
1

PharmaSUG 2023 - Paper SD-169

Effective APIs for SAS Language Applications
Randy Betancourt, Altair

Oliver Robinson, Altair

ABSTRACT

Pharmaceutical firms typically have a large number of validated SAS language programs. Many of these
programs are run repeatedly with alterations to produce required output. A common improvement on this
process is to pass parameters to validated autocall macros. Still, programs are often hand-edited, tested,
then output is copied and pasted to distribute results. In many cases, multiple manual steps are required
that are expensive, error-prone and, importantly in a regulated environment, hard to reproduce reliably.

The use of SAS language autocall macro libraries provides a method for effective reuse of SAS program
logic. To make best use of available skilled workforce, firms need to fully control and automate this logic
as well as expand software tooling and process automation to encompass Python, R, SQL, Perl,
Powershell, Linux shell scripts, batch scripts and other programming technologies.

The proposal here is to fully automate distribution and invocation of SAS language programs along with
Python and R by enabling any consumer (browser, Excel, middleware applications, web portals,
programming environments etc.) to make web-based REST API calls with API arguments being passed
through as macro parameters when executing program logic.

This paper describes a novel, easy-to-implement architecture and workflow upgrading validated autocall
macro libraries and exposing them as API calls passing parameters to auto-generated API endpoints. A
related goal is to describe a scalable software architecture based on the OpenAPI Initiative (OAI) and its
OpenAPI Specification (OAS) enabling these capabilities.

INTRODUCTION

Application developers will learn how easily and quickly to publish and track API endpoints integrating
various programming tools. Application consumers benefit by having a single and consistent method to
acquire output and results. Consistent use of REST APIs enforces rigorous abstraction and artifact
publishing and management aids effective, controlled application development.

We describe a workflow enabling SAS language programs to be callable as REST APIs:

1. Optionally validate the program is host-independent by executing it on Windows and Linux.

2. Push the program to a source code repository such as Git

3. Publish the program together with any supporting files or data assets as an artifact to a Hub. Hub
software architecture is described in detail below.

4. Deploy the program to enable client programs to call the program though auto-generated URLs
with defined, typed parameters (numbers, dates, strings, choice lists, etc.) required for invocation
of the API.

5. Define a pipeline to chain together deployed programs. A pipeline uses a flow control graph
based on success/failure of pipeline steps, integrating Powershell, Linux Shell scripts, Windows
Batch scripts and control nodes Wait, Any, and All.

6. Consume the program using browsers, Postman, R scripts, and SAS language PROC HTTP
syntax that call the published REST API endpoint with a URL including parameters to execute the
program’s logic.

REST APIS

This section provides a brief description on the fundamentals of REST APIs, how URL strings are passed
from the consumer (browsers, etc.) and how servers fulfil these requests. Using a REST API layer, SAS

2

language programs are abstracted from the consumer through a “contract”. This allows different
consumers to make the same API calls without needing to know the implementation or infrastructure used
to fulfill requests, or even that SAS language logic was used. This allows, for example, an R or Python
user to consume a SAS language program without any knowledge of SAS language syntax, and vice
versa.

Representational State Transfer (REST) is a standardized method using web-based protocols (HTTP or
HTTPS) to present remote resources to a local client. A server provisions an ‘endpoint’, a URL that
services HTTP requests such as POST, GET, DELETE, UPDATE, etc. to accept client instructions to the
server to operate on resources –application logic, data etc. - according to the request.

For example, a SAS language user wanting access to an already-written program may use a %INCLUDE
statement with the path to a file containing a SAS language program in order to use the included
program’s logic. The SAS language user must know details like where to find the program, what macro
parameters etc. A common challenge is knowing if that path points to the most up-to-date version of the
program. If the desired program is located on a remote file system, then they may need to use FTP or
similar to copy the program locally, or use the SAS language FILENAME FTP access method, requiring
the user to have detailed network knowledge and credentials.

