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ABSTRACT 

In phase 3 clinical studies, tipping point analysis has been increasingly requested by regulatory agencies 

as a sensitivity analysis under missing not at random (MNAR) assumption to assess the robustness of the 

primary analysis results. One way to implement the tipping point analysis is using the SAS procedure 

PROC MI, which includes two steps: step one is to impute missing data using multiple imputation (MI) 

under missing at random (MAR) assumption, and step two uses the MNAR statement to adjust the MI 

imputed values by a pre-specified set of shift parameters for each treatment group independently. The 

tipping points are outcomes where the significance of treatment effect is just reversed.  

In practice, the actual shifts to the MI imputed values are not always exactly the same as the shift 

parameters specified in the MNAR statement. We summarize our experience with this issue and potential 

pitfalls in implementing the tipping point analysis using PROC MI and propose alternative options such 

that the expected shift can be achieved.  

For continuous endpoints, a commonly used imputation method is fully conditional specifications (FCS) 

which assumes the existence of a joint distribution for all variables (e.g., response across visits). Due to 

the iterative nature of the FCS method, the final shift may deviate from the specified shift values. A 

method of sequential FCS is proposed to guarantee the shift values are as expected and exact for 

continuous endpoint at the target visit, and to make sure a variable at any visit can only be affected by 

previous visits.  For binary endpoints utilizing logistic regression for the imputation model, the shift 

parameters are not directly applied on the probability scale, but rather are applied on the logit scale. 

While a constant shift is applied on the logit scale, the shift on the probability scale is no longer constant 

due to the non-linearity of the logit link function, and the resulting average shift in response rate at the 

population level cannot be predetermined. Therefore, the exact shift based on the response rate for 

binary outcomes cannot be achieved by the MNAR statement in PROC MI for tipping point analysis. 

Alternative option is proposed, such as MI through a direct binary sampling approach. 

 

 

 



1. INTRODUCTION 

Missing data occur inevitably in almost all clinical trials. Reasons for missingness may vary, such as 

patients could be lost to follow up during the trial or withdraw consent. Ongoing patients may also have 

missing measurements due to logistical reasons while staying in the trial. Missing data impose challenges 

to the intention-to-treat (ITT) analysis of the clinical trials. Ignoring patients with missing data can be 

inefficient at best but more often can lead to biased interpretability of the outcomes. All statistical 

models/methods for handling missing data are based on certain assumptions about missing data that are 

untestable or unverifiable. Several modern statistical methods attempt to reduce the bias from missing 

data based on the missing data mechanisms. The definition of the missing data mechanisms is coined by 

Rubin and Little [1], which is the keystone for the missing data field and forms the theoretical framework. 

Basically, three mechanisms are defined: Missing Completely At Random (MCAR) assumes that the 

missingness of an observation does not depend on either observed or unobserved measurements; 

Missing At Random (MAR) assumes that the missingness of an observation depends only on observed 

measurements; and Missing Not At Random (MNAR) assumes that the missingness of an observation 

depends on unobserved measurements.  

In clinical trials there have been increased feedback/attention from regulatory authorities in the pre-

specification of missing data handling methods that allow different assumptions on missing mechanism. 

MAR is a commonly used assumption for the primary efficacy analyses in clinical trials. In general, 

likelihood-based approaches and multiple imputation (MI) based approaches are suggested for the 

primary efficacy analysis and are valid under MAR. For continuous data, linear mixed-effects model for 

repeated measurements (MMRM) is usually used; for categorical data or count data, generalized linear 

mixed-effects model (GLMM) may be considered. GLMM and Generalized Estimating Equation (GEE) are 

included in the CHMP missing data guidance (2010) and FDA sponsored National Research Council 

report on the prevention and treatment of missing data in clinical trials (2010) as viable approaches under 

MAR assumption. MI method [2] can be an alternative option for both continuous and categorical data.   

Since the missing data mechanism is unknown and MNAR cannot be completely ruled out, regulatory 

agencies often request sensitivity analyses under the MNAR assumption for handling missing data to 

evaluate the robustness of the primary analysis results. Tipping point analysis is a popular sensitivity 

analysis under MNAR by finding the “point(s)” where the p-value is tipped to be insignificant under varying 

assumptions for the missing outcomes for the different treatment groups independently. The goal of 

tipping point analysis is to explore the plausibility of missing data assumptions under which the conclusion 

change, i.e. under which there is no longer evidence of a treatment effect. The outcomes from a tipping 

point analysis provide clinical reviewers information to help determine if these outcomes are implausibly 

unfavorable. Yan et al. [3] proposed tipping point analysis based on summary statistics. In their methods, 

mean of missing outcomes is imputed by mean of observed outcomes and adjusted by pre-specified 

values for continuous variables and response rate of missing outcomes is adjusted at population level. 

