resources. Some characteristics of the cloud computing model according to the National Institute 
of Standards and Technology (NIST) (Mell & Grance, 2011) are as follows: 

1. On-demand self-service: The user can use the resources according to their need without any 

assistance from cloud provider staff. 

2. Broad network access: Cloud services provides broad network connectivity, allowing users to 

accomplish the task from any network including tablets, workstation or laptops etc. 
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3. Resource pooling: the services required to perform the task can be pooled and utilised by number 

of individuals according to their need. 

4. Rapid elasticity: users can allocate the resources as per their requirements and can dynamically 

scale up and down with time. 

5. Measured service: the services utilised are routinely measured, monitored, and regulated, and the 

user may obtain a cost estimate and a report on the resources utilized. 

In other words, Cloud services provide rapid scaling out or scaling up of RNA-seq analysis, allocating 
resources as needed for speeding up analyses at a remote data centre with minimum effort, over the 
network, and optimizing their allocation to mitigate usage costs(Zhao et al., 2017). This eliminates the 
requirement to purchase large computer clusters that may remain inactive for certain times, as well as the 
expenditures associated with the purchase and maintenance of the hardware. 

 

CLOUD COMPUTING RESOURCES FOR RNA-SEQ DATA ANALYSIS 

Cloud computing services are constantly growing and introducing new solutions for challenging purposes. 
Cloud platforms such as AWS, Azure, and GCP provide a plethora of resources. Different resources are 
utilized by users according to their computational requirements for performing experiments. Cloud 
computing is classified into two types of cloud and cloud technologies. The cloud provides a big pool of 
easily manageable and customizable resources that are scalable to allow for optimal utilization. 
Virtualization is a key foundation of cloud technologies, a single physical system that can host several virtual 
machines (VMs). A virtual machine (VM) is a software application that can simulate a real computer 
environment by installing a single digital picture of resources, often known as a whole system snapshot. 
Furthermore, a VM image can be completely replicated, including the operating system (OS) and any 
related applications(Zhao et al., 2017). While using AWS the user identifies and manages his virtual 
machines within a virtual network consisting of a subnet, a set of virtual network interfaces, and a pool of 
public and private IP addresses. Among the variety of resources that can be deployed from the Cloud, the 
following can be employed in common scenarios involving RNA-seq data analysis: 

• Storage space 

• Compute resources 

• Web services 

 

MATERIALS AND METHODS  

 

TECHNOLOGY STACK USED 

 

During our study various resources were deployed which are mentioned below: 

AWS SFTP: The SFTP is also known as SSH File Transfer Protocol (Secure File Transfer Protocol), 
which is a network protocol that allows users to access, transfer, and manage files via any secure data 
stream. Vendors upload biological data into a predefined folder structure of AWS SFTP, followed by a 
cron job transfer to Amazon S3. 

Amazon S3: Amazon S3 is an object storage service that provides industry-leading scalability, data 
availability, security, and performance. Customers of all sizes and sectors may use Amazon S3 to store 
and safeguard any amount of data for a variety of use cases, including data lakes, backup and restore, 
archiving, and big data analytics. Moreover, Amazon S3 has management options that allow you to 
optimize, organize, and configure data access to suit your unique business, organizational, and 
compliance needs(Palankar et al., n.d.). In this study, S3 is used to store large volumes of biological data 
such as fastq and metadata. 
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Amazon EFS: Amazon Elastic File System (Amazon EFS) enables serverless, completely elastic file 
storage, enabling you to exchange file data without having to provide or manage storage capacity and 
performance. Amazon EFS is designed to expand to petabytes on demand without affecting applications, 
growing, and shrinking dynamically as files are added and removed. Because Amazon EFS features a 
simple web services interface, you can quickly and easily establish and configure file systems. The 
service maintains all your file storage infrastructure, saving you the trouble of deploying, patching, and 
maintaining complicated file system settings. In this study, EFS is mounted on EC2 to store, access, and 
manage files efficiently. 

