
1

PharmaSUG 2023 - Paper SD-183

Was the load okay?
Lisa Eckler, Lisa Eckler Consulting Inc.

ABSTRACT
After a series of database tables are loaded from multiple data sources and before using the data to feed
automated reports and business intelligence tools, we want to know whether the load was complete and
correct. This goes beyond confirming that the jobs ran without errors. The more precise concerns are:

• Were all of the data sources ingested?

• Were the right number of rows of data added or updated in each table?

• Were all of the appropriate columns populated?

• Do the data values make sense?

• Are the values of categorical variables different than expected?

This paper describes a fully automated SAS® process for comparing a new set of data loaded to one or
more tables with previous sets to check for reasonableness and completeness and highlight potential
problems. It can also be used more generally as a data comparison tool for two or more subsets of
similar data.

INTRODUCTION
This paper will use the requirements for, and development and implementation of, a verification process
for one particular use case and then explore how a similar process could be applied to others. Our
challenge was to verify the loading of several related tables encompassing several hundred columns of
data. The tables are loaded monthly but on different days. Some tables have rows added and partially
populated one day and the other columns populated another day. Recognizing that the load jobs have
run is easy. We receive an automated email confirmation when each database update job ends.
Knowing that the jobs ended successfully is a necessary and important first step but it’s not sufficient for
knowing that the data are correct and complete. As data is gathered from more sources and the feeds
have more dependencies, there is greater risk of an input being missed or an upstream change not being
properly integrated. Working on the analytics and reporting side, we don’t want to be bogged down by
the details of every data source but we do rely on our data loads being correct and complete. So, we
trust but we verify. Having an automated process to do the verification reinforces our ability to trust.

We anticipate slow monthly growth for many values in the data and seasonal variations for some others.
It would actually be a concern if there was absolutely no change from month to month. Looking at the
change in distribution of values from month to month is helpful for identifying concerns. Most of the time
there’s nothing interesting to see in the verification reports and that’s good news.

WHAT CHANGES ARE SIGNIFICANT?
For an example, refer to Output 1 for a snapshot of one regional metric for 2 months that may be
distributed in a report to the regions. From the trend and our knowledge of the data and circumstances,
we expect variation of up to 15% per month under normal circumstances. Anything beyond 15% would
warrant investigation. Output 2 shows the results for a third month. Based on that, Region B would be a
concern because of a sharp drop in volume. Only by looking at Output 3 and considering the whole
situation can we see that a new region, Region D, has opened up in month 3. Our subject matter expert
would know that Region D was created to divide Region B into 2 because it had been so growing so
rapidly in the past. Even before reports to the regions have been prepared, we can share news of the

2

continued success. If results for Region D didn’t appear in our database then we could be proactive in
investigating the problem and advising the regions about missing data.

Output 1: Data for two months with month over month trend

3

 Output 2: Data for third month

 Output 3: Data for 3 months with concerns flagged

The approach described in this paper is easy to set up. It’s metadata-driven to apply default assumptions
while allowing for overrides. It’s adaptable to changes in data and provides a comprehensive report on
the data with potential concerns flagged. The results are easy to review in order to identify concerns so it
makes efficient use of the reviewer’s time.

The techniques explored here expand on earlier work to perform high-level validation of results following
program or platform changes by comparing results to confirm expected similarities and explore expected
differences. The distinction here is that, with periodic database updates, we expect differences in data
values. Unlike system conversion activities, having exactly the same values and distributions in periodic
loads would indicate a problem with the data feed.

We will now look at how this approach was implemented for a specific situation, what sort of
customization was done and how this could be generalized for other uses.

BACKGROUND
Data verification is the process of confirming the accuracy and consistency of data. In situations where
we are loading massive amounts of new data without external opportunities to confirm the completeness,
we rely on confirming reasonableness by comparing to previous results. When there are anticipated

4

changes at the row level as well as expected growth in the number of rows, it can be more difficult to
assess newly loaded data and recognize possible failures in populating upstream data. We can,
however, apply some expectations of aggregate changes and flag aggregated values that are outside of
the expected range for investigation.

