
1

PharmaSUG 2023 - Paper SD-084
A Macro Utility for CDISC Datasets Cross Checking

Chao Su, Merck & Co., Inc., Rahway, NJ, USA

Jaime Yan, Merck & Co., Inc., Rahway, NJ, USA
Changhong Shi, Merck & Co., Inc., Rahway, NJ, USA

ABSTRACT
High-quality data in clinical trials is essential for compliance with Good Clinical Practice (GCP) and
regulatory requirements. However, data issues exist in ADaM and SDTM datasets within and between
them in most practical studies. In order to identify and clean data issues before database lock (DBL) or
other main milestones, a macro is developed for discrepancy cross-checking between ADaM and SDTM
datasets during analysis and reporting processes. In this paper, some common data checks among ADaM
and SDTM datasets are presented and discussed. The findings are reported in an excel spreadsheet with
a friendly interface consisting of a neat summary tab and individual formatted tab for each data issue
category. Moreover, the modularized structure provides excellent scalability and flexibility for the user to
add a user-defined rule with simple and easy steps. This feature allows the macro to be used far beyond
CDISC datasets. User-defined rules can be extended to various data structures and types across
therapeutical areas and studies. This utility provides a friendly and flexible way to check and track data
issues related to the A&R process accurately and efficiently.

INTRODUCTION

ADaM and SDTM datasets are widely used in the pharmaceutical industry to submit clinical trial data to
regulatory agencies such as the FDA. Discrepancies between ADaM/SDTM datasets and the corresponding
specifications can occur for various reasons, such as errors in data entry, differences in data coding
conventions, variations in how data are collected and processed, or improper updates to the ADaM/SDTM
specifications. These discrepancies can impact the quality and accuracy of the data and may require
additional review and validation to ensure compliance with regulatory requirements.

It is crucial to have robust data quality control processes to identify and address these issues early in the
data collection, preparation, and finalization. Identifying and addressing data issues early can minimize
the impact and produce submission-compliant deliverables.

Additionally, it is essential to have a comprehensive testing plan and validation strategy to ensure that
the data is accurate and compliant in the whole clinical trial data analysis process.

Nowadays, software like Pinnacle 21 provides the solution to prepare clinical trial data for regulatory
submission with a user-friendly interface. However, such software is suitable to finalize the data package
with expected standards; in other words, the proper time to use them is when most of the standard
datasets and the specs/related documents are ready. What is more, Pinnacle 21 needs to check if the
datasets are developed or not. It checks if the datasets comply with CDISC standards, but it does not check
the data’s content. Therefore, it needs to check if the data are appropriate for the research question or if
the datasets are complete. The Analysis & Report programmer will usually check by reviewing the data

2

and looking for outliers, patterns, or other issues.

The clinical trial analysis process occurs over a long period of time. It is a good practice for programmers
to catch the discrepancies in every trial development stage as early as possible. Also, besides the standard
checking rule specific to each therapy area, the demand exists to use specific logic to check the data.
Moreover, checking the discrepancy of the dataset that does not follow the CDISC standard (like some
external data in excel format, Etc.) at each stage of the clinical trial data analysis process is required. In
such cases, a macro with flexible, customized, modular features that could create an easy-to-read report
becomes a good solution. This paper will introduce a macro that meets the above requirement.

MACRO DESIGN

The primary purposes of this macro are:

• Catch the targeted discrepancies, including the discrepancies between standards and datasets
and the ones between different datasets.

• Output the user-friendly discrepancies report in excel format.

To meet the first purpose, the macro supports standard file/datasets reading and provides the function
to catch the targeted discrepancies.

Instead of creating a comprehensive macro that includes all potential checking items, this macro attempts
to provide a framework that takes care of dataset/file reading and report s output. At the same time, the
macro provides module functions (sub-macro) as a tool to solve various discrepancies, checking demand
flexibly. The user would use/combine the provided function to check different input datasets/files.. At the
same time, the user could add their tools (sub-macro) within the main macro to create additional item-
checking module and then use the report-creating function provided by the macro to get an excellent
report.

Fig. 1 Macro Diagram

Therefore, the macro/framework includes three main modules as shown at Fig.1 above: Datasets/files
input module, default discrepancy checking tools (sub macro), default checking item sample code
module, and report creating module.

3

The macro could read data or standard files in both SAS® and excel data formats. Specifically, for the
excel file, the macro could automatically recognize the format and support all the general excel file
format (like xls, xlsm, Etc.).

In order to check discrepancies and support the future extension of the macro, the macro provides several
data-checking functions by encapsulating the default sub-macro as modules within the main macro. For
example, the function to check the variable existence, whether specific datasets show correctly, etc. This
design pattern lets users easily include their own function macro and achieve their expected checking
item.

For the second purpose, the macro provides functions to create an organized excel discrepancy report
with contents/background info sheet, user-defined discrepancy category sheet, and items with each
discrepancy category sheet.

The user could use the macro directly with default checking items. Also, the user could use the functions
provided by the sub macro within the main macro and follow the checking sample to create their checking
items, especially when the user has a special discrepancy checking requirement based on their dataset in
their therapy area.

Fig. 2 is an example of the macro call. The first parameter of the input section is excel_infile which
functions to get the info of the standard file (ADaM specification). The proper input for this parameter
includes the file library, file name, and file format/extension. The second and third parameters are output
section which include out_file and outfile_path to assign the name and location for the expected output
file. The study information is provided by parameter prot. The last two parameters are used to collect the
author and date of data like cutoff date or database lock date etc. The info from this section will show in
the final excel report.

 Fig. 2 Sample macro call and description of macro variable

4

DEFAULT CHECKING ITEMS
The default checking items in the macro focus on using ADaM spec(standard file) and ADaM/SDTM data
as input and checking the discrepancies between the spec, SDTM datasets, and ADaM datasets for an
ongoing study. However, with the same framework and tools(sub-macro) this macro provides, users could
easily create their version for specific checking purposes.

After the specification is ready for this version, the users will follow the specification to identify issues.
Different SAS datasets are generated for the various issue categories. These SAS datasets work as the
input source for the developed macro to create a single Excel file with one worksheet for each issue
category. Another worksheet with a status summary of the data issues is also provided by the macro, as
shown in Fig. 3. Within the summary sheet, the hyperlink could direct the reviewer to the specific issue
category sheet. As shown in Fig. 3, where the combination of columns “Item” and “Title” indicate the
checking categories, the column “Issue Findings” is the description of the data issue; the column “Source”
is the hyperlink to the individual worksheet. After clicking the first hyperlink, the sheet transfers to
checking item details, as shown in Fig. 4. Some default checking items are listed at Fig. 5.

Fig. 3 Sample report output for summary sheet

Fig. 4 Sample report output for specific category sheet

5

Fig. 5 Default checking items

6

FEATURE OF THE MACRO
In short, the main features of the macro are:

1. Customization/flexibility: this macro can be customized and tailored to specific data validation checks
and business rules, allowing for a more tailored approach to data validation. Also, the format and contents
of the report could also be customized.

2. Automation: this macro can automate the process of checking data for errors, inconsistencies, and
outliers, which can save time and reduce the risk of human error.

3. Integration: this macro can be integrated into the data management and analysis process at both the
early stage as well as late stage, allowing for a more seamless and efficient workflow.

4. Reusability: this macro can be reused across different projects and studies, which can save time and
resources in the long run.

5. Cost-effective: this macro can be less expensive than specialized software tools and can be adapted to
the specific needs of a project or study.

CONCLUSION
The macro discussed in this article is used to cross-check discrepancies between ADaM and SDTM datasets
during analysis and reporting processes. Also, it provides a framework for cross-checking the discrepancies
between datasets and standard files. The framework has three main modules (data/file reading modules,
discrepancy checking module, and report creating module) and contains several helpful sub-macros; with
each sub-macro performing a specific task or function. These sub-macros can be called within the main
macro, allowing the modular macro to be flexible and customizable. The user would use/combine the sub-
macros to achieve their specific discrepancy-checking purpose while making the code more organized and
easier to read.

REFERENCES
Chao Su, Shunbing Zhao, Cynthia He, 2018, “An Efficient Tool for Clinical Data Check”, Proceedings of
PharmaSUG 2018, Paper AD-16, Seattle, WA.

Niraj J. Pandya, Vinodh Paida, 2011, “Data Edit-checks Integration using ODS Tagset”, Proceedings of
PharmaSUG 2011, Paper DM03, Nashville, TN.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:
Chao Su, Changhong Shi, Jaime, Yan
+1 (732) 5946459 +1 (732) 5941383
chao.su@merck.com changhong_shi@merck.com mingyu.yan1@merck.com

Any brand and product names are trademarks of their respective companies.

mailto:chao.su@merck.com
mailto:changhong_shi@merck.com
mailto:mingyu.yan1@merck.com

7

APPENDIX
Sample code used at macros:

*-------------------- Macros used at excel output --------------------;

 %macro data2report(indsn =, width =);
 %local er ror i title sheetnam;
 %let er = ER;
 %let ror = ROR;
 %let title = Data Check Results;
 %let sheetnam = &indsn;

 proc sql noprint;
 select count(*) into: nobs from &indsn;
 quit;

 *--------- Derive Title and Sheetname used at tab display --------;
 %if &nobs >0 %then %do;
 %if %VarExist(&indsn, title) and %VarExist(&indsn, sheetnam) %then %do;
 proc sql noprint;
 table attr as select distinct title, sheetnam from &indsn;
 select title into: title from attr;
 select sheetnam into: sheetnam from attr
 quit;
 %end;
 %end;

 proc contents data = &indsn
 %if %VarExist(&indsn, title) and %VarExist(&indsn, sheetnam) %then %do;
 (drop = title sheetnam)
 %end;
 %else %if %VarExist(&indsn, title) %then %do;
 (drop = title)
 %end;
 %else %if %VarExist(&indsn, sheetnam) %then %do;
 (drop = sheetnam)
 %end;
 out = __indsn_contents(keep =name type length label varnum) varnum noprint;
 run;

