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ABSTRACT  
After a series of database tables are loaded from multiple data sources and before using the data to feed 
automated reports and business intelligence tools, we want to know whether the load was complete and 
correct. This goes beyond confirming that the jobs ran without errors.  The more precise concerns are: 

• Were all of the data sources ingested?   

• Were the right number of rows of data added or updated in each table?   

• Were all of the appropriate columns populated?   

• Do the data values make sense?   

• Are the values of categorical variables different than expected?   

This paper describes a fully automated SAS® process for comparing a new set of data loaded to one or 
more tables with previous sets to check for reasonableness and completeness and highlight potential 
problems.  It can also be used more generally as a data comparison tool for two or more subsets of 
similar data. 

 

INTRODUCTION  
This paper will use the requirements for, and development and implementation of, a verification process 
for one particular use case and then explore how a similar process could be applied to others.  Our 
challenge was to verify the loading of several related tables encompassing several hundred columns of 
data.  The tables are loaded monthly but on different days.  Some tables have rows added and partially 
populated one day and the other columns populated another day.  Recognizing that the load jobs have 
run is easy.  We receive an automated email confirmation when each database update job ends.  
Knowing that the jobs ended successfully is a necessary and important first step but it’s not sufficient for 
knowing that the data are correct and complete.  As data is gathered from more sources and the feeds 
have more dependencies, there is greater risk of an input being missed or an upstream change not being 
properly integrated.  Working on the analytics and reporting side, we don’t want to be bogged down by 
the details of every data source but we do rely on our data loads being correct and complete.  So, we 
trust but we verify.  Having an automated process to do the verification reinforces our ability to trust. 

We anticipate slow monthly growth for many values in the data and seasonal variations for some others.  
It would actually be a concern if there was absolutely no change from month to month.  Looking at the 
change in distribution of values from month to month is helpful for identifying concerns.  Most of the time 
there’s nothing interesting to see in the verification reports and that’s good news.   

WHAT CHANGES ARE SIGNIFICANT? 
For an example, refer to Output 1 for a snapshot of one regional metric for 2 months that may be 
distributed in a report to the regions.  From the trend and our knowledge of the data and circumstances, 
we expect variation of up to 15% per month under normal circumstances.  Anything beyond 15% would 
warrant investigation.  Output 2 shows the results for a third month.  Based on that, Region B would be a 
concern because of a sharp drop in volume.  Only by looking at Output 3 and considering the whole 
situation can we see that a new region, Region D, has opened up in month 3.  Our subject matter expert 
would know that Region D was created to divide Region B into 2 because it had been so growing so 
rapidly in the past.  Even before reports to the regions have been prepared, we can share news of the 
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continued success.  If results for Region D didn’t appear in our database then we could be proactive in 
investigating the problem and advising the regions about missing data. 

 

 
Output 1: Data for two months with month over month trend 
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      Output 2:  Data for third month 

 

 
      Output 3:  Data for 3 months with concerns flagged 

 

The approach described in this paper is easy to set up.  It’s metadata-driven to apply default assumptions 
while allowing for overrides. It’s adaptable to changes in data and provides a comprehensive report on 
the data with potential concerns flagged.  The results are easy to review in order to identify concerns so it 
makes efficient use of the reviewer’s time. 

The techniques explored here expand on earlier work to perform high-level validation of results following 
program or platform changes by comparing results to confirm expected similarities and explore expected 
differences.  The distinction here is that, with periodic database updates, we expect differences in data 
values.  Unlike system conversion activities, having exactly the same values and distributions in periodic 
loads would indicate a problem with the data feed. 

We will now look at how this approach was implemented for a specific situation, what sort of 
customization was done and how this could be generalized for other uses. 

 

BACKGROUND 
Data verification is the process of confirming the accuracy and consistency of data.  In situations where 
we are loading massive amounts of new data without external opportunities to confirm the completeness, 
we rely on confirming reasonableness by comparing to previous results.  When there are anticipated 
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changes at the row level as well as expected growth in the number of rows, it can be more difficult to 
assess newly loaded data and recognize possible failures in populating upstream data.  We can, 
however, apply some expectations of aggregate changes and flag aggregated values that are outside of 
the expected range for investigation. 

ALTERNATIVE APPROACHES 
There are many approaches we may use formally or informally to verify data using SAS®.  Sampling is 
quick and easy but for our use case has been insufficient to identify unexpected values or an entirely 
missing data source, such as the absence of inputs from one of several regions. 