Using a SAS language autocall macro library is a step towards abstracting file system and networking
details allowing SAS language programmers easily to call program logic without knowing such details.
However, SAS language autocall macro libraries provide abstraction only to SAS language programmers.
In today’s multi-language (polyglot) world that includes R and Python and potentially many more
emerging languages such as Julia, LUA and Golang, organizations will benefit from SAS language assets
and resources being readily consumable beyond the SAS language user community. By mapping critical
SAS language programs to REST APIs, organizations can make SAS language code re-usability for any
consumer throughout an organization.

Later in this paper, we illustrate R programs calling a REST API to execute a SAS language program by
importing the R library httr.

HUB SOFTWARE ARCHITECTURE

SLC Hub is the name of Altair’s enterprise anaytics management software. The software provides a
secure scalable platform that offers a range of services to support enterprise analytics processes
including user security and management, user and data access provisioning, API definition, publishing
and deployment, on-demand API execution, workload pipelines and scheduling, workload balancing for
interactive and production workloads across a grid or cluster of worker nodes, auditing and logging. The
software delivers a simple, modern, software stack that is easy to deploy, manage and control. The Hub
software can be deployed on-premises, in the cloud or in a hybrid environment. The Hub software can
run on Linux or Windows.

3

 Figure 1. SLC Hub Architecture

The SLC Hub architecture is built to be an elastic and scalable platform. It is composed of a Hub node as
the control plane, and a collection of worker or compute nodes managed by the Hub(s) to which
workloads are distributed by the Hub node for execution according to workload profile rules. Results are
returned to the Hub and returned to end-users and machine-to-machine clients (browsers, SLC Excel
plug-in, business applications making REST API requests).

The software has five major sub-components described below.

1. Eclipsed-based Analytics Workbench is a rich GUI/IDE used to develop analytics applications both
through visual drag-and-drop Workflows and coding. Programmers compose SAS language
programs, SQL, Python, and R. Non-programmers use a palette abstracting coding to visually design
workflows.

During development, programs and workflows can be executed interactively both locally and remotely
via the Hub. The Workbench has a visual interface to wrap programs in a parameterized package
ready for testing and deployment into a Hub. The parameterized package can be executed and tested
locally in the Workbench without needing to be published to a Hub. Once a package is ready for
publishing, it can be transmitted to a Hub as a Hub package (described next) using a simple point-
and-click wizard in the Workbench.

A Hub administrator defines profiles that map resources to specific worker nodes. For example,
requests to invoke a program that reads data from a particular Oracle database may require a profile
defined for worker node instances 1 and 2 running Linux. Access to SQL/Server requirements is
fulfilled by worker node 3 running Windows etc.

2. Hub Console. This management portal is accessed by a web-based GUI providing services to
manage services such as auth domains, library definitions, execution profiles (fine-grain control for

4

multiple SAS language program execution configurations), control of repositories, building workload
pipelines (chained programs), job scheduling, REST API deployment and publishing.

All configuration management and change control activities are performed through the Hub Console.

3. User Portal. This portal is accessed in a similar way to the Hub Console, but is intended for end
users to run deployed programs and access results.

4. Workers: Deployed programs are orchestrated for execution by the Hub node onto one of multiple
worker nodes using Hashicorp’s open-source Nomad workload management infrastructure. Multiple,
different teams of users can have workloads specified to run on specific worker nodes according to
security, performance and platform requirement profiles. Workloads can include both production
scheduled processes as wells as interactive user processes. Nomad provides many facilities that are
common in a Kubernetes containerized environment but using conventional VMs instead of
containers. A Containerized version of Hub may be offered in future, but the Nomad/VM version was
found to be easier to manage for many organizations at this time.

5. Opensource components.

a. Hashicorp’s open-source Vault for back-end encryption for at-rest and in-flight passwords,
database credentials, and secrets. This eliminates storing credentials in clear text when
accessing resources.

b. Minio: Worker nodes need a central location to store execution artifacts. For non-AWS
deployments Minio provides an S3-like access method for shared resources created among
Workers. This obviates deployment overhead for shared filesystems like IBM’s SpectrumScale,
FSx for Lustre (AWS), FileStore (GCP), or Azure Files.

c. Nomad for orchestration. Nomad provides a flexible and scalable platform for managing
applications across a wide range of infrastructure. Nomad is an open-source cluster manager
and scheduler that automates the deployment, scaling, and management of containerized and
non-containerized workload.

d. PostgreSQL is used as a backing store for configuration and related Hub application data.
PostgreSQL stores resources used to control Hub components. These include configuration files,
namespace definitions, TLS certificates and so on.

e. NGINX is used as a webserver to facilitate communication between Hub components that are
architected as micro services. No user-intervention is needed at install and configuration time.
NGINX also serves HTML pages presented by the Hub’s portal interface.

API PRODUCTION PROCESS

This section includes a step-by-step description of the workflow process described in the abstract. We
start with a simple use case to illustrate an R script consuming a SAS language REST API:

1. Write an SLC program that outputs a range of dates. The start of the date range is a parameter
(SAS macro variable &start_date) to be passed as part of the REST API call.

2. Test/validate this program by executing it using SLC Workbench to supply program attributes to
determine how output is presented through the API call. For R, we chose to stream JSON output.
Alternatively, we could have chosen to output an R DataFrame. Once the program is validated,
we create an API package.

3. From SLC Workbench, upload the validated API package to the Hub storing it in a Hub-managed
repository we named Pharmasug2023.

4. Using the Hub Console, we create a ‘deployment package’ to publish the program as a REST
API.

5

5. Test the API call using Postman using Basic Auth and call the API with an arbitrary value for the
&start_date parameter (SAS macro variable). This test ensure the API call is producing the
expected output.

6. Write an R script using the httr library to call the API by passing basic authorization parameters
and the value of the parameter representing the start_date. Load the jsonlite library to “flatten”
the returned array and create the R DataFrame.

Create the SLC program called generate_dates
data dates;

do date = "&start_date" to "31Dec2023"d;

 output;

end;

format date YYMMDDd10.;

run;

In this form, the program would fail if executed in a “stand-alone” mode. For the API call we are using
&start_date as a parameter whose value is determined at the time the rest API is called. SLC Workbench
provisions configuration menus to determine the behavior of this parameter and related parameters to
define the overall behavior of the REST API. See Figure 2. Hub Configuration Values for generate_dates.

6

Figure 2. Hub Configuration Values for generate_dates

For Results Detail, we select Dataset for the Result type. For Results format we select JSON. These
choices “extend” our original ‘generate_dates.sas’ program by calling PROC JSON to write output in
JSON format.

For Parameter Style, we select “Macro variables”. Alternatively, if we had a larger number of parameters
to manage as part of the API design, we would select “Dataset”. For Type we select Date from the
following choices:

7

Figure 3. Hub Configuration for Typed-Parameters

For Categories, we chose the name Pharmasug2023. Within the Hub Console, we can search programs
and deployment packages using this string as a search value. Once we save the Hub Configuration
values, the program is marked as an API package shown in Figure 4. The API package contains the
source code for the program as well as the selected Hub parameter values.

TEST AND VALIDATE THE ‘GENERATE_DATES’ PROGRAM

As we mentioned earlier, our ‘generate_dates’ program needs the appropriate execution context. Once
the Hub parameters in Step 1 are defined, we test our program before uploading the API package to SLC
Hub.

Figure 4. Validating the API Package created in Step 2

8

UPLOAD VALIDATED API PACKAGE TO SLC HUB

Once the API package is defined and validated it is uploaded to the SLC Hub instance we instantiated in
AWS. SLC Hub deployments are cloud-agnostic. See Figure 5.

Figure 5. Upload API Package to SLC Hub in Step 3

The target deployment for this validated API package is the Pharmasug2023 repository that is a Hub
managed repo we created previously. After clicking OK, the API package is uploaded to the Hub as an
artifact.

CREATE A ‘DEPLOYMENT PACKAGE’ TO PUBLISH PROGRAM AS A REST API

With the API package uploaded to the Hub, we use the Hub Console to create a Hub Deployment
package which allows the program to be called through a REST API. The the Hub portal is designed to
bring governance and control to all SLC assets.

9

Figure 6. Main SLC Console Page

In this step, we concentrate on the Deployment Services. We confirm the artifact “generate_dates” is
available in the Hub environment.

Figure 7. Artifact “generate_dates”

Next, we create a Deployment package. Select the Deployment type, in our case a Hub-managed
repository and the Execution profile. See Figure 8.

10

Figure 8. Select Deployment type and Execution Profile

The Hub administrator defines Execution profiles which map resources to specific worker nodes. For
example, requests for access to read data from Oracle is a configuration defined for worker node
instances 1 and 2 running Linux. Access to SQL/Server requirements are met by worker node 3 running
Windows, and access to DB2 are met by worker node 4.

Here we select the Standard Execution profile. The repo where “generate_dates” defined in Step 1, and
the Version number. See Figure 9.

Figure 9. Select the “generate_dates” artifact

Next, we select a unique deployment path (a portion of the URL string) clients use to call the API. We
select the Create API endpoint check-box. See Figure 10.

11

Figure 10. Select the Deployment path and enable creation of an API endpoint

The final action for this step is to select the category name. The category name was defined in Step 1,
when defining the Hub attributes for the API package in the Workbench. This action provides a
convenient filtering mechanism to easily locate artifacts beloging together.

An artifact can be a member of multiple, different categories. See Figure 11.

Figure 11. Select appropriate categories

Defining the “generate_dates” Deployment package is complete and available for any client to consume.
The Hub Directory services returns the API end-point. See Figure 12.

12

Figure 12. Deployment Service REST API Endpoint

In our case, the generated API endpoint is:

https://xxxxxxxx-xxxxx.xxxx.altair.com/run/generate_dates/RunGenerateDates

We also see “start_date” is a required parameter. Selecting the Execute tab on this page permits us
to call the defined REST API. See Figure 13.

Figure 13. Calling the REST API Endpoint

In the Results pane we see the JSON array returned when the start_date parameter value is set to
30/12/2023. Recall the date values are formatted in our initial program with the SLC-supplied
YYMMDDd10. date format.

TEST THE REST API CALL USING POSTMAN USING BASIC AUTH

Once an API endpoint is defined, we describe a validation process to certify calls into the API are working
and produce intended results. This is accomplished by using different clients; Microsoft Excel, a browser,
and a language of SAS program calling the API endpoint and so on.

An indispensable tool for testing REST API endpoint is Postman. Postman is an API platform for building
and using APIs. Postman simplifies each step of the API lifecycle and streamlines collaboration.

https://xxxxxxxx-xxxxx.xxxx.altair.com/run/generate_dates/RunGenerateDates

13

Access to Hub’s APIS require client-side authentication. The Hub API endpoints support Bearer Tokens
as illustrated in the Postman screenshots. See Figure 14.

The API endpoint passed is:

https://xxxxxxx.xxxxxxxx.altair.com/run/generate_dates/RunGenerateDates?start_date=2023-12-28

Notice how the start_date parameter value is 2023-12-28 returning 4 dates as a JSON array in the
response body. In addition, we confirm with Postman that the SLC Hub endpoint will accept Basic Auth
which is simpler to implement in subsequent endpoint API calls than using Bearer tokens.

Figure 14. Postman calling SLC Hub REST API endpoint using Bearer Auth token

As an example of client-side Basic Auth for authentication to access the API endpoint, consider the use of
a browser such as Chrome.