ALTERNATIVE APPROACHES
There are many approaches we may use formally or informally to verify data using SAS®. Sampling is
quick and easy but for our use case has been insufficient to identify unexpected values or an entirely
missing data source, such as the absence of inputs from one of several regions.

PROC COMPARE will detect differences in column values at the row level. When two data sets are
expected to be identical or at least most rows or columns are expected to be identical then it will identify
the exceptions where values differ. That would be useful for a conversion or validation effort. In the case
of our high-volume monthly tables, however, differences are to be expected. Using PROC COMPARE for
this would generate voluminous output without adding value.

There are, of course, trade-offs between the extent of analysis of the new data and the expense of the
analysis. We have found that once this robust verification process is set up, running a full analysis of
every load is well worth the cost when we consider the risk and potential human effort if invalid or
incomplete data were propagated.

A COMPREHENSIVE APPROACH
Rather than sampling or comparing row by row, we classify the columns and assign each column, by
name, to one or more treatment groups. Each treatment group will get a specific type of comparative
analysis that’s appropriate for the data in that column. The treatments may include:

• Finding the distribution of values for dimension columns and identifying new values that appear

• Counting overall rows and missing or null values

• Calculating and comparing the sums, minimum, maximum and average values for measure
columns for continuous variables.

Refer to Appendix 1 for additional treatment suggestions.

Experience has shown that full verification of the newly loaded data, totaling hundreds of millions of rows
at a time for us, is necessary. To minimize the effort and make it sustainable, we need a process that is:

• Thorough

• Repeatable

• Needing little or no maintenance

• Making efficient use of the reviewer’s time.

Our process is primarily data-driven, actually metadata-driven, but allowing overrides in treatment group
assignment minimizes the need for other customization when a new data source needs to be analyzed.
A key to ensuring the analysis is comprehensive is to analyze all the columns in a table, or at least default
to analyzing all columns but allow overrides at the column name level for those columns that really don’t
need to be analyzed. We also use optional include or exclude lists when not all columns in a table are
populated at the same time. It gives us the flexibility to analyze the results of each load without waiting
for all columns in the table to be populated.

If data values are unexpectedly skewed, we flag them for investigation. If, after investigating, we
determine that the data is accurate but unusual, we can advise the downstream data consumers before
they notice and question our data. Anticipating questions and communicating the answers improves
confidence in our data and reporting and saves time for multiple data consumers who might otherwise
need to explore this on their own.

5

HOW TO IMPLEMENT A COMPREHENSIVE SOLUTION
Tackle developing the analysis one table at a time to keep the process manageable and the output
organized. Develop one treatment at a time, beginning with how that treatment would be applied to just
one column. Treatment group overrides based on column name can be embedded in a macro that
handles all tables since the assignment logic is only executed once per table.

GETTING STARTED

Know Your Data
While the verification process described in this paper leads to deeper knowledge of the data being
loaded, some “local knowledge” and domain knowledge makes for a smoother start in establishing the
verification process. It helps to begin with subject matter expertise regarding expected values and an
understanding of expected metadata. Also, work with a subject matter expert to determine:

• What columns are most important

• What degree of variance is anticipated from one time period to another

• Whether there are any columns that merit special treatment

• What columns should not be analyzed or be analyzed only at the highest level because they
contain wide-ranging or unreliable data.

If your database architects enforce standards for consistent naming of columns across tables, be grateful
and take advantage of that when assigning analytical treatments. If, for example, every date column
starts with “Date” or includes “_Date” in the column name, it will be easier to identify and classify dates for
a different sort of treatment than other numeric data. Similarly, there may be database naming
conventions around columns like:

• Components of addresses – Street, City, Zip or Postal Code may all have an “Address” prefix

• Flags or Boolean data – may all have “_Flag” in the column name

• Codes, which may have numeric representation but represent categorical values – may have
“_Code” in the column name

• Quantities or amounts in columns containing being continuous numerics – may include
“_Amount” or “QTY” or “Dollars”. These may suggest a large range of values where the exact
value per row isn’t important but the cumulative value OR presence of positive, zero and negative
values matters.

What else do we know about the data? Apart from considering naming conventions, data types and
formats may help determine the best analytical treatment. Some other things to consider when deciding
on treatments are:

• What are the key columns? Keys will have a large range of distinct values and the actual values
aren’t important BUT missing or zero or null values might be important.