Since the data were not imputed at patient level, analytic models adjusting for covariates cannot be fitted. 

In this article, we focus on conducting tipping point analysis using the MI method for both continuous and 

binary endpoints. The MI procedure appropriately accounts for the imputation uncertainty and allows 

more flexible models to impute missing values based on observed data. Tipping point analysis can be 

implemented using SAS PROC MI with the MNAR statement and typically includes two steps: step one is 

to impute missing data using MI under MAR, and step two uses the MNAR statement to adjust the MI 

imputed values by a pre-specified set of shift parameters for each treatment group independently. For 

continuous endpoints, the MNAR statement can be used in conjunction with either the MONOTONE or 

FCS statements. For binary endpoints, the MNAR statement can also be implemented, though it is 

challenging to achieve pre-specified shift on the probability scale for the missing outcomes. Alternative 



approaches can be considered for binary endpoints, such as MI through a direct Bernoulli sampling 

approach without using PROC MI. This article provides detailed discussion on the application of tipping 

point analyses for both continuous and binary endpoints using SAS.  

The rest of the paper is organized as follows. In section 2, we describe a simulated dataset that is used to 

illustrate the methods in this article. In section 3, we present the analysis methods and example SAS 

code for continuous variables. In section 4, we present the analysis methods and example SAS code for 

binary variables. We discuss our findings and recommendations in the last section 5.  

 

2. SIMULATED DATASET 

A simulated dataset is utilized to facilitate the demonstration of tipping point analyses application using 

SAS. The dataset is set up with two treatment groups: active vs. control, with a sample size of 200 

subjects per group, and a total of 6 visits for each subject. Visit 1 is the baseline visit and Visit 6 is the 

target visit where the endpoint is tested for treatment difference between the two groups. The continuous 

outcome is generated with mean=17 for the control group vs. mean=13 for the active group at the target 

visit. The binary outcome is generated by dichotomizing the continuous outcome, with a response rate of 

17% for the control group vs. 30% for the active group at the target visit. The simulated dataset assumes 

MAR with 20% of missing data for both groups at the target visit. Without loss of generality, the missing 

data has monotone missing pattern. 

The simulated dataset is used to demonstrate the proposed methods for tipping point analysis for 

continuous endpoint in section 3 and for binary endpoint in section 4. The simulation details are described 

in the Appendix. 

 

3. TIPPING POINT ANALYSIS FOR CONTINUOUS ENDPOINTS 

3.1 ANALYSIS STEPS AND GENERAL CONSIDERATIONS 

The steps for conducting tipping point analysis using PROC MI for continuous endpoints are described 

below: 

Step 1: Impute missing data under MAR using PROC MI to form M complete datasets. M can vary, 

usually takes 20-50. In our example, we use M=30. 

Step 2: Pre-specify the set of shift parameters K1 for active group and K2 for control group. For given 

constants 𝑘1 ∈ 𝐾1 and 𝑘2 ∈ 𝐾2, adjust the imputed values by k1 and k2 for each group respectively using 

the MNAR statement in PROC MI. 

Step 3: Under each pair of pre-specified shift parameters (k1, k2), conduct pre-specified statistical analysis 

for each of the M complete datasets and integrate the results across M datasets by Rubin’s rule using 

PROC MIANALYZE.  

As noted in above step 2, we allow a set of different K1 and K2 to conduct a two-dimensional tipping point 

analysis such that the assumptions about missing outcomes on the two treatment groups can vary 

independently and include scenarios where dropouts on active group have worse outcomes than 

dropouts on control group. The shift parameters in K1 and K2 will be set in incremental sequences to 



explore the space of possible missing assumptions systematically and comprehensively. The shift of the 

means is usually in the direction to reduce the treatment effect until the point where the p-value is tipped 

to be insignificant. For example, if higher values of the outcome mean better treatment effect, K1 can be 

set as a decreasing sequence of negative values to allow the mean of the missing outcomes in the active 

group to be increasingly worse. Similarly, K2 can be set as an increasing sequence of positive values to 

allow the mean of the missing outcomes in the control group to be increasingly better. See an example of 

K1 and K2 in Table 1.1.  