PROC COMPARE will detect differences in column values at the row level.  When two data sets are 
expected to be identical or at least most rows or columns are expected to be identical then it will identify 
the exceptions where values differ.  That would be useful for a conversion or validation effort.  In the case 
of our high-volume monthly tables, however, differences are to be expected.  Using PROC COMPARE for 
this would generate voluminous output without adding value.  

There are, of course, trade-offs between the extent of analysis of the new data and the expense of the 
analysis.  We have found that once this robust verification process is set up, running a full analysis of 
every load is well worth the cost when we consider the risk and potential human effort if invalid or 
incomplete data were propagated. 

A COMPREHENSIVE APPROACH 
Rather than sampling or comparing row by row, we classify the columns and assign each column, by 
name, to one or more treatment groups.  Each treatment group will get a specific type of comparative 
analysis that’s appropriate for the data in that column. The treatments may include: 

• Finding the distribution of values for dimension columns and identifying new values that appear 

• Counting overall rows and missing or null values 

• Calculating and comparing the sums, minimum, maximum and average values for measure 
columns for continuous variables. 

Refer to Appendix 1 for additional treatment suggestions. 

Experience has shown that full verification of the newly loaded data, totaling hundreds of millions of rows 
at a time for us, is necessary.  To minimize the effort and make it sustainable, we need a process that is: 

• Thorough 

• Repeatable 

• Needing little or no maintenance 

• Making efficient use of the reviewer’s time. 

Our process is primarily data-driven, actually metadata-driven, but allowing overrides in treatment group 
assignment minimizes the need for other customization when a new data source needs to be analyzed.  
A key to ensuring the analysis is comprehensive is to analyze all the columns in a table, or at least default 
to analyzing all columns but allow overrides at the column name level for those columns that really don’t 
need to be analyzed.  We also use optional include or exclude lists when not all columns in a table are 
populated at the same time.  It gives us the flexibility to analyze the results of each load without waiting 
for all columns in the table to be populated. 

If data values are unexpectedly skewed, we flag them for investigation.  If, after investigating, we 
determine that the data is accurate but unusual, we can advise the downstream data consumers before 
they notice and question our data.  Anticipating questions and communicating the answers improves 
confidence in our data and reporting and saves time for multiple data consumers who might otherwise 
need to explore this on their own. 
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HOW TO IMPLEMENT A COMPREHENSIVE SOLUTION 
Tackle developing the analysis one table at a time to keep the process manageable and the output 
organized.  Develop one treatment at a time, beginning with how that treatment would be applied to just 
one column.  Treatment group overrides based on column name can be embedded in a macro that 
handles all tables since the assignment logic is only executed once per table. 

GETTING STARTED 

Know Your Data 
While the verification process described in this paper leads to deeper knowledge of the data being 
loaded, some “local knowledge” and domain knowledge makes for a smoother start in establishing the 
verification process.  It helps to begin with subject matter expertise regarding expected values and an 
understanding of expected metadata.  Also, work with a subject matter expert to determine: 

• What columns are most important 

• What degree of variance is anticipated from one time period to another 

• Whether there are any columns that merit special treatment 

• What columns should not be analyzed or be analyzed only at the highest level because they 
contain wide-ranging or unreliable data. 

If your database architects enforce standards for consistent naming of columns across tables, be grateful 
and take advantage of that when assigning analytical treatments.  If, for example, every date column 
starts with “Date” or includes “_Date” in the column name, it will be easier to identify and classify dates for 
a different sort of treatment than other numeric data.  Similarly, there may be database naming 
conventions around columns like: 

• Components of addresses – Street, City, Zip or Postal Code may all have an “Address” prefix 

• Flags or Boolean data – may all have “_Flag” in the column name 

• Codes, which may have numeric representation but represent categorical values – may have 
“_Code” in the column name 

• Quantities or amounts in columns containing being continuous numerics – may include 
“_Amount” or “QTY” or “Dollars”.  These may suggest a large range of values where the exact 
value per row isn’t important but the cumulative value OR presence of positive, zero and negative 
values matters. 

What else do we know about the data?  Apart from considering naming conventions, data types and 
formats may help determine the best analytical treatment.  Some other things to consider when deciding 
on treatments are: 

• What are the key columns?  Keys will have a large range of distinct values and the actual values 
aren’t important BUT missing or zero or null values might be important. 