• Are there columns that have so many values that the specific values don’t matter but the
presence of some value as opposed to null is worth counting?

• Are there any exceptional or unreasonable values such as null, zero, or negative amounts that
should be counted because a change in the frequency distribution warrants investigation?

• Is there seasonality or expected natural variation by day of week/month? We might compare the
most recent month to previous month or month to same month last year. Or the same analysis
could be applied to compare week over week, quarter over quarter, quarter over same quarter
last year, etc.

• What is the default treatment for columns that don’t fall into the above? Perhaps default to one
treatment for columns with numeric data and another for character data.

6

In the absence of enforced naming standards and familiarity with the data, it may be worth running PROC
SUMMARY on all the numeric columns and PROC FREQ on the character columns initially to see the
distinct values before making a decision on whether to treat each of those columns as continuous,
categorical or not needing to be verified:

Make Decisions
Begin with the table with the most columns in it. Find all data column names, types and formats in the
table and save that information in a temporary SAS data set. This can be achieved using PROC
CONTENTS or querying Dictionary Tables to get the simplest form of metadata. Initial decisions at the
design stage involve what sort of treatment each data column requires and what level of detail is best for
quantifying the results. It helps to have some knowledge of the data and expected differences in order to
categorize columns but analyzing every column in detail as a first attempt and then tweaking the
assignment logic later is okay.

Establish Treatment by Column Name
We let the metadata drive the default selection of analytical treatment but can specify overrides based on
naming conventions or specific column names. Most columns with numeric data type (other than dates)
are measures but there may be numeric values used for categorical variables as well. Using the
temporary SAS data set containing column names as input to a DATA STEP, assign each column name
to a treatment group depending on the type of analysis that’s appropriate for that data. The choice of
treatment may be based on some combination of data type, format, database column naming convention,
knowledge of expected values or usage. If there are nuances to the data values that require more
specialized treatment, it can be achieved by further subdividing the treatments OR by using formats which
could be passed as macro variables. For example, if it’s important to compare some dates down to the
day level but other dates to the year level only, that could be achieved by assigning some columns to a
treatment group that generates frequency counts with format year4. and other columns to a treatment
group that generates counts with format yymmdd10. Output 4 below shows the result of varying the
granularity with a user-define date format.

Refer to Appendix 1 for some suggested treatments by data type and subtype.

Choose Appropriate Granularity
When verifying the data, the level of granularity that’s of interest might be very different from what’s
needed by the ultimate consumer of the data. Someone in a management or decision-making role will be
interested in changes in distribution of order volume over time but, from a data quality perspective, we
want clues as to whether all the data was loaded. Consider what level of granularity makes sense for
each column. Perhaps ranges of values are sufficient. A subject matter expert can help suggest what
level of detail is best for columns that take on a large range of values.

We may control the granularity of frequency counts for amounts or volumes using a user-defined format
such as:

7

If our database has regular updates and the columns include START_DATE which could be any day, it
might not matter at the table level exactly what the distribution of new dates is but it would matter if there
are no new dates being added or if there’s a reduced frequency of older dates. In this case, summarizing
to the year or quarter level might be sufficient for analysis. We might expect to see an increasing count of
rows for the most recent time period and a static or non-increasing count for previous years. We might
use SAS date formats to control the granularity or apply a user-defined format for even more flexibility.
For example, to group together all the years prior to 2001, then group together 10 year bands, then one
year and then quarterly detail:

Output 4: Summarizing two subsets of data

Output 4 shows what happens when our data is printed using the format MY_DATE as defined above to
categorize the date values. Output 5 shows combining the two sets of data shown in Output 4 and draws

8

attention to the absence of data for 2011 – 2020 that might not be noticed in Output 4. That would lead
us to investigate whether data for some time period was intentionally purged or was missed in the second
month.

Output 5: Comparing the two monthly subsets

Expected Variability
We need to consider our tolerance for variation to determine what should be flagged for investigation.
That is, should we flag a 2% difference in the sums of a metric month over month or is it only noteworthy
if the change is 5%? Or does only greater than 10% change matter? What about the percentage
difference in distribution of values for attributes? There may need to be different levels of flagging for
different tolerances. For example, flag +/- 5% with one style and flag +/- 10% with another.