 *--------- Derive variable maximum length used at output cell width --------;
 data _null_;
 set __indsn_contents(where = (type = 2)) end=last;
 if _n_ eq 1 then call execute('proc sql noprint;
 create table temp as select ');
 call execute(cat('max(length(',name,')) as ',name));
 if last then call execute("from &indsn ; quit;");
 else call execute(',');
 run;
 proc transpose data=temp out=_vmaxlen name=name prefix=length;
 run;

 *--------- Derive Cell Width --------;
 proc sql noprint;
 create table _indsn_contents as
 select a.*, b.length1 from __indsn_contents a
 left join
 _vmaxlen b
 on a.name = b.name;
 quit;

 data _indsn_contents;

8

 set _indsn_contents;
 name = upcase(name);
 if length1 ne . then length = length1;
 if length > 10 then length = length;
 else if length <=10 then length = 10;
 run;
 proc sort data = _indsn_contents;
 by varnum;
 run;

 proc sql noprint;
 %if %length(&width) = 0 %then %do;
 select length into :_columnwidth separated by ','
 from _indsn_contents;
 %end;
 %else %do;
 %let _columnwidth = &width;
 %end;

 select upcase(name) into :_columnvar separated by ' '
 from _indsn_contents;
 quit;

 title1 j=c bold h=12pt f='Thorndale AMT' "&title";

 ods excel options (sheet_name = "&sheetnam"
 embedded_titles = 'yes'
 autofilter = 'all'
 absolute_column_width = "&_columnwidth"
 zoom = '100'
 orientation = 'landscape'
 row_repeat = 'header'
 pages_fitheight = '100'
 center_horizontal = 'yes'
 center_vertical = 'no'
 gridlines = 'on'
 frozen_headers = 'yes'
 start_at = 'A1')
 ;

 %if %length(&_columnvar) > 0 %then %do;
 %do i=1 %to %length(&_columnvar);
 %if %scan(&_columnvar, &i) ne %str() %then %do;
 %let _columnvartot=&i;
 %end;
 %end;
 %do i=1 %to &_columnvartot;
 %let _columnvar&i = %scan(&_columnvar, &i);
 %end;
 %end;

 options nobyline nolabel;

 %if %length(&_columnvar) > 0 %then %do;
 %do i=1 %to %length(&_columnvar);
 %if %scan(&_columnvar, &i) ne %str() %then %do;
 %let _columnvartot=&i;
 %end;
 %end;
 %do i=1 %to &_columnvartot;
 %let _columnvar&i = %scan(&_columnvar, &i);
 %end;

9

 %end;

 proc report data = &indsn nofs
 style(header)={font_weight=bold font_size=10pt just=center
 protectspecialchars=off borderstyle=solid bordercolor=black}
 style(column)={borderstyle=solid bordercolor=black};
 column &_columnvar;
 %do i=1 %to &_columnvartot;
 define &&_columnvar&i /display style(column)={tagattr='wraptext:no'
 width=100%}; *** Avoid unexpected wrap at display;
 %end;
 run;

%mend data2report;

	Abstract
	Introduction
	ADaM and SDTM datasets are widely used in the pharmaceutical industry to submit clinical trial data to regulatory agencies such as the FDA. Discrepancies between ADaM/SDTM datasets and the corresponding specifications can occur for various reasons, su...
	It is crucial to have robust data quality control processes to identify and address these issues early in the data collection, preparation, and finalization. Identifying and addressing data issues early can minimize the impact and produce submission-c...
	Additionally, it is essential to have a comprehensive testing plan and validation strategy to ensure that the data is accurate and compliant in the whole clinical trial data analysis process.
	Nowadays, software like Pinnacle 21 provides the solution to prepare clinical trial data for regulatory submission with a user-friendly interface. However, such software is suitable to finalize the data package with expected standards; in other words,...
	The clinical trial analysis process occurs over a long period of time. It is a good practice for programmers to catch the discrepancies in every trial development stage as early as possible. Also, besides the standard checking rule specific to each th...
	macro DESIGN
	The primary purposes of this macro are:
	 Catch the targeted discrepancies, including the discrepancies between standards and datasets and the ones between different datasets.
	 Output the user-friendly discrepancies report in excel format.
	To meet the first purpose, the macro supports standard file/datasets reading and provides the function to catch the targeted discrepancies.
	Instead of creating a comprehensive macro that includes all potential checking items, this macro attempts to provide a framework that takes care of dataset/file reading and report s output. At the same time, the macro provides module functions (sub-ma...
	Default checking items
	Feature of the macro
	conclusion
	REFERENCES
	CONTACT INFORMATION
	Appendix