Amazon EC2: Amazon Elastic Compute Cloud (Amazon EC2) is a computational resource that is scalable 
on the Amazon Web Services (AWS) Cloud. Using Amazon EC2 eliminates the need to invest in 
infrastructure upfront, allowing you to create and deploy services more readily. You can deploy as many 
virtual servers as you need, set security and networking, and manage storage using Amazon EC2. It 
allows you to scale up or down in response to variations in demand or surges in popularity, minimizing the 
need to assess traffic. In this study an instance is created on EC2 which acts like a virtual machine to 
perform operations with cloud features while running the pipeline. 

AMI: An instance can be launched using an Amazon Machine Image (AMI), which is a supported and 
maintained image offered by AWS. When you launch an instance, you must provide an AMI. When you 
need numerous instances with the same configuration, you may launch them all from a single AMI. When 
you need instances with specifications, you may start them using multiple AMIs. It is used to expand the 
disc's size so that processing huge volumes of data is quicker.  

An AMI includes the following: 

1. A template for the instance's root volume, or one or more Amazon Elastic Block Store (Amazon 
EBS) snapshots, instance-store-backed AMIs.  

2. Provides launch permissions which AWS accounts can utilize the AMI to launch instances.  

 

AWS CLI: The AWS Command Line Interface (AWS CLI) is a free and open-source tool that allows you to 
interface with AWS services using command-line shell commands. The AWS CLI allows you to start 
executing commands that provide functionality equivalent to that given by the browser-based AWS 
Management Console from the command prompt in your terminal program with minimal configuration. It is 
used to interact with AWS using the config and credential files which includes security credentials, the 
default Output format, and the default AWS Region.  

Docker: Docker is an open-source platform for executing applications and simplifying the development 
and distribution process. Docker grants the ability to automate the deployment of applications into 
Containers. Docker offers an extra layer of deployment engine on top of the virtualized and performed 
programs in a Container environment. It is meant to provide a rapid and lightweight environment in which 
code can be executed expediently, as well as an additional facility for the proficient work process to take 
the code from the computer for testing before production. In this study, docker is used to create an image 
with necessary libraries using a docker file and shell script which is later pushed to Amazon Elastic 
Container Registry (ECR). 

Python: Python version 3.8 is used for creating virtual environments and for writing scripts required for 
running the pipeline. 

RHEL: Red Hat Enterprise Linux (RHEL) version 8 for running the pipeline. It is a business-oriented Linux 
operating system (OS) developed by Red Hat. RHEL facilitates users with a stable, dependable base 
across environments. It is incorporated with all the capabilities required to offer application services and 
workloads promptly. RHEL, like all Linux distributions, is built on a free and open-source platform. 

Amazon ECR: Amazon Elastic Container Registry (Amazon ECR) is a secure, scalable, and credible 
container image registry service provided by AWS. It enables private repositories with AWS IAM 
resource-based permissions. This is implemented so that only certain users or Amazon EC2 instances 
can access your container repositories and images. Using any CLI one can push, pull and manage 
docker images. In the present work, AWS ECR is implemented to push docker images into the container, 
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which assists in initiating the script that would facilitate the pipeline's execution. 

Amazon ECS: Amazon Elastic Container Solution (Amazon ECS) is a container management service that 
is extremely scalable and instant. It can be used to start, stop, and manage containers on a cluster. 
Containers in Amazon ECS are described in a task definition, which is used to perform a particular 
job within a service. 

Amazon batch: AWS Batch enables the execution of batch computing workloads on the AWS Cloud. 
Batch computing is a common approach for developers, scientists, and engineers to gain access to 
enormous amounts of computing resources. AWS Batch removes the undifferentiated heavy lifting of 
establishing and managing the requisite infrastructure which is used in traditional batch computing tools. 
To overcome capacity restrictions, decrease compute costs, and provide rapid results, this service can 
efficiently deploy resources in response to submitted jobs.  