Whether for metrics or attributes, we look at the absolute value of the difference, but that is definitely a
choice that might be different for other use cases.

Building the Logic
The components can be rearranged depending on the requirement. The building blocks for the process
are simple PROCs and DATA STEPS that are used to:

• Define macro variables for the selection of the subsets (such as different month end dates)

• Define and code what sort of treatments will should be applied. (Refer to Appendix 1 for
suggestions.) These will be described as TREATMENT1, TREATMENT2, TREATMENT3, etc.

• Create or filter for the subsets of data to be compared. For our example that will be a series of
snapshot dates

• Capture the column names, types and formats from the most recent subset of data from the table
in a temporary SAS data set

• Decide how each treatment group should be analyzed for verification

• Assign column names to treatment groups as described in the “Establish Treatment by Column
Name” section above. Depending on the environment, treatment types assigned based on
naming conventions may be common to just one table, a data mart or an entire database. The
treatment assignment logic may hard-coded in the assignment step, included as an %INCLUDE
module or passed as a parameter depending on the scope of the analysis.

• Create a list per treatment of the column name(s) that treatment should be applied to

• For each table, apply each treatment:

o to every column named in the column list for that treatment via the column list

9

§ for each of the comparative subsets of data

§ combine and compare the results of analyzing each subset to identify variability
across the subsets

§ compare the variability to our tolerance and flag concerns

§ write the results with the flags to our output destination.

Let’s work through an example of how to build and apply the logic blocks, substituting
SASHELP.SNACKS for our database table. First, we’ll see how to capture the metadata to drive the
treatment group assignments. Running the code shown here produces the results shown as Output 6:

Output 6: Results of running PROC CONTENTS on SASHELP.SNACKS

Continuing the example from above, we can see from the column labels that columns
“Advertised” and “Holiday” are Boolean. “Price” and “QtySold” are both numeric. We
can learn from running a preliminary PROC SUMMARY or PROC FREQ or browsing
the data set that “Price” actually has only a handful of distinct values and “QtySold” has
a large number of values. “Product” is character but takes on a limited number of values, so a count of
the distribution of those values would be meaningful. Column “Date” is a date value but rather than the
specific date, summarizing to monthly level is sufficient for our purposes. So, we’d want three different
treatment types for our data. Table 1 shows the treatments. This classification into treatment groups
seems like the best fit for this particular data but it is subjective. Others might choose different
classification or different treatment for each group of columns.

Table 1: Treatments to be applied

Know your data

Granularity

Make decisions

10

The step to assign treatments might look like this:

Note that we default to assigning column names to a treatment group (Treatment Group 1 in this
example) if they don’t have a special treatment. This lets us manage by metadata. The process is
dynamic so if new columns are added to our database table, they won’t be inadvertently left out of the
verification. Output 7 shows the result of the DATA step.

Output 7: Results of assigning column names to treatment groups

Now that every column name has been assigned to a treatment group, based on data type, data format,
possibly the column naming convention plus what we know about the column usage, we’ll create a macro
variable list of column names per treatment group:

Again, the ongoing process is dynamic and won’t need to be modified when new columns are added to
the table unless we need to define a whole new treatment group. Of course, we could turn the PROC
SQL step above into a macro loop that creates a macro string named column_list&i where the
treatment_group = &i and is repeated over the number of distinct treatment groups in the TREATMENTS
table. Output 8 shows the results of the macro variables created above.

Assign decisions

Create macro
lists of columns
per treatment

11

Output 8: The result of %PUT statements for our macro lists

We’ve decided on the type of analysis that’s appropriate for each category of variables (which we’ll
describe as Treatment1, Treatment2 and Treatment3), assigned a treatment group for each column name
and generated a macro variable list of the names of columns to be subject to each style of analysis
(which we called column_list1, column_list2 and column_list3).