• Are there columns that have so many values that the specific values don’t matter but the 
presence of some value as opposed to null is worth counting?  

• Are there any exceptional or unreasonable values such as null, zero, or negative amounts that 
should be counted because a change in the frequency distribution warrants investigation? 

• Is there seasonality or expected natural variation by day of week/month?  We might compare the 
most recent month to previous month or month to same month last year.  Or the same analysis 
could be applied to compare week over week, quarter over quarter, quarter over same quarter 
last year, etc. 

• What is the default treatment for columns that don’t fall into the above?  Perhaps default to one 
treatment for columns with numeric data and another for character data. 
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In the absence of enforced naming standards and familiarity with the data, it may be worth running PROC 
SUMMARY on all the numeric columns and PROC FREQ on the character columns initially to see the 
distinct values before making a decision on whether to treat each of those columns as continuous, 
categorical or not needing to be verified:  

 

Make Decisions 
Begin with the table with the most columns in it.  Find all data column names, types and formats in the 
table and save that information in a temporary SAS data set.  This can be achieved using PROC 
CONTENTS or querying Dictionary Tables to get the simplest form of metadata.  Initial decisions at the 
design stage involve what sort of treatment each data column requires and what level of detail is best for 
quantifying the results.  It helps to have some knowledge of the data and expected differences in order to 
categorize columns but analyzing every column in detail as a first attempt and then tweaking the 
assignment logic later is okay.  

Establish Treatment by Column Name 
We let the metadata drive the default selection of analytical treatment but can specify overrides based on 
naming conventions or specific column names.  Most columns with numeric data type (other than dates) 
are measures but there may be numeric values used for categorical variables as well.  Using the 
temporary SAS data set containing column names as input to a DATA STEP, assign each column name 
to a treatment group depending on the type of analysis that’s appropriate for that data.   The choice of 
treatment may be based on some combination of data type, format, database column naming convention, 
knowledge of expected values or usage.  If there are nuances to the data values that require more 
specialized treatment, it can be achieved by further subdividing the treatments OR by using formats which 
could be passed as macro variables.  For example, if it’s important to compare some dates down to the 
day level but other dates to the year level only, that could be achieved by assigning some columns to a 
treatment group that generates frequency counts with format year4. and other columns to a treatment 
group that generates counts with format yymmdd10. Output 4 below shows the result of varying the 
granularity with a user-define date format. 

Refer to Appendix 1 for some suggested treatments by data type and subtype.   

Choose Appropriate Granularity 
When verifying the data, the level of granularity that’s of interest might be very different from what’s 
needed by the ultimate consumer of the data.  Someone in a management or decision-making role will be 
interested in changes in distribution of order volume over time but, from a data quality perspective, we 
want clues as to whether all the data was loaded. Consider what level of granularity makes sense for 
each column. Perhaps ranges of values are sufficient.   A subject matter expert can help suggest what 
level of detail is best for columns that take on a large range of values.   

We may control the granularity of frequency counts for amounts or volumes using a user-defined format 
such as: 
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If our database has regular updates and the columns include START_DATE which could be any day, it 
might not matter at the table level exactly what the distribution of new dates is but it would matter if there 
are no new dates being added or if there’s a reduced frequency of older dates.  In this case, summarizing 
to the year or quarter level might be sufficient for analysis.  We might expect to see an increasing count of 
rows for the most recent time period and a static or non-increasing count for previous years.  We might 
use SAS date formats to control the granularity or apply a user-defined format for even more flexibility.  
For example, to group together all the years prior to 2001, then group together 10 year bands, then one 
year and then quarterly detail:  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output 4:  Summarizing two subsets of data 
 

Output 4 shows what happens when our data is printed using the format MY_DATE as defined above to 
categorize the date values.  Output 5 shows combining the two sets of data shown in Output 4 and draws 
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attention to the absence of data for 2011 – 2020 that might not be noticed in Output 4.  That would lead 
us to investigate whether data for some time period was intentionally purged or was missed in the second 
month.  

 
Output 5: Comparing the two monthly subsets 

 

Expected Variability 
We need to consider our tolerance for variation to determine what should be flagged for investigation.   
That is, should we flag a 2% difference in the sums of a metric month over month or is it only noteworthy 
if the change is 5%?  Or does only greater than 10% change matter? What about the percentage 
difference in distribution of values for attributes?  There may need to be different levels of flagging for 
different tolerances.  For example, flag +/- 5% with one style and flag +/- 10% with another.   

Whether for metrics or attributes, we look at the absolute value of the difference, but that is definitely a 
choice that might be different for other use cases. 

Building the Logic  
The components can be rearranged depending on the requirement.  The building blocks for the process 
are simple PROCs and DATA STEPS that are used to: 

• Define macro variables for the selection of the subsets (such as different month end dates) 

• Define and code what sort of treatments will should be applied. (Refer to Appendix 1 for 
suggestions.)  These will be described as TREATMENT1, TREATMENT2, TREATMENT3, etc. 

• Create or filter for the subsets of data to be compared.  For our example that will be a series of 
snapshot dates 

• Capture the column names, types and formats from the most recent subset of data from the table 
in a temporary SAS data set 

• Decide how each treatment group should be analyzed for verification 

• Assign column names to treatment groups as described in the “Establish Treatment by Column 
Name” section above.  Depending on the environment, treatment types assigned based on 
naming conventions may be common to just one table, a data mart or an entire database.  The 
treatment assignment logic may hard-coded in the assignment step, included as an %INCLUDE 
module or passed as a parameter depending on the scope of the analysis. 

• Create a list per treatment of the column name(s) that treatment should be applied to 

• For each table, apply each treatment:  

o to every column named in the column list for that treatment via the column list 
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§ for each of the comparative subsets of data 

§ combine and compare the results of analyzing each subset to identify variability 
across the subsets 

§ compare the variability to our tolerance and flag concerns 

§ write the results with the flags to our output destination. 

Let’s work through an example of how to build and apply the logic blocks, substituting 
SASHELP.SNACKS for our database table.  First, we’ll see how to capture the metadata to drive the 
treatment group assignments.  Running the code shown here produces the results shown as Output 6: 

 

 

   
Output 6: Results of running PROC CONTENTS on SASHELP.SNACKS 

 

Continuing the example from above, we can see from the column labels that columns 
“Advertised” and “Holiday” are Boolean. “Price” and “QtySold” are both numeric. We 
can learn from running a preliminary PROC SUMMARY or PROC FREQ or browsing 
the data set that “Price” actually has only a handful of distinct values and “QtySold” has 
a large number of values.  “Product” is character but takes on a limited number of values, so a count of 
the distribution of those values would be meaningful.  Column “Date” is a date value but rather than the 
specific date, summarizing to monthly level is sufficient for our purposes. So, we’d want three different 
treatment types for our data.  Table 1 shows the treatments. This classification into treatment groups 
seems like the best fit for this particular data but it is subjective.  Others might choose different 
classification or different treatment for each group of columns. 

  

 
Table 1: Treatments to be applied 
 

Know your data 

Granularity 

Make decisions 
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The step to assign treatments might look like this: 

 
Note that we default to assigning column names to a treatment group (Treatment Group 1 in this 
example) if they don’t have a special treatment.  This lets us manage by metadata.  The process is 
dynamic so if new columns are added to our database table, they won’t be inadvertently left out of the 
verification.  Output 7 shows the result of the DATA step. 

 

 
Output 7: Results of assigning column names to treatment groups 

 

Now that every column name has been assigned to a treatment group, based on data type, data format, 
possibly the column naming convention plus what we know about the column usage, we’ll create a macro 
variable list of column names per treatment group: 

 
Again, the ongoing process is dynamic and won’t need to be modified when new columns are added to 
the table unless we need to define a whole new treatment group.  Of course, we could turn the PROC 
SQL step above into a macro loop that creates a macro string named column_list&i where the 
treatment_group = &i and is repeated over the number of distinct treatment groups in the TREATMENTS 
table.  Output 8 shows the results of the macro variables created above. 

 

Assign decisions 

Create macro 
lists of columns 
per treatment 
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Output 8: The result of %PUT statements for our macro lists 
 

We’ve decided on the type of analysis that’s appropriate for each category of variables (which we’ll 
describe as Treatment1, Treatment2 and Treatment3), assigned a treatment group for each column name 
and generated a macro variable list of the names of columns to be subject to each style of analysis 
(which we called column_list1, column_list2 and column_list3).    

Define – or derive based on current date or maximum date in the data table – what time points are to be 
analyzed and assign those dates to macro variables.  Continuing with the SASHELP.SNACKS data set, 
which only holds data up to 2004, let’s choose 4 months ending in that year to compare and assign these 
values: 

 
For an actual database table, the date macro variables above would be in the form dates are stored in 
that database. Split the data into subsets for comparison.  We will work with 4 subsets of data and 
compare the latest time period to data from the previous time period. 

Now it’s time to code the actual treatments.  We’ll start coding to analyze a single column, using what will 
we designate as Treatment 1.  The flow for analyzing one column of data with Treatment 1 is illustrated in 
Figure 1.  Figure 2 shows Treatment 1 integrated into the overall flow.   

 
     Figure 1: Flow for analyzing one column using Treatment 1 

Date macro 
variables 
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The first attempt at coding the above might look like this, for just one specific column name: 

 
Once that works, the code could be converted to a macro to reduce the overall number of lines of code: 

 
 

Then the macro could be adapted to use a variable column name: 

Build the Logic 
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If we repeat TREATMENT1 over all the columns in &column_list1, the results will be as shown in Output 
9.  It shows a large number of flags so we’d want to consider whether there was a problem with the data 
and if there wasn’t, then reconsider the type and sensitivity of the treatment applied to the columns. 

We will develop the additional two treatments.  The structure for the TREATMENT2 macro is quite similar 
to TREATMENT1 but the analysis uses PROC SUMMARY instead of PROC FREQ.  Figure 3 illustrates 
Treatment 2.   

 

Code each 
Treatment as 
a macro 
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Figure 2:  Overall flow for our month over month verification process for Treatment 1 
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Output 9: Result of running TREATMENT1 over &column_list1 
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      Figure 3: Flow for analyzing one column using Treatment 2 
 

The flow for TREATMENT3 is the same as TREATMENT1.  The only difference is the use of the 
MONYY7. format to group the counts by month instead of by day.  The code is shown here: 

 
 

To eliminate the need for TREATMENT3, we could enhance the coding of TREATMENT1 by adding 
another macro variable for the format.   

 

Granularity 
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For each run, we use a main macro that is executed once per table being analyzed, with parameters to 
control the execution.  Since different columns in one table may be refreshed on different days, some 
tables may have multiple passes of the verification process on different days in the same month where 
each pass explicitly includes or excludes some columns.  What the main macro does: 

• Iterate through the list of column names assigned to each style of analysis and run the analysis 
(frequency by value, sum, count, etc.) for each of the data subsets by calling the Treatment 
macro and consolidating the results for each column. 

• Combine the results of the analyses for each subset, one column name at a time, side-by-side 
and calculate % change between the most recent and the previous period or data set. 

• Flag each row of output if the change is greater than the defined tolerance.  We may be 
comparing sums, averages, counts, or the distribution of values.  

• We use macro variables for an optional DROP or KEEP list of columns to verify.  If not all 
columns in a table are updated on the same date, there may be a need to run the comparison for 
only certain columns.  For example if <Column1, Column2 and Column3> get updated on the first 
day of each month but <Column4> doesn’t get updated until the 15th of the month, there’s no 
point in showing a 100% change in Column4 at the time it makes sense to be analyzing the first 3 
columns.  Running the verification in two passes, with DROP Column4 as a parameter on the first 
pass and KEEP Column4 on the second pass will be more efficient and more meaningful. 

There are parameters to supply the table name and specify column names to include or exclude in case 
different columns are populated at different times.  Without an include or exclude list, the default is to 
analyze all columns, subject to the treatment group assignment. 

 

USING THE COMPREHENSIVE VERIFICATION PROCESS 

Structuring the Process to Invoke the Logic 
To maintain flexibility, our periodic verification process uses a macro to process one table name at a time, 
comparing subsets of data from that table as of different dates.  It is standardized to derive the 
comparison dates but these could be passed as parameters to allow even greater flexibility.  Other 
parameters are formats for appearance or summarization and an include or exclude column list.  

Call the main macro to analyze each table.  One driver program may invoke the macro multiple times, 
once for each table. Figure 4 shows the steps that one invocation of the driver might include.  This would 
analyze one table at 4 different points in time using 3 different treatments. 
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Figure 4:  Overall flow for our month over month verification process, comparing 4 points 
in time with 3 treatments iterated over column names 

 

Analyzing Periodic Loads 
These generated analyses aren’t helpful unless someone with sufficient understanding of the data 
reviews them promptly and follows up on any flagged concerns. Comparing values across months can 
generate a lengthy report.  We make easy to review the reports by using visual clues to draw attention to 
potential concerns with the data.   

A dramatic increase or even a month over month trend of increases in the frequency of zeroes, nulls, 
“n/a” or “Other” values might alert us to a new problem with a data feed.  These could be a sign of data 
from a new source being added to our tables without being properly coded, for example. 

Data Insights:  An Unexpected Benefit 
The intention was for this analysis of data to be preliminary to any actual use of the data to provide 
insights to our data consumers.  There was an unexpected benefit, though.  Applying this comprehensive 
automated comparison process to multiple tables with many columns can produce screen after screen 
filled with columns of numbers representing detailed distributions.  While it isn’t the slickest looking report, 
a quick visual review of the results can provide a lot of insight and a reminder about correlations in the 
data for someone who is familiar with using the data. We can also quickly confirm that any expected new 
values are reflected. 

Additional Use Cases 
Once we have a comprehensive verification process built, it can be used for more than just comparing 
similar subsets of data at different points in time.  Other applications include system validation and data 
profiling. 

Validation 
A very similar process can be applied to the data validation we might do after a system change.  It would 
involve comparing just two sets of data instead of three but the comparative logic per type of data column 
would be the same.  Wrapping the logic in macros allows it to be redeployed this way. In this case, we 
expect the data to be the same before and after the change, or at least mostly the same but with some 
expected differences.  Instead of comparing subsets of data from the same database at different dates, 
we would compare data from two different databases as of the same date.  This would typically involve 



19 

just 2 comparison sets, ‘before’ and ‘after’ or ‘original’ and ‘modified’.  Other than that, the same logic can 
be applied to confirm equivalence or highlight differences at a summarized level.  In this case, the desired 
outcome is little or no difference.  The tolerance for change in values would be zero and any differences 
would need to be investigated.  Figure 4 shows the flow of that for one treatment, as an example.   

A combination of our original requirement and the original versus modified comparison approach could be 
used for verifying loads of batches of data that aren’t loaded on a regular schedule.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4:   Flow for comparing Before and After data 

 

Data Profiling 
Because the comprehensive verification analyzes the distribution of all metrics and dimensions in a set of 
data, it could also be easily adapted to profile one subset of data against another.  While our initial 
requirement was to compare subsets of a table at different points in time, it could also be used to profile 
the metrics of one region against others as of the same point in time to identify regional differences 
beyond the obvious ones like location.  Once the logic described above is built, it can be repurposed and 
profiling is just a WHERE clause away. 

This can also be used as a problem-solving step.  If the periodic verification of data by point in time raised 
concerns and there was a hypothesis as to where there was a problem in the data, rerunning the same 
periodic verification logic with a WHERE clause added when creating the subsets could be used validate 
the hypothesis. 

Although the process described throughout this paper refers to multiple database tables, it could easily be 
applied to a collection of SAS data sets or series of subsets of one SAS data set or any other collection of 
data that could be readily imported into a SAS data set for comparison. 

Adding a WHERE parameter apart from the date to the verification process would make the process 
ready to be applied for data profiling at any time.  
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ENHANCING THE PROCESS 
Our process continues to evolve as it gets applied to new data sources and we find new ways to make 
the analyses valuable. There are also lots of possible enhancements to make the process friendlier and 
more flexible. 

Adding Visual Cues 
We’ve arrived at a fairly simple method of flagging potential concerns in the analysis report: adding an 
alert in the rightmost column of the output.  If the distribution is similar to the prior period then the alert 
column is blank. If the distribution is unexpected then there are a series of asterisks, where number of 
asterisks corresponds to the degree of difference.  That means scanning down one column of the output 
will identify potential concerns.  

There are several SAS papers and presentations available on how to use traffic-lighting with ODS output.  
This would be a good way to draw attention to discrepancies of concern with colour-coding. 

With such a powerful process, there’s a long list of possible enhancements to make it even more broadly 
applicable, incorporating the additional use cases described above.  Some of the wish list items are: 

• Make the number of comparison sets variable.  Our preferred number for comparing 
corresponding sets of data at different points in time, such as monthly, is the base (most recent) 
set plus 3 prior sets.  Making the number of subsets macro driven would allow the expansion to 
additional time periods, address use for validating program or feed changes by comparing 
“Before” and “After” data sets and use for data profiling.  This would make the number of 
iterations of every analysis step macro variable driven and also make the lists of data sets in the 
program logic macro driven.  Implementing this is non-trivial but definitely doable. 

• Make the tolerances for flagging variability parameters (percentage change in sum and 
percentage change in distribution) so they can be varied at the table level.  Combining this with 
the use of include or exclude column list would give ultimate control of tolerances at the column 
level. 

Further Automation 
There are some enhancements that could make the ongoing use of the process friendlier: 

• Kick off the verification of each table or set of columns automatically when the data is populated.  
Instead of relying on a manual intervention here, we could use an automated process to either 
query a checkpoint table that is updated when the load completes and appears to be successful 
or query the relevant tables directly to look for new snapshot dates. 

• Make the process entirely data-driven to further reduce the need for customization for new data 
sources or columns.  Use PROC SUMMARY to check number of distinct values occurring for 
each column and use the result of that to automatically assign the columns that have a very large 
number of values to an analysis category that doesn’t list all the details. 

• Highlight columns requiring follow-up in an email message.  Currently, at the completion of the 
analysis run there is an automated email message to advise that the results are ready for review 
in a particular location.  Flagging of results that are outside of our tolerances is already done in a 
DATA STEP within the process.  The resulting data set could be filtered to find which data 
columns and values are outside of our tolerances and a filtered PRINT of that data set could be 
incorporated into the email message. 
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CONCLUSION 
Once a macro has been written to handle processing each of the analysis treatments over a macro list of 
column names and initial assignments and overrides have been established for a table or set of tables, 
we can get an automated analysis of data loaded monthly, in a convenient format that makes it easy to 
spot concerns or recognize changes. 

This solution is comprehensive.  Because it can automatically generate analysis for all columns, there is 
no temptation to only verify critical or most-used columns.  Sometimes a significant concern is identified 
based on a pattern of discrepancies in the distribution of values in less frequently used data columns.  It 
has proven to be absolutely worth the processing time and brief human review time to catch problems as 
well as unexpected results which are not data problems but may generate questions or uncertainly about 
the downstream results. 

This approach is a complement to, not a substitute for, subject matter expertise.  It allows for efficient use 
a subject matter expert’s time.  Verifying data helps us to trust the data we use and share with our data 
consumers.  Having early insight into data changes and results, as well as possible data issues, also 
improves our credibility. 
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Appendix 1:  Possible Treatment by Usage 

Data Type 

Sub-Type 
or 
Description 

 
Examples 

Possible Analyses for 
Verification 

Numeric 
 
Discrete 
 

Data that comes from a limited set of values, 
also known as discrete values (often but not 
always integers) like: 

• Grade level 
• Age (in years) 
• Year of birth 
• Tenure (in years) 
• Number of interactions last month 
• Number of people in household 
• Sales Rep ID (if numeric) 
• Shoe size 

Frequency count per 
individual value or 
range 

Numeric Continuous 

Data that can take on a large range of values, 
like: 

• Hours or Days Since Inception 
• Bank Balance 
• Net Worth 
• Sales Volume 

Sum, average, 
maximum, minimum, 
count nulls OR 
frequency count per 
range 

Numeric Dates  

Data stored as numeric in SAS that can take 
on a vast range of value like: 

• Date of Birth 
• First Interaction Date 
• Transaction Date 
• Month End Date 
• Most Recent Interaction Date  

Frequency count per 
range of values 

Character Categorical 
data 

Data that comes from a limited set of values 
like: 

• Province/State Code 
• Country 
• Sales Region 
• True/False/Null 
• Yes/No/Maybe 
• Age Range 
• Letter Grade (ranking) 
• Sales Rep ID (if alphanumeric) 

Frequency count per 
individual value 

Character String 

Data that can take on many values like: 
• Customer name 
• City/Town name 
• Comment 
• Description 

Count blank strings or 
those containing “n/a” 
or other default 
indicator 

Character Structured 
string  

Data string with an expected length or pattern 
like: 

• Postal Code or Zip Code 
• Phone number 

Perl Regular 
Expression 

Character or 
Numeric Key 

Data that takes on a large range of unique 
values but should never be blank or null, such 
as: 

• Account Number 
• Employee ID 

Frequency count of 
blank or null values 

 