AWS batch is configured using the following attributes: 

1. Job Definition: AWS Batch job definitions define the steps involved in running a task. Even though 
each job must refer to a job specification, many of the parameters listed here can be changed at 
runtime. 
Some of the attributes specified in a job definition include: 

• Docker image to use with the container in your job.  

• The Required number of vCPUs and memory to use with the container. 

• Data volumes that should be used with the container. 

• IAM role to be used by the job for AWS permissions. 

 

2. Compute Environment:  Various computing environments are assigned to various job queues. 
Containerized batch jobs are executed in computing environments using Amazon ECS instances. 
One or more job queues may also be assigned to a particular computing environment. The 
scheduler uses the order of the related computing environments inside a job queue to decide 
which environment will process a job that is ready to be executed. 

3. Job Queue: Jobs are submitted to a job queue, where they reside to be scheduled to run in a 
computing environment. Multiple job queues can exist in an AWS account. The scheduler uses 
the priority assigned to each job queue to choose which ones should be assessed for execution 
first. The name, state, priority, and order of the computing environment are the four parameters of 
a task queue.  

 

Amazon cloud watch: CloudWatch is a management and monitoring service for AWS, providing real time 
action insights. All performance and operational data can be tracked and accessed in the form of logs 
and metrics on one single platform rather than server or database. It provides up to one-second access to 
metrics and log data.  CloudWatch enables you to monitor your whole stack (applications, infrastructure, 
network, and services) and use alarms, logs, and events data to automate actions and reduce mean time 
to resolution (MTTR). 

RStudio Workbench: RStudio workbench version 2022.07. 2+576.pro12 is used for the analysis of 
data. Enterprise-level integrated development environment for data is known as RStudio Workbench, 
scientists who need to build, collaborate, and scale in R and Python utilize it efficiently. On workbench, 
Professionals operate from a centralised server in their preferred language and with the computer 
resources that they require. In the present work we have used RStudio workbench for the analysis of the 
results which are generated after the processing of the RNA-seq pipeline. Later, the results are visualised 
using plots and graphs. It uses R code or R markdown, and R env for package management with 
mounted EFS.  

GitHub: Git version 2.31.1 is used in the pipeline. It is a platform for hosting code that allows for version 
control and collaboration. It allows you and others to collaborate on projects from anywhere. 

FileZilla: FileZilla is a free FTP client that offers customers a convenient, multi-interfaced solution for file 
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transfers via FTP. It allows users to upload, download, edit, and delete files all at single platform.  

 

BIOINFORMATICS TOOLS: 

Cutadapt: Cutadapt version 3.7 is used in the pipeline. It searches and eliminates adapter sequences, 
primers, poly-A tails, and other forms of irrelevant sequences from raw RNA-seq data. It aids in trimming 
by locating adapter or primer sequences in an error-tolerant way. It can also modify, and filter reads in a 
variety of ways. It also de-multiplexes the input data without discarding any adapter sequences(Martin, 
2011). 

Kallisto: Kallisto version 0.46.2 is used in the pipeline. It is a software for measuring transcript 
abundances from bulk and RNA-Seq data, or more broadly, target sequence abundances using high-
throughput sequencing reads. It is based on the new principle of pseudoalignment, which allows the quick 
determination of read compatibility with targets without the necessity for alignment(Bray et al., 2016). 

Snakemake: Snakemake version 6.5.3 is used as workflow management tool. The Snakemake workflow 
management system is a tool for creating robust and reproducible data analyses. Workflows are specified 
using a Python-based human-readable language. They can be scaled across server, cluster, grid, and 
cloud environments without requiring any changes to the workflow architecture. It can include a 
description of the software that must be installed, which will be automatically distributed to any 
executable environment (Mölder et al., 2021). 