The MNAR statement in PROC MI can only be used with either the MONOTONE or FCS statement. An 

important point to note is that, when the multiple imputation is realized through an iterative procedure, the 

imputed values that are adjusted by the MNAR statement in one iteration can be used to impute values 

for subsequent variables (in the order specified in the VAR statement) in the next iteration. This nature of 

the iterative procedure may cause the final shift in the imputed values to deviate from the pre-specified 

shift parameters. To demonstrate how to get the exact shift in the imputed dataset as specified, we 

propose two approaches using SAS PROC MI in section 3.2 and 3.3 respectively.  

 

3.2 USING SAS PROC MI MONOTONE OPTION 

In this section, we illustrate the use of the MNAR statement in SAS PROC MI along with the MONOTONE 

option based on the simulated dataset described in section 2. By default, when the MONOTONE 

statement is applied, missing values are imputed sequentially for the variables in the order specified in 

the VAR statement. Missing values in each variable are imputed by regressing upon all previous variables 

in the VAR statement. The visit of interest in this example is visit 6 and the MNAR statement adjusts the 

imputed values in visit 6 for the 2 treatment groups respectively.  Visit 6 outcome is specified as the last 

variable in VAR statement and therefore is the last variable to be imputed. Since no other imputation are 

dependent upon visit 6 outcome, the adjusted values by the MNAR statement will not be used to impute 

missing values for other visits. Therefore, the adjustment applied to visit 6 imputed outcomes in the final 

datasets will equal exactly the pre-specified shift parameter k1 for the active group and k2 for the control 

group.  

Please note, the MONOTONE statement only works when the dataset has a monotone missing pattern. 

Our example dataset was simulated with a monotone missing pattern. If a dataset has intermittent 

missing data, an additional step is needed to fill in the intermittent missing data to obtain a dataset with 

only monotone missing pattern before implementing MI using the MONOTONE option. One option is to 

use the MCMC statement in PROC MI to fill in the intermittent missing data and transform the data into 

monotone missing pattern.  

The following SAS code illustrates the use of the MNAR statement along with the MONOTONE 

statement. Yj (j=1,…, 6) is the simulated continuous outcome at each visit j, and Y6 is the outcome of the 

target visit. 

PROC MI DATA=indata out=outdata  NIMPUTE=30 SEED=12345;      

CLASS group; 

BY group;  

MONOTONE REG;   



VAR Y1 Y2 Y3 Y4 Y5 Y6; 

MNAR ADJUST (Y6 / SHIFT=k1 ADJUSTOBS=(group='Active')); 

MNAR ADJUST (Y6 / SHIFT=k2 ADJUSTOBS=(group='Control')); 

RUN; 

 

3.3 USING SAS PROC MI FCS OPTION  

In this section, we utilize the same dataset described in section 2 to illustrate how to conduct tipping point 

analysis using the MNAR statement together with the FCS option. The fully conditional specifications 

(FCS) assume the existence of a joint distribution for all variables included in the imputation model. When 

the FCS REG statement is specified, the default regression model for each variable is to impute the 

missing values using all other variables. For example, if the response outcome at different visits is all 

specified in the VAR statement, the missing values at a given visit are imputed using the data from all 

other visits, including later visits. In addition, the FCS imputation is based on an iterative algorithm, thus 

the imputed and adjusted values could be used to impute missing values for applicable variables in the 

next iteration step. Due to these two reasons, the actual shift in the final dataset deviates from the pre-

specified shifts k1 and k2, as illustrated in Table 1.1. In this example, the MNAR adjusted visit 6 values 

were used to impute missing values at other visits, and then the imputed values at other visits in return 

impacts the imputation of visit 6 values through iterations. To avoid this issue, we can bypass the default 

FCS REG model by using separate FCS REG statements to specify the appropriate regression model to 

be used for each visit. More importantly, the MNAR adjusted target visit variable, i.e. visit 6 outcome in 

our example, should not be used to impute any other variables. In other words, visit 6 should not be 

specified as an independent variable in the regression model (i.e. put on the right of the equations) in any 

of the FCS REG statements. In this way, the adjusted visit 6 outcome will not affect other variables and in 

return the adjusted visit 6 outcomes will not get impacted through the iterations, so that the shifts in the 

final datasets will be exactly the same as specified. To better align with the nature of longitudinal data, it 

is reasonable to write the FCS statements sequentially, such that the response at a particular visit only 

depends on data collected at prior visits and not later visits. This allows the exact shift to be achieved 

using the sequential FCS statements.  

Please note, if baseline variables are used in the imputation model, it is necessary to make sure that 

there are no missing values for any baseline variables. If there are missing values for any of the baseline 

variables, including baseline response variable and other baseline covariates, FCS REG statements 

should be explicitly specified to impute the missing values in the baseline variables. If FCS REG 

statements are not specified for baseline variables that need imputation, by default, all the variables 

present in the VAR statement will be used to impute the missing baseline variables, and thus the target 

outcome variable (i.e. visit 6 in the example) will be implicitly used to impute the missing baseline values, 

which, as mentioned above, will lead to shifts in the final datasets that deviate from the pre-specified 

shifted values.  

The following SAS code uses the default FCS REG statement without specifying the regression model for 

each visit outcome. The resulting shifts in Table 1.1 show the discrepancy between the actual shifts and 

the pre-defined shifts, demonstrating that the default FCS statement cannot achieve exact shift as 

expected.  

 



PROC MI DATA=indata out=outdata  NIMPUTE=30 SEED=12345;      

CLASS group; 

BY group;  

FCS REG;   

VAR Y1 Y2 Y3 Y4 Y5 Y6; 

MNAR ADJUST (Y6 / SHIFT=k1 ADJUSTOBS=(group='Active')); 

MNAR ADJUST (Y6 / SHIFT=k2 ADJUSTOBS=(group='Control')); 

RUN; 

 

Table 1.1   Pre-defined Shifts and Actual Shifts using Default FCS Statement 

Active Group Control Group 
Specified shift: k1 Actual shift* Specified shift: k2 Actual shift* 
-5 -6.8 1 1.4 
-4 -5.5 2 2.8 
-3 -4.1 3 4.2 
-2 -2.8 4 5.6 
-1 -1.4 5 7.0 

*Actual shift is the average difference between the imputed values under MNAR vs MAR for all imputed 

records across 30 datasets. 

The following SAS code illustrates the recommended sequential FCS approach by specifying the 

regression model for each outcome using separate FCS REG statements. In this example, visit 6 

outcome (Y6) is the target visit endpoint to be shifted in the MNAR statement, so Y6 should not be used 

as a predictor variable in any of the FCS REG statements. Table 1.2 shows that exact shift is achieved 

using the recommended sequential FCS approach implemented using the following SAS code.  

 

PROC MI DATA=indata out=outdata  NIMPUTE=30 SEED=12345;      

CLASS group; 

BY group;  

VAR Y1 Y2 Y3 Y4 Y5 Y6; 

/* There are no missing data in Y1 and Y2 in this example, so the FCS REG statements start with Y3 */ 

FCS REG (Y3= Y1 Y2 );   

FCS REG (Y4= Y1 Y2 Y3); 

FCS REG (Y5= Y1 Y2 Y3 Y4); 



FCS REG (Y6= Y1 Y2 Y3 Y4 Y5); 

MNAR ADJUST (Y6 / SHIFT=k1 ADJUSTOBS=(group='Active')); 

MNAR ADJUST (Y6 / SHIFT=k2 ADJUSTOBS=(group='Control')); 

RUN; 

 

Table 1.2   Pre-defined Shifts and Actual Shifts using Proposed Sequential FCS Statements 

Active Group Control Group 
Specified shift: k1 Actual shift* Specified shift: k2 Actual shift* 
-5 -5 1 1 
-4 -4 2 2 
-3 -3 3 3 
-2 -2 4 4 
-1 -1 5 5 

*Actual shift is the average difference between the imputed values under MNAR vs MAR for all imputed 

records across 30 datasets. 

Please note in our example, there are no missing data in Y1 and Y2. If there are missing data in Y1 or Y2, 

they can either be imputed using other methods prior to applying PROC MI or by specifying the 

regression model using separate FCS REG statements (e.g. based on other potential covariates not 

showing in the simulated dataset). Otherwise, by default, the missing values in Y1 or Y2 will be implicitly 

imputed using all the variables defined in the VAR statement. As mentioned earlier, in this case the 

adjusted imputed Y6 will be used to impute the missing values in Y1 or Y2, and these imputed Y1 or Y2 

values will then be used to impute Y6 missing data through the iterations, resulting in a deviation in the 

pre-specified shift in the end.  

 

4. TIPPING POINT ANALYSIS FOR BINARY ENDPOINTS 

4.1 GENERAL PRINCIPLE AND CONSIDERATIONS 

For binary endpoints, tipping point analysis can be conducted without using MI, by enumerating the 

response rate of the missing data systematically from 0% to 100% in a stepwise manner. For example, let 

M1 be the number of subjects missing outcome in the active group, and let M2 be the number of subjects 

missing outcome in the control group; let X1 be the number of subjects imputed as responders out of the 

M1 subjects with missing outcome in the active group – the rest are imputed as non-responders.  X1 can 

take values from 0 to M1.  Similarly define X2, with values from 0 to M2.  Given each pair of (X1, X2), we 

can obtain the p-value for the treatment comparison of active group versus control group using the 

combined observed data and imputed data for each treatment group.  If one pair of parameters are found 

to just reverse the study conclusion, in terms of p-value larger than 0.05 (the original p-value <= 0.05), 

then this set of parameters are called the tipping point. This method was also demonstrated in Yan et al. 

[3]. This method is a two-dimensional procedure that varies response rates on each group independently 

and it includes scenarios where dropouts on active group have worse outcomes than dropouts on control 

group. However, since the assumed response rate is at the population level without patient level 

imputation, the analysis models cannot adjust for covariates except under the extreme cases, for 



instance, the “worst” scenario, where the missing outcomes are assumed to be all non-responders in the 

active group and all responders in the control group. One feedback from regulatory agency for the above 

method is that it does not account for imputation uncertainty and is not recommended by the regulatory 

agency; instead, MI approach is recommended to conduct the tipping point analysis for binary outcomes.  

 

4.2 MNAR STATEMENT WITH MONOTONE OR FCS STATEMENT CANNOT ACHIEVE 

EXACT SHIFT 

The tipping point analysis methods for continuous endpoints using PROC MI with the MNAR statement 

(as discussed in sections 3.2 and 3.3) can be directly extended to binary endpoints. However, the shift 

parameter k is applied on the logit scale, rather than directly on the probability scale. Let p0 be the 

response rate in the missing population under MAR, where 𝑝0 =
𝑒�̂�+𝑥𝛽

 

𝑒�̂�+𝑥𝛽
 
+1

  according to the imputation 

model. Let p be the response rate in the missing population under MNAR, with shift k, where 

𝑝 =
𝑒�̂�+𝑥𝛽

 +𝑘

𝑒�̂�+𝑥𝛽
 +𝑘+1

 . In order to obtain a predetermined p, one needs to first calculate k by the following formula 

in order to use the MNAR statement: 

                                                           k = log (
𝑝

1−𝑝
) − log (

𝑝0

1−𝑝0
).     (1) 

On the other hand, when a constant shift (k) is applied on the logit scale, the shift on the probability scale 

is no longer constant due to the non-linearity of the logistic link function as shown in equation (2), where Z 

denotes the binary outcome. Therefore, the resulting average shift in the response rate at the population 

level cannot be exactly specified. As a result, the pre-determined response rate from 0% to 100% in the 

missing population cannot be achieved by the specified parameter k via the MNAR statement in PROC 

MI. This is demonstrated using the simulated dataset described in section 2. When the same sequential 

FCS specification model as used for continuous endpoints was applied to the binary outcomes, Table 2 

shows that the actual response rates in the final datasets are different from the pre-specified response 

rates.  

                                                           Pr(𝑍 = 1|𝑋) =
𝑒�̂�+𝑥𝛽

 +𝑘

𝑒�̂�+𝑥𝛽
 +𝑘+1

        (2) 

  

Table 2 Pre-defined Response Rates in the Missing Population and Actually Imputed Response Rates 

using Sequential FCS 

Active Group (observed response rate 29.0%) Control Group (observed response rate 18.5%) 
Designed response rate 
%: p1 

Actual Imputed 
response rate % 

Designed response rate 
%: p2 

Actual Imputed 
response rate % 

0 0 0 0 
20 23 20 20 
40 38 40 33 
60 54 60 49 
80 74 80 68 
100 100 100 100 

 

 



4.3 DIRECT BERNOULLI SAMPLING AND EXAMPLE SAS CODE 

Given the limitation discussed with using the MNAR statement for binary outcomes, we propose a direct 

Bernoulli sampling approach for conducting tipping point analysis for binary endpoints to achieve the 

following goals: 

 Conduct a two-dimensional analysis to allow assumed response rate to vary on each group 

independently and include scenarios where dropouts on active group have worse outcomes than 

dropouts on control group. 