Figure 15. Chrome browser authentication to access SLC REST API endpoint

The user must authenticate with their Hub credentials which can be managed internally by SLC Hub, or
though Vault, or by establishing an auth domain to a credentials management services like Active
Directory. Creating an auth domain within the Hub offers the ability for organizations to support Single
Sign-On (SSO).

https://xxxxxxx.xxxxxxxx.altair.com/run/generate_dates/RunGenerateDates?start_date=2023-12-28

14

Once user credentials are validated, then the request is completed. In our case the five dates are
returned as a JSON array.

Figure 16. Chrome browser calling REST API after authentication to SLC Hub

WRITE AN R SCRIPT USING THE HTTR LIBRARY TO CALL THE REST API

By understanding how authentication is handled by the Hub, we can complete our use-case. Write an R
script that calls the defined API.

ChatGPT3 Prompt:

write an R program to illustrate basic auth for httr library

Set up the authentication details

auth_user <- "rbetancourt"

auth_pass <- "<HUB Password String>"

auth <- paste(auth_user, auth_pass, sep = ":")

Encode the authentication details in base64 format

auth_enc <- enc2utf8(base64_enc(auth))

Create a request with the authentication header

req <- GET("https://smartworkshub-

xxxxxxxxx.xxxxxxxx.xxxxxxxxxx.altair.com/run/generate_dates/RunGenerateDates?

start_date=2023-12-01",

 add_headers("Authorization" = paste("Basic", auth_enc))

)

Extract the JSON content from the response

json_content <- content(req, "text")

Convert the JSON content to a DataFrame

df <- fromJSON(json_content)

Print the DataFrame

print(df)

15

The output from the R script executed in VS Studio Code is shown in Figure 17.

Figure 17. R DataFrame from calling SLC Hub’s REST API Endpoint

OPEN API STANDARD

In designing SLC Hub’s ability to publish API endpoints, Altair engineers relied on the Open API Initiative.
The OpenAPI Initiative (OAI) is a collaborative open-source project that aims to create, maintain and
evolve a standard specification for building and documenting RESTful APIs. The initiative was created in
2015 by a group of industry experts and companies including Google, IBM, Microsoft, and Apigee, and is
now governed by the Linux Foundation.

The OpenAPI Specification (OAS), formerly known as Swagger Specification, is the foundation of the
OAI. It is a machine-readable format for describing APIs that can be used to generate documentation,
code, and other resources automatically. The OAS provides a common language for describing API
operations, parameters, responses, authentication mechanisms, and other aspects of a RESTful API.

The OAI aims to promote interoperability and standardization among API providers and consumers. By
using a common specification, developers can create and consume APIs in a more consistent, efficient,
and scalable way, regardless of the programming language, framework, or platform they are using. The
OAI also provides tools, resources, and best practices to help developers design, test, and deploy APIs
that conform to the OAS.

To illustrate the standardization offered by OAS, we wrote a SAS language program using PROC HTTP
as the method for returning metadata about the SLC Hub example programs deployed at Hub
configuration time. This program illustrates the handling of Bearer Tokens as the authentication method.

This program calls the auth API endpoint using PROC HTTP by passing a request body containing
username and password key/value pairs. The returned auth string is included as part of the response
header in a subsequent API call (all calls for resources must be authenticated) to return metadata about
the composition of the Hub’s repositories. See Appendix A: PROC HTTP Calls to Hub’s Open APIs.

CONCLUSION

With the large scale use of the SAS language in the pharma and life sciences industry, program
reusability is essential. The utilization of SAS Autocall macros as a common method for code re-usability
among SAS users and programmers has not changed over the past 30 years. Further, SAS Autocall
libraries are not accessible to non-SAS language applications.

16

In today’s world of multiple languages for reporting and analysis, REST APIs for critical SAS language
macros and code templates extend code reusability beyond SAS programmers to include R, Python, Lua
and other programming languages. The innovation behind exposing SAS language programs as REST
APIs translates directly to increased staff productivity, less redundancy, and less re-work.

REFERENCES

1. Marshall, James (1997). “HTTP Made Really Simple”

2. Introduction to SLC Hub Administration: https://hubdoc.worldprogramming.com/5EA-
2.2.0.108/use/introduction/#hub-administration

3. Introduction to SLC Deployment Services. https://hubdoc.worldprogramming.com/5EA-
2.2.0.108/use/introduction/#deployment-services

4. Learning Postman. https://learning.postman.com/docs/introduction/overview/

5. R-project.org. “Getting Started with httr”, httr QuickStart Guide – CRAN

6. HTTP Authentication. https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication

7. An Introduction to Accessing RESTFUL APIs Using R. https://rpubs.com/plantagenet/481658

8. Introducing ChatGPT. https://openai.com/blog/chatgpt

9. Open API Initiative, OAS. https://www.openapis.org/

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Randy Betancourt
Altair
rbetancourt@altair.com
www.pythonforsasusers.com

Oliver Robinson
Altair
orobinson@altair.com

https://www.jmarshall.com/easy/http/
https://hubdoc.worldprogramming.com/5EA-2.2.0.108/use/introduction/#deployment-services
https://hubdoc.worldprogramming.com/5EA-2.2.0.108/use/introduction/#deployment-services
https://learning.postman.com/docs/introduction/overview/
https://www.jmarshall.com/easy/http/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
https://rpubs.com/plantagenet/481658
https://openai.com/blog/chatgpt
https://www.openapis.org/
mailto:rbetancourt@altair.com
http://www.pythonforsasusers.com/
mailto:orobinson@altair.com

17

APPENDIX A: PROC HTTP CALLS TO HUB’S OPEN APIS

4 /* Program variables */

5 %let url = http://xx.xx.xx.xx:9090/api/v2/auth/login;

6 /* https://hubdoc.worldprogramming.com/5EA-

2.2.0.108/api/auth/restapi.html#operation/passwordLogin */

7

8 filename in TEMP;

9 filename out TEMP lrecl=32767 recfm=v;

10 filename headerin TEMP lrecl=32767 recfm=v;;

11

12 /* Macro to print FILE output to log */

13 %macro prntfile(file);

14 option nonotes;

15 data _null_;

16 infile &file end=eof;

17 input;

18 put _infile_;

19 if eof then put /;

20 run;

21 option notes;

22 %mend;

23

24 /* Create parameters to form Request Body in JSON format */

25 data _null_;

26 file in;

27 put '{' /

28 '"username": "rbetancourt",' /

29 '"password": "XXXXXXXXXXXX"' /

30 '}';

31 run;

NOTE: The file in is:

 Filename='C:\Users\RBETAN~1\AppData\Local\Temp\WPS Temporary

Data_TD19812\#LN00002',

 Owner Name=PROG\rbetancourt,

 File size (bytes)=0,

 Create Time=13:27:19 Jan 02 2023,

 Last Accessed=13:27:19 Jan 02 2023,

 Last Modified=13:27:19 Jan 02 2023,

 Lrecl=256, Recfm=V

NOTE: 4 records were written to file in

 The minimum record length was 1

 The maximum record length was 28

32

33 /* Create Request Header */

34 data _null_;

35 file headerin;

36

37 put 'Content-Type: application/json, text/plain' /

38 'Accept: application/json, text/plain' /

39 'Accept-Language: en-US';

40

41 run;

18

NOTE: The file headerin is:

 Filename='C:\Users\RBETAN~1\AppData\Local\Temp\WPS Temporary

Data_TD19812\#LN00004',

 Owner Name=PROG\rbetancourt,

 File size (bytes)=0,

 Create Time=13:27:19 Jan 02 2023,

 Last Accessed=13:27:19 Jan 02 2023,

 Last Modified=13:27:19 Jan 02 2023,

 Lrecl=32767, Recfm=V

NOTE: 3 records were written to file headerin

 The minimum record length was 22

 The maximum record length was 42

42

43 /* Request (POST) for Auth Bearer Token string */

44 proc http

45 url = "&url"

46 method = "post"

47 ct="application/json, text/plain"

48 in = in

49 out = out

50 headerin = headerin;

51 run;

NOTE: Call to [http://xx.xxx.xx.XXX:9090/api/v2/auth/login] returned [200:OK]

52

53 /* Reformat Auth Bearer Token for passing to next HTTP request */

54 data _null_;

55 infile out;

56 length line $ 1024;

57 input line :$1024.;

58

59 token_x = substr(line,11);

60 token = substr(token_x,1,index(token_x,'"')-1);

61

62 call symput('bearer_token', token);

63 run;

NOTE: The infile out is:

 Filename='C:\Users\RBETAN~1\AppData\Local\Temp\WPS Temporary

Data_TD19812\#LN00003',

 Owner Name=PROG\rbetancourt,

 File size (bytes)=995,

 Create Time=13:27:20 Jan 02 2023,

 Last Accessed=13:27:20 Jan 02 2023,

 Last Modified=13:27:20 Jan 02 2023,

 Lrecl=32767, Recfm=V

NOTE: 2 records were read from file out

 The minimum record length was 0

 The maximum record length was 992

64

65 /* Update Request Header file to include properly formatted Auth

Bearer Token */

66 data _null_;

19

67 file headerin mod;

68 length hdr_rqst $ 1024;

69

70 %let prefix = %nrbquote(Authorization: Bearer);

71 %let auth_str = &prefix %trim(&bearer_token);

72

73 hdr_rqst = symget('auth_str');

74

75 put hdr_rqst;

76 run;

NOTE: The file headerin is:

 Filename='C:\Users\RBETAN~1\AppData\Local\Temp\WPS Temporary

Data_TD19812\#LN00004',

 Owner Name=PROG\rbetancourt,

 File size (bytes)=106,

 Create Time=13:27:19 Jan 02 2023,

 Last Accessed=13:27:20 Jan 02 2023,

 Last Modified=13:27:19 Jan 02 2023,

 Lrecl=32767, Recfm=V

NOTE: 1 record was written to file headerin

 The minimum record length was 985

 The maximum record length was 985

77

78 %let url =

http://xx.xxx.xx.XXX:9090/api/v2/ondemand/artifactrepos;

79 /* https://hubdoc.worldprogramming.com/5EA-

2.2.0.108/api/ondemand/restapi.html#operation/queryArtifactRepos */

80

81 proc http

82 url = "&url"

83 method = "get"

84 ct="application/json, text/plain"

85 out = out

86 headerin = headerin;

87 run;

NOTE: Call to [http://xx.xxx.xx.XXX:9090/api/v2/ondemand/artifactrepos]

returned [200:OK]

88

89

90

91 libname get_repo json fileref=out;

NOTE: Library get_repo assigned as follows:

 Engine: JSON

 Physical Name: C:\Users\RBETAN~1\AppData\Local\Temp\WPS Temporary

Data_TD19812\#LN00003

92 data _null_;

93 file log;

94 set get_repo.alldata(where=(P2 ne ""));

95

96 put P2 " = " @32 Value;

97 run;

20

_created = 2022-12-14T17:58:33.086846Z

_id = c0c57ded-a17b-4a19-80e0-6059a8720e64

_modified = 2022-12-28T21:43:15.472878Z

allowPrereleaseVersions = true

allowReleaseVersions = true

description = Altair SmartWorks Hub Example Programs

name = Altair SmartWorks Hub Example Programs

_created = 2022-12-29T21:31:15.108314Z

_id = ebc9bce6-5ad1-4e92-a583-9599a62c53bb

_modified = 2022-12-29T21:35:13.085284Z

allowPrereleaseVersions = true

allowReleaseVersions = true

description = Added on 30Dec2022

name = SLCRepo

NOTE: 14 observations were read from "GET_REPO.alldata"