 

WORKFLOW: 

In this study, to automate the processing of RNA-seq data and to calculate the abundance of transcripts 
(Figure 1), we deployed AWS services. Initially, python version 3.8 is installed for the creation of a python 
virtual environment on an AWS EC2 instance. Later, the Python virtual environment is activated, and it is 
scheduled to be launched every time the server is initialized. We also implemented AMI, a service offered 
by ec2, to expand the disc capacity so that we can effectively process huge volumes of data. Users can 
use AMIs developed by AWS or can freshly create and rapidly launch new instances with all the 
necessary resources. Tools and libraries such as Docker, AWS CLI etc. required for running the pipeline 
are installed. Eventually, all tools are configured according to the pipeline. In our systematic approach, 
Vendors transfer biological raw data to an AWS SFTP server via FileZilla, into a predefined folder 
structure followed by a cron job transfer to S3 accompanied by DQM validation (md5 checks). Data from 
S3 is accessed and transferred to Elastic file System (EFS) using an in-house developed suite of Python-
based command line helper scripts. For running the pipeline, Docker image is created using docker file in 
which a shell script is copied which contains the code to build the directories and pull the repositories 
from GitHub for a particular study. This workflow is customized to accept multiple sequence file formats. 
Before pushing the docker image into AWS ECR, a repository needs to be created. It is crucial to 
configure AWS Batch with job definition, job queue, and compute environment before running the pipeline 
as compute environment will be dynamically scaled up or down according to the pipeline. Multiple jobs 
can be executed concurrently at the same time for various kinds of studies. An in-house developed 
Python script is employed for examining job specifications, creating, and submitting jobs to AWS Batch. 
This python script leverages AWS Batch to spin up a dynamic Elastic Compute Cloud (EC2) instance 
according to user-specified performance needs. As the batch job starts running, the fastq processing 
pipeline that is the shell script copied into the docker image is launched which creates work directories, 
clones a GitHub repo of the corresponding project containing snakemake pipeline and after, successful 
completion of the pipeline, the output results are stored back in EFS, so that the data analysis is 
performed using RStudio Workbench.  

When the pipeline reaches the instance where the Snakefile is initialized, two bioinformatic tools Cutadapt 
and Kallisto start the processing of fastq files. Cutadapt searches and eliminates adapter sequences, primers, 

poly-A tails whereas Kallisto measure transcript abundances from bulk RNA-Seq data. The final abundance of 
transcript result marks the successful completion of the pipeline followed by an email notifying the user of 
the completion and a cloud watch link that allows the user to see the event logs. Moreover, if any error 
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occurs during the process a failure email is triggered notifying the user regarding the same. The results 
obtained after the processing of fastq files are further analyzed on RStudio Workbench. The data analysis 
results such as plots, csv, graphs etc are moved back to S3 for long term archival using CLI helper 
scripts.  

To benchmark the local workstation and cloud services, we ran Rna-seq analysis on the local workstation 
with instance type EC2 as t2.2xlarge with 8 vCPUs, 32 GiB of memory and storage of 105 GB, on cloud 
services (AWS EC2; https://aws.amazon.com/ec2/) (Table 1) 

For the benchmark, we used the RNA sequencing data of human of size 4.2 GB. 

The Rna seq data is composed two paired-end reads each of around 2 GB. The instance type of Amazon 
EC2 was t3.large with 2 vCPUs, 8.0 GiB of memory and up to 5 Gibps of bandwidth storage:1000 GB 

 

Table 1. Specifications and Benchmark Results of the Local and Cloud Computing Services 

Provider  CPUs RAM(Gbytes) Storage 
(Gbytes) 

OS Cost 
($)/h 

Times(hh:mm:ss)total 
process 

Local  

 

8 32 105 Red Hat 
Enterprise 
Linux 
Server 
release 
8.6  

NA 02:04:00 

AWS 
EC2  

(t3.large) 

2 8 1000 Red Hat 
Enterprise 
Linux 
Server 
release 
8.7 

$0.0835 00:22:17 

 

 

 

https://aws.amazon.com/ec2/
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Figure 1. Architecture Diagram of RNA-Seq Workflow Performed in the Pipeline. 

 

 

RESULTS AND DISCUSSION 

 

Traditional methods of NGS face several difficulties in terms of storage, transportation, analysis, and cost 
efficiency. NGS generates a vast amount of data that is challenging to process using a single workstation 
in a reasonable amount of time. RNA-seq, for example, is traditionally performed with human intervention, 
which slows down the process and increases the risk of manual error. To address these challenges, the 
development of highly automated pipelines for data processing is crucial. A comprehensive RNA-Seq 
analysis pipeline (RAP) has been developed using cloud services like AWS to address the challenges of 
NGS. Cloud computing offers solutions to the difficulties related to storage, transportation, analysis, and 
cost efficiency. The growth in the volume and complexity of NGS data requires cluster or high-
performance computing systems for analysis, but the cost of infrastructure and maintenance may be 
prohibitive for smaller institutions or laboratories and even for large institutions and pharmaceutical 
corporations. Cloud computing reduces infrastructure costs both initially and ongoing. The generation of 
large amounts of data from NGS platforms poses difficulties in processing, especially as the data size 
grows. AWS offers an unlimited storage capacity, making data storage less of a challenge. Conventional 
sequencing techniques, such as RNA-seq, are often slowed down by manual intervention and the risk of 
human error. By automating the sequencing process through cloud computing, the need for manual 
intervention is reduced, minimizing errors. When conducting manual Sequencing analysis, real-time 
monitoring of the process is not possible, but with AWS cloud services, it is possible to follow the process 
through live logs in CloudWatch. In traditional methods, the analysis setup must be established before 
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running the analysis. In contrast, cloud computing offers instances that can be dynamically created based 
on data needs. Custom pipelines can be designed specifically for assays like RNA-seq but can be 
modified to accommodate other assays as well and support a variety of fasta file formats. NGS pipelines 
are usually unstructured, but with the help of tools like Snakemake and Nextflow, they can be organized 
and streamlined when using AWS cloud computing. The integration of Snakemake results in a highly 
modular workflow. This allows advanced users to easily extract or expand parts of the workflow based on 
their specific research needs. They can also replace the tools used in the RNA-seq workflow with 
alternative tools to explore new pipelines for analyzing various forms of Sequencing data. AWS enables 
the efficient execution of multiple jobs at the same time. 

 

FUTURE PROSPECTS 

 

The advent of next-generation sequencing has enabled the concept of a single universal test to become a 
reality, with clinical and public health laboratories as well as researchers increasingly adopting this 
approach. In the past, researchers faced significant difficulties due to the expensive nature of sequencing 
and the computational challenges that came with it. Nevertheless, with the considerable reduction in 
sequencing costs and the accessibility of cloud computing, this method has become more attractive to 
researchers who can now easily integrate sequencing into their research plans while overcoming 
obstacles related to processing power and storage capacity. Today, next-generation sequencing 
platforms can generate vast amounts of data rapidly, allowing for the exploration of diverse biological 
inquiries. Such data includes gene function and regulation, the diagnosis and treatment of diseases, and 
omics profiling of individual patients to enable precision medicine. The enormous amount of data being 
generated presents several challenges in terms of storage, transportation, analysis, and cost. It has 
become increasingly difficult to process this data on a single workstation. As a result, cloud computing 
offers a promising solution for researchers dealing with computationally demanding problems, as it 
provides the means to overcome limitations in processing power and storage capacity. Regarding 
bioinformatics, cloud computing is still in its early stages and not restricted to the analysis of NGS data. 
The development of more powerful and user-friendly cloud platforms and programming models is being 
pursued to address complex scientific issues. Ultimately, scientists from all disciplines stand to benefit 
from the increased computational power available in this field. 
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