 Systematically assume a full range of possible response rates in the missing population to 

change from 0% to 100% in a stepwise manner. 

 Account for imputation uncertainty through obtaining multiple datasets from Bernoulli sampling. 

Assume p1 and p2 are the response rates in the missing population for the active group and the control 

group respectively, with 0≤ p1≤100%, 0≤ p2 ≤100%. For each pair of given p1 and p2, we assign responder 

or non-responder status to each patient with missing outcome in each group using direct sampling from 

Bernoulli distribution. Such sampling will be repeated to generate M datasets. M can vary and usually 

takes 20-50. Same as in the continuous example, we use M=30 in our example for binary endpoint 

illustration. For each given p1 and p2, the pre-specified statistical analysis (e.g., logistic regression) can be 

implemented for each imputed datasets and the analysis results can be integrated through PROC 

MIANALYZE. The analysis results will be obtained for all combinations of (p1, p2).  The same example as 

described in section 4.2 is used to illustrate this method. As shown in Table 3, the direct Bernoulli 

sampling method produces actual response rates that are very close to the designed response rate with 

reasonably small sampling variability. 

The following SAS code demonstrates the implementation of the direct Bernoulli sampling in SAS. 

                    %do imp=1 %to 30; 

     %let seed=%sysevalf(&seed+1); 

     DATA outmis; set indata; 

     &Z6= input(&Z6,1.); 

     if &group=”Active” then do; 

     if &Z6=. then &Z6=ranbin(&seed.,1,&p1.); 

     end; 

     else if &group=”Control” then do; 

     if &Z6=. then &Z6=ranbin(&seed.,1,&p2.); 

     end; 

                                         Imputation=&nimp.; 

                     %end; 



Table 3 Pre-Defined Response Rates in the Missing Population and the Actually Imputed Response 

Rates using Direct Bernoulli Sampling 

Active Group (observed response rate 29.0%) Control Group (observed response rate 18.5%) 
Designed response rate 
(%): p1 

Actual Imputed 
response rate % 

Designed response rate 
(%): p2 

Actual Imputed 
response rate % 

0 0 0 0 
20 20.0 20 19.8 
40 40.0 40 40.0 
60 60.1 60 60.0 
80 79.6 80 80.0 
100 100 100 100 

 

5. DISCUSSION 

In this article, we present different approaches to conduct tipping point analysis using MI method in SAS 

for both continuous and binary endpoints. We noted that exact shifts as specified in the MNAR statement 

are not always achieved, depending on how the imputation model is specified in PROC MI. Alternative 

solutions are proposed and discussed in this article for continuous and binary outcomes respectively.  

To achieve exact shift for continuous endpoints, we propose using the MNAR statement along with the 

MONOTONE statement or with sequential FCS statements. By default, the MONOTONE statement 

imputes the missing values sequentially for the variables in the order specified in the VAR statement, and 

therefore achieves the exact shift. If the dataset has intermittent missing data, in order to use the 

MONOTONE statement, the intermittent missing data needs to be filled in first to obtain a dataset with 

only monotone missing pattern. The PROC MI MCMC statement is an option to fill in the intermittent 

missing data. Since the MCMC option requires multivariate normal assumption, categorical variables 

cannot be directly used in the imputation model. One remedy is to create dummy variables for categorical 

variables in the imputation model when MCMC statement is used. When using the MNAR statement 

along with the FCS option, the exact shift can only be achieved using the proposed sequential FCS where 

the MNAR adjusted target visit variable should not be used to impute missing data in any other variable. 

Note that any variable with missing data that does not have an imputation model explicitly specified by an 

FCS REG statement will by default be imputed using all other variables in the VAR statement (which 

includes the target visit variable), which will lead to a deviation from the pre-specified shift; therefore, a 

good rule of thumb is to double check that all variables in the VAR statement are properly accounted for, 

including baseline variables.  

In practice, convergency issues may arise when using the FCS statement; the “augment” option in the 

FCS statement may help resolve convergency issues.  In addition, if MI analysis under MAR will be 

presented together with the tipping point analysis, to ensure the consistency and comparