
PharmaSUG 2023 - Paper SD-122
Building an Internal R Package for Statistical Analysis and Reporting in

Clinical Trials: A SAS User’s Perspective
Huei-Ling Chen, Heng Zhou, Nan Xiao
Merck & Co., Inc., Rahway, NJ, USA

ABSTRACT
The programming language R has seen an increase in usage in the analysis and reporting sector of the
pharmaceutical industry. Similar to how SAS programmers regularly write SAS macros, it is common for
R users to write R functions to complete repetitive tasks, thus facilitating programming work. An R
package is similar to a well-built SAS macro library; this includes a collection of functions, instruction
documentation, sample data, and testing code with validation evidence. An R package formalizes access
to the R functions. Yet new users may find a steep learning curve associated with creating an R package
from scratch. This paper outlines the essential components of an R package and the valuable tools to
help create these components. Relevant online reference materials are provided as well.

KEYWORDS
R Packages, devtools, roxygen2, RStudio IDE, R Markdown, pkgdown

INTRODUCTION
R provides many open-source packages for data processing, analysis, and visualization. In addition, we
also need to develop internal R packages for the company or therapeutic area standard. Similar to a well-
maintained SAS macro library, a purpose-built R package should equip with all the essential components
to serve clinical statistical analyses.

Zhu et al. (2020) offered process guidelines for developing and deploying internal R packages. Their
guidance covers the development, validation, documentation, and compliance checks with essential
regulatory requirements. Our paper will demonstrate an example of building an internal R package
achieving the industry standard based on this reference.

Early-phase oncology studies often use dose-limiting toxicity (DLT) as the primary endpoint to determine
the maximum tolerated dose (MTD), where a specific design is needed to guide the dose-finding process.
This paper presents an internal R package, mkdosefinding, which delivers the modified Toxicity Probability
Interval (mTPI) design decision table and the DLT analysis summary table. Step-by-step instructions on
creating R functions, testing code, documentation, package metadata, example data, R Markdown
vignettes, and package website for the mkdosefinding package are also provided.

The R package mkdosefinding has two functions for generating the mTPI table and five functions for
carrying out the DLT analysis summary table.

mTPI table

• get_decision_mtpi()
• mtpi_tbl()

DLT analysis summary table

• get_pava_table()
• pava_tbl()
• pava()
• pava_2d()
• bci()

ESSENTIAL COMPONENTS OF AN R PACKAGE
 Folder Location File Type Examples
R functions R/ .R get_decision_mtpi.R
Testing code tests/testthat/ .R test-independent-testing-get_decision_mtpi.R
Documentation man/ .Rd get_decision_mtpi.Rd
Package metadata root directory Various DESCRIPTION, README.md
Example data data/ .rda mkdosefinding_adae.rda
R Markdown
vignettes

vignettes/ .Rmd decidsion0mtpi0table.Rmd

pkgdown Website docs/ Various index.html, references.html, articles.html

 Figure 1. Components of an R package and their locations.

KEY TOOLS TO CREATE AN R PACKAGE
To create an R package, the first thing is to ensure that the essential tools are installed in the
development environment. In particular, a few R packages can facilitate and accelerate the
package development process.

• devtools provides R functions that simplify and automate common tasks in
package development using best practices, for example, document(), load_all(),
test(), test_coverage(), and check().

• roxygen2 helps preparing and generating the documentation of the package. It
processes the R code and formatted comments to produce R’s documentation files (.Rd) in
the man/ directory.

• testthat offers a framework to write and run tests.
• usethis is a workflow package which makes repetitive development tasks such as file

structure scaffolding easier. The function usethis::create_package() creates

https://devtools.r-lib.org/
https://roxygen2.r-lib.org/
https://testthat.r-lib.org/
https://usethis.r-lib.org/

template files and folders for project setup and development. The function
usethis::use_test() creates individual test files during project development.

• rmarkdown creates high-quality HTML or PDF vignettes. Vignettes can combine code,
rendered output (such as figures), and long-form guide to provide extra insight of the work.

For people unfamiliar with R package development, it is worth starting the process with the
package devtools which also installs most of the other key tool packages automatically. Then,
install the missing packages as needed.

In cases where a needed package is not in your R library, for example, rmarkdown, you can use
install.packages("rmarkdown")to install it from the CRAN or an internal CRAN-like
repository.

R FUNCTIONS
A SAS programmer will find familiarity when writing an R function. An R function includes four key
elements: the function name, the function arguments, the R statements that the function runs, and
the object returned by the R function.

The input arguments of an R function are similar to the parameters of a SAS %macro statement.
An R function can have multiple arguments defined, separated by a comma, similarly to SAS
macro parameters. An R argument can have a default value.

Note that there are still some differences between an R function and a SAS macro. For example,
an R function returns one object while no such requirement exists for a SAS %macro statement.

Develop the functions following the structure below.

myfunction <- function(arg1, arg2, ...){
 statements
 return(object)
}

After the R function development is completed and the function works fine, we can use the
roxygen2 package to create specially formatted comments, which will be utilized to generate R’s
documentation files (.Rd). To add the roxygen comments, insert the roxygen skeleton before
the function definition. The following steps, demonstrated in Figure 2, create a header template for
the function.

1. Select to highlight the function name.
2. Click ‘Code’.
3. Click ‘Insert Roxygen Skeleton’.

https://pkgs.rstudio.com/rmarkdown/

Figure 2. Insert roxygen skeleton for a defined R function.

After completing the step in Figure 2, a template with roxygen tags will be automatically created
above the R function.

The next step is to fill out the relevant information in the roxygen skeleton. This often includes
title, description, author, parameter description, returns, and code examples.

Figure 3 is the final look of an R function with the roxygen comments built in the file.

Figure 3. R function with the roxygen comments built in the file.

Yang et al. (2021) introduced a strategy using roxygen2 to develop specifications for R functions
in regulated clinical trial environments. It introduced concepts around R functions and roxygen

comments. It also demonstrated how the roxygen documentation approach can be extended to
easily generate the R document file and assist creating the documentation for the package.

TESTING AND VALIDATION
Validation is a critical part for an internally developed R package. Like every statistical software used in
clinical trials, all programming works need to be robust and reusable. In R, a user-friendly testing
framework is provided by the R package testthat, which has many testing functions to ensure the R
programs work as expected. Among those expect_*() functions, the most frequently used functions
are expect_equal(), expect_error(), and expect_snapshot_file().

Ginnaram et al. (2021) proposed a process to validate internal R packages under a regulatory-compliant
computing environment, utilizing both testthat and another useful package usethis to facilitate the
validation work. In the proposal, each R function should have its correspondent testing file. All testing
files are saved in the tests/testthat/ folder. For example, “get_decision_mtpi.R” has a testing file
“test-independent-testing-get_decision_mtpi.R” in the tests/testthat/ folder.

The command below shows how to use the use_test() function to set up the testing file “test-
independent-testing-get_decision_mtpi.R” in the tests/testthat/ folder.

usethis::use_test("test-independent-testing-get_decision_mtpi")

Select the appropriate testthat::expect_*() function to complete the testing work.

Figure 4. Testing code in “test-independent-testing-get_decision_mtpi.R”

Palukuru et al. (2022) discussed more advanced testthat features in detail, and provided clear
demonstrations regarding how to utilize R as a validation tool to its greatest capability.

DOCUMENTATION
The main benefits of using roxygen2 for R function documentation are that the R document (.Rd) files
can be automatically generated from comments written in a simple syntax by running one R command,
devtools::document(). This function converts the roxygen comments for each function, and creates
individual Rd files under the man/ folder. Figure 5 is a screenshot of the subfolder man/ of the package.

More details and discussions regarding the documentation of an R package can be found in Yang et al.
(2021).

 Figure 5. The.Rd files in the subfolder man/

PACKAGE METADATA
Populate the content of the following two package metadata files: DESCRIPTION and README.md.

These package metadata files can provide high-level description of the package, author list,
dependencies, and optionally, basic examples. Note that the information on the metadata files will be
automatically parsed and displayed in the package website when it is created.

Figure 6. The DESCRIPTION file

Figure 7. The README.md file

EXAMPLE DATA
Example data is an optional component for the package. Including example datasets in the package can
guide users on how to use the package, especially when the package is for data analysis and reporting.

Following the guidance from Wickham, H. (2015), the dataset ‘.rda’ files are saved in the data/
directory.

The command below uses the usethis::use_data() function to convert the R object into a .rda file
and save the file in the data/ directory.

usethis::use_data(mkdosefinding_adsl)

Figure 8 is the screen shot of the subfolder ‘data/’ for the package.

Figure 8. The .rda files created in the subfolder data/.

R MARKDOWN VIGNETTES
The directory vignettes/ stores long-form documentation to guide users on how to use the package.
Many existing packages have vignettes for this purpose. We can create vignettes with R code
examples for this guiding purpose and save them in the package vignettes/ directory. These
documentations use the R Markdown (.Rmd) file format. In brief, the R Markdown files stored in

vignettes/ can provide reproducible R code to execute the R functions, similar to a SAS call program
to execute SAS macros.

Wu et al. (2021) proposed a workflow for generating analysis and reporting deliverables in clinical
trials using R. They suggested users to utilize the R Markdown format instead of the plain R scripts
for the reporting. The R Markdown file can include both the natural language descriptions of the
analysis, the R code, and the computation results. The R Markdown file can be rendered into PDF or
HTML outputs as a documentation for the package.

Figure 9 is a screenshot of a partial R Markdown vignette.

Figure 9. The R Markdown file created in the subfolder ‘vignettes/’

The R Markdown files provide reproducible R code examples to execute the R functions for package
users. Programmers only need to make minimal, necessary changes to the example workflow and can
create the mTPI table or the DLT analysis summary table easily.

CHECK AN R PACKAGE
It is important to conduct compliance checking when all components of a package are completed. The
first useful metric is from the R CMD check results where more than 50 individual checks for common
issue are presented. An ideal goal is to have 0 errors, 0 warnings, and 0 notes from the check results.
The other metric, test coverage, is often used to understand how much of the R code is tested by the unit
tests. Although it cannot reflect whether the quality of the tests, a higher percentage number for test
coverage often indicates the package is more comprehensively tested.

Leveraging the comprehensive checks provided by the helper functions in devtools, we can frequently
check the package during development to maintain its quality. An example checking flow could involve
loading the package with devtools::load_all(), run all tests or individual test files in the package
with devtools::test() or devtools:: test_active_file(), compute test coverage for the
package with devtools::test_coverage(), and run automatic checks with devtools::check().

CONTINUOUS INTEGRATION AND CONTINUOUS DELIVERY
When developing an R package collaboratively, it is imperative to integrate the team’s work frequently, in
a version controlled repository. The repository should be configured with effective branch management

strategies and permission models. For example, the main branch of a Git repository should be protected
by preventing changes without a pull request. A list of default reviewers who will be automatically
assigned to new pull requests could facilitate the prompt review of contributions. Merge checks, such as
requiring at least one reviewer’s approval and passing all continuous integration workflows, are also
frequently applied.

In particular, continuous integration (CI) workflows for building and checking the package should be
triggered by each the creation of new pull request and any follow-up commits. The CI workflow checking
report linked in each pull request helps the developers and reviewers to identify obvious technical issues
early. The content of the CI workflows can be added to the R package and tailored for specific needs. For
instance, running usethis::use_github_actions() will add GitHub Actions workflows as YAML
files, which can be further modified to adding missing system dependencies, or adding more code style
checks.

The continuous delivery (CD) of R packages in an organization can be automated with appropriate
infrastructure. For example, a Git repository can be connected to a package or artifact management
system, which will pull the source package after each new pull request is merged to the main branch. The
system can then build the package and publish to an internal CRAN-like repository for testing purposes
but with easier installation. Production releases of the package are manually submitted following an
internal SDLC and are published to a separate internal CRAN-like repository after explicit stakeholder
approval, similar to the CRAN review and inspection processes.

OPTIONAL: CREATE A PKGDOWN WEBSITE
Although recommended, it is optional and up to the package developer’s decision whether to create a
pkgdown website for an internal package. The function pkgdown::build_site() builds a pkgdown
website. The rendered website is saved in the docs/ folder in your R package by default.

USE THE PACKAGE TO CREATE A MTPI TABLE
When statisticians or programmers carry out an early oncology dose confirmation study, they can install
the internal R package mkdosefinding into their project folder. To install the package, use the command
below.

Then, they can copy the content of the R Markdown vignettes and make necessary changes, e.g., output
file name, argument value, etc. Finally, run the R Markdown file and the output file will be created in the
designated output folder immediately. Figure 10 is the snapshot of an mTPI table output.

install.packages("mkdosefinding", repos = "https://cran-like-repo-url/")

Figure 10. Example mTPI table output.

CONCLUSION
Like SAS, R programming works used in clinical trials need to be robust, reusable, and well validated. A
R package would serve these purposes. This paper lists the essential and optional components of an R
package: R functions, testing code, documentation, package metadata, example data, R Markdown
vignettes, and package website. A step-by-step instruction explains how to build these components of an
R package using the RStudio Integrated Development Environment (IDE). We demonstrate this work by
using a package developed for early oncology dose confirmation study as an example. Instructions on
how to leverage the package to perform the analysis and generate the final report are also provided.

REFERENCES
R packages creation tutorial
• Wickham, H. (2015). R packages: organize, test, document, and share your code. O'Reilly Media, Inc.
• R Packages: R Packages (2e) (r-pkgs.org)
• Build websites for R packages • pkgdown (r-lib.org)

Proceedings
• Palukuru, P., Li, R., Patel, N., & Shi, C. (2022). “Exploring R as a validation tool for statistical programming

in clinical trials” Proceedings of PharmaSUG 2022.
https://www.pharmasug.org/proceedings/2022/AD/PharmaSUG-2022-AD-076.pdf

• Zhu, Y., Jajoo, R., Bai, C., Nepal, S., Woodie, D., Anderson, K., Zhang, Y., (2020). “R Package Oriented
Software Development Life Cycle in Regulated Clinical Trial Environments” Proceedings of PHUSE US
2020.
https://www.lexjansen.com/phuse-us/2020/tt/TT12.pdf

• Yang, A., Zhu, Y., & Zhang, Y. (2021). “A Strategy to Develop Specification for R Functions in Regulated
Clinical Trial Environments” Proceedings of PharmaSUG 2021.
https://www.pharmasug.org/proceedings/2021/SI/PharmaSUG-2021-SI-074.pdf

• Wu, P., Palukuru, P., Luo, Y., Nepal, S., & Zhang, Y. (2021). “Analysis and Reporting in Regulated Clinical
Trial Environment using R” Proceedings of PharmaSUG 2021.
https://www.pharmasug.org/proceedings/2021/AD/PharmaSUG-2021-AD-079.pdf

https://r-pkgs.org/
https://pkgdown.r-lib.org/
https://www.pharmasug.org/proceedings/2022/AD/PharmaSUG-2022-AD-076.pdf
https://www.lexjansen.com/phuse-us/2020/tt/TT12.pdf
https://www.pharmasug.org/proceedings/2021/SI/PharmaSUG-2021-SI-074.pdf
https://www.pharmasug.org/proceedings/2021/AD/PharmaSUG-2021-AD-079.pdf

• Ginnaram, M., Ye, S., Zhu, Y., & Zhang, Y. (2021). “A Process to Validate Internal Developed R Package
under Regulatory Environment” Proceedings of PharmaSUG 2021.
https://www.pharmasug.org/proceedings/2021/SI/PharmaSUG-2021-SI-084.pdf

ACKNOWLEDGMENTS
The authors would like to thank subject matter experts from the R strategic initiative and management
teams from Merck & Co., Inc., Kenilworth, NJ, USA, for their advice on this paper/presentation.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Huei-Ling Chen, Ph.D.
Merck & Co., Inc., Rahway, NJ, USA
e-mail: huei-ling_chen@merck.com

Heng Zhou, Ph.D.
Merck & Co., Inc., Rahway, NJ, USA
e-mail: heng.zhou@merck.com

Nan Xiao, Ph.D.
Merck & Co., Inc., Rahway, NJ, USA
e-mail: nan.xiao1@merck.com

TRADEMARK
SAS and all other SAS Institute Inc. products or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

https://www.pharmasug.org/proceedings/2021/SI/PharmaSUG-2021-SI-084.pdf
mailto:huei-ling_chen@merck.com

	Abstract
	Keywords
	Introduction
	Essential components of an R package
	Key tools to create an R package
	R functions
	Testing and validation
	Documentation
	Package metadata
	Example data
	R Markdown vignettes
	Check an R package
	Continuous integration and continuous delivery
	Optional: create a pkgdown website
	Use the package to create a mtpi table
	Conclusion
	References
	Acknowledgments
	Contact information
	Trademark