Define – or derive based on current date or maximum date in the data table – what time points are to be
analyzed and assign those dates to macro variables. Continuing with the SASHELP.SNACKS data set,
which only holds data up to 2004, let’s choose 4 months ending in that year to compare and assign these
values:

For an actual database table, the date macro variables above would be in the form dates are stored in
that database. Split the data into subsets for comparison. We will work with 4 subsets of data and
compare the latest time period to data from the previous time period.

Now it’s time to code the actual treatments. We’ll start coding to analyze a single column, using what will
we designate as Treatment 1. The flow for analyzing one column of data with Treatment 1 is illustrated in
Figure 1. Figure 2 shows Treatment 1 integrated into the overall flow.

 Figure 1: Flow for analyzing one column using Treatment 1

Date macro
variables

12

The first attempt at coding the above might look like this, for just one specific column name:

Once that works, the code could be converted to a macro to reduce the overall number of lines of code:

Then the macro could be adapted to use a variable column name:

Build the Logic

13

If we repeat TREATMENT1 over all the columns in &column_list1, the results will be as shown in Output
9. It shows a large number of flags so we’d want to consider whether there was a problem with the data
and if there wasn’t, then reconsider the type and sensitivity of the treatment applied to the columns.

We will develop the additional two treatments. The structure for the TREATMENT2 macro is quite similar
to TREATMENT1 but the analysis uses PROC SUMMARY instead of PROC FREQ. Figure 3 illustrates
Treatment 2.

Code each
Treatment as
a macro

14

Figure 2: Overall flow for our month over month verification process for Treatment 1

15

Output 9: Result of running TREATMENT1 over &column_list1

16

 Figure 3: Flow for analyzing one column using Treatment 2

The flow for TREATMENT3 is the same as TREATMENT1. The only difference is the use of the
MONYY7. format to group the counts by month instead of by day. The code is shown here:

To eliminate the need for TREATMENT3, we could enhance the coding of TREATMENT1 by adding
another macro variable for the format.

Granularity

17

For each run, we use a main macro that is executed once per table being analyzed, with parameters to
control the execution. Since different columns in one table may be refreshed on different days, some
tables may have multiple passes of the verification process on different days in the same month where
each pass explicitly includes or excludes some columns. What the main macro does:

• Iterate through the list of column names assigned to each style of analysis and run the analysis
(frequency by value, sum, count, etc.) for each of the data subsets by calling the Treatment
macro and consolidating the results for each column.

• Combine the results of the analyses for each subset, one column name at a time, side-by-side
and calculate % change between the most recent and the previous period or data set.

• Flag each row of output if the change is greater than the defined tolerance. We may be
comparing sums, averages, counts, or the distribution of values.

• We use macro variables for an optional DROP or KEEP list of columns to verify. If not all
columns in a table are updated on the same date, there may be a need to run the comparison for
only certain columns. For example if <Column1, Column2 and Column3> get updated on the first
day of each month but <Column4> doesn’t get updated until the 15th of the month, there’s no
point in showing a 100% change in Column4 at the time it makes sense to be analyzing the first 3
columns. Running the verification in two passes, with DROP Column4 as a parameter on the first
pass and KEEP Column4 on the second pass will be more efficient and more meaningful.

There are parameters to supply the table name and specify column names to include or exclude in case
different columns are populated at different times. Without an include or exclude list, the default is to
analyze all columns, subject to the treatment group assignment.

USING THE COMPREHENSIVE VERIFICATION PROCESS

Structuring the Process to Invoke the Logic
To maintain flexibility, our periodic verification process uses a macro to process one table name at a time,
comparing subsets of data from that table as of different dates. It is standardized to derive the
comparison dates but these could be passed as parameters to allow even greater flexibility. Other
parameters are formats for appearance or summarization and an include or exclude column list.

Call the main macro to analyze each table. One driver program may invoke the macro multiple times,
once for each table. Figure 4 shows the steps that one invocation of the driver might include. This would
analyze one table at 4 different points in time using 3 different treatments.

18

Figure 4: Overall flow for our month over month verification process, comparing 4 points
in time with 3 treatments iterated over column names

Analyzing Periodic Loads
These generated analyses aren’t helpful unless someone with sufficient understanding of the data
reviews them promptly and follows up on any flagged concerns. Comparing values across months can
generate a lengthy report. We make easy to review the reports by using visual clues to draw attention to
potential concerns with the data.

A dramatic increase or even a month over month trend of increases in the frequency of zeroes, nulls,
“n/a” or “Other” values might alert us to a new problem with a data feed. These could be a sign of data
from a new source being added to our tables without being properly coded, for example.

Data Insights: An Unexpected Benefit
The intention was for this analysis of data to be preliminary to any actual use of the data to provide
insights to our data consumers. There was an unexpected benefit, though. Applying this comprehensive
automated comparison process to multiple tables with many columns can produce screen after screen
filled with columns of numbers representing detailed distributions. While it isn’t the slickest looking report,
a quick visual review of the results can provide a lot of insight and a reminder about correlations in the
data for someone who is familiar with using the data. We can also quickly confirm that any expected new
values are reflected.

Additional Use Cases
Once we have a comprehensive verification process built, it can be used for more than just comparing
similar subsets of data at different points in time. Other applications include system validation and data
profiling.

Validation
A very similar process can be applied to the data validation we might do after a system change. It would
involve comparing just two sets of data instead of three but the comparative logic per type of data column
would be the same. Wrapping the logic in macros allows it to be redeployed this way. In this case, we
expect the data to be the same before and after the change, or at least mostly the same but with some
expected differences. Instead of comparing subsets of data from the same database at different dates,
we would compare data from two different databases as of the same date. This would typically involve

19

just 2 comparison sets, ‘before’ and ‘after’ or ‘original’ and ‘modified’. Other than that, the same logic can
be applied to confirm equivalence or highlight differences at a summarized level. In this case, the desired
outcome is little or no difference. The tolerance for change in values would be zero and any differences
would need to be investigated. Figure 4 shows the flow of that for one treatment, as an example.

A combination of our original requirement and the original versus modified comparison approach could be
used for verifying loads of batches of data that aren’t loaded on a regular schedule.

Figure 4: Flow for comparing Before and After data

Data Profiling
Because the comprehensive verification analyzes the distribution of all metrics and dimensions in a set of
data, it could also be easily adapted to profile one subset of data against another. While our initial
requirement was to compare subsets of a table at different points in time, it could also be used to profile
the metrics of one region against others as of the same point in time to identify regional differences
beyond the obvious ones like location. Once the logic described above is built, it can be repurposed and
profiling is just a WHERE clause away.

This can also be used as a problem-solving step. If the periodic verification of data by point in time raised
concerns and there was a hypothesis as to where there was a problem in the data, rerunning the same
periodic verification logic with a WHERE clause added when creating the subsets could be used validate
the hypothesis.

Although the process described throughout this paper refers to multiple database tables, it could easily be
applied to a collection of SAS data sets or series of subsets of one SAS data set or any other collection of
data that could be readily imported into a SAS data set for comparison.

Adding a WHERE parameter apart from the date to the verification process would make the process
ready to be applied for data profiling at any time.

20

ENHANCING THE PROCESS
Our process continues to evolve as it gets applied to new data sources and we find new ways to make
the analyses valuable. There are also lots of possible enhancements to make the process friendlier and
more flexible.

Adding Visual Cues
We’ve arrived at a fairly simple method of flagging potential concerns in the analysis report: adding an
alert in the rightmost column of the output. If the distribution is similar to the prior period then the alert
column is blank. If the distribution is unexpected then there are a series of asterisks, where number of
asterisks corresponds to the degree of difference. That means scanning down one column of the output
will identify potential concerns.

There are several SAS papers and presentations available on how to use traffic-lighting with ODS output.
This would be a good way to draw attention to discrepancies of concern with colour-coding.

With such a powerful process, there’s a long list of possible enhancements to make it even more broadly
applicable, incorporating the additional use cases described above. Some of the wish list items are:

• Make the number of comparison sets variable. Our preferred number for comparing
corresponding sets of data at different points in time, such as monthly, is the base (most recent)
set plus 3 prior sets. Making the number of subsets macro driven would allow the expansion to
additional time periods, address use for validating program or feed changes by comparing
“Before” and “After” data sets and use for data profiling. This would make the number of
iterations of every analysis step macro variable driven and also make the lists of data sets in the
program logic macro driven. Implementing this is non-trivial but definitely doable.

• Make the tolerances for flagging variability parameters (percentage change in sum and
percentage change in distribution) so they can be varied at the table level. Combining this with
the use of include or exclude column list would give ultimate control of tolerances at the column
level.

Further Automation
There are some enhancements that could make the ongoing use of the process friendlier:

• Kick off the verification of each table or set of columns automatically when the data is populated.
Instead of relying on a manual intervention here, we could use an automated process to either
query a checkpoint table that is updated when the load completes and appears to be successful
or query the relevant tables directly to look for new snapshot dates.

• Make the process entirely data-driven to further reduce the need for customization for new data
sources or columns. Use PROC SUMMARY to check number of distinct values occurring for
each column and use the result of that to automatically assign the columns that have a very large
number of values to an analysis category that doesn’t list all the details.

• Highlight columns requiring follow-up in an email message. Currently, at the completion of the
analysis run there is an automated email message to advise that the results are ready for review
in a particular location. Flagging of results that are outside of our tolerances is already done in a
DATA STEP within the process. The resulting data set could be filtered to find which data
columns and values are outside of our tolerances and a filtered PRINT of that data set could be
incorporated into the email message.

21

CONCLUSION
Once a macro has been written to handle processing each of the analysis treatments over a macro list of
column names and initial assignments and overrides have been established for a table or set of tables,
we can get an automated analysis of data loaded monthly, in a convenient format that makes it easy to
spot concerns or recognize changes.

This solution is comprehensive. Because it can automatically generate analysis for all columns, there is
no temptation to only verify critical or most-used columns. Sometimes a significant concern is identified
based on a pattern of discrepancies in the distribution of values in less frequently used data columns. It
has proven to be absolutely worth the processing time and brief human review time to catch problems as
well as unexpected results which are not data problems but may generate questions or uncertainly about
the downstream results.

This approach is a complement to, not a substitute for, subject matter expertise. It allows for efficient use
a subject matter expert’s time. Verifying data helps us to trust the data we use and share with our data
consumers. Having early insight into data changes and results, as well as possible data issues, also
improves our credibility.

ACKNOWLEDGMENTS
Thanks to Marje Fecht for her very enthusiastic encouragement for enhancing this verification process
and writing about it.

Your comments and questions are valued and encouraged. Contact the author at:

Lisa Eckler

Lisa Eckler Consulting Inc.

lisa.eckler@sympatico.ca

Any brand and product names are trademarks of their respective companies.

22

Appendix 1: Possible Treatment by Usage

Data Type

Sub-Type
or
Description

Examples

Possible Analyses for
Verification

Numeric

Discrete

Data that comes from a limited set of values,
also known as discrete values (often but not
always integers) like:

• Grade level
• Age (in years)
• Year of birth
• Tenure (in years)
• Number of interactions last month
• Number of people in household
• Sales Rep ID (if numeric)
• Shoe size

Frequency count per
individual value or
range

Numeric Continuous

Data that can take on a large range of values,
like:

• Hours or Days Since Inception
• Bank Balance
• Net Worth
• Sales Volume

Sum, average,
maximum, minimum,
count nulls OR
frequency count per
range

Numeric Dates

Data stored as numeric in SAS that can take
on a vast range of value like:

• Date of Birth
• First Interaction Date
• Transaction Date
• Month End Date
• Most Recent Interaction Date

Frequency count per
range of values

Character Categorical
data

Data that comes from a limited set of values
like:

• Province/State Code
• Country
• Sales Region
• True/False/Null
• Yes/No/Maybe
• Age Range
• Letter Grade (ranking)
• Sales Rep ID (if alphanumeric)

Frequency count per
individual value

Character String

Data that can take on many values like:
• Customer name
• City/Town name
• Comment
• Description

Count blank strings or
those containing “n/a”
or other default
indicator

Character Structured
string

Data string with an expected length or pattern
like:

• Postal Code or Zip Code
• Phone number

Perl Regular
Expression

Character or
Numeric Key

Data that takes on a large range of unique
values but should never be blank or null, such
as:

• Account Number
• Employee ID

Frequency count of
blank or null values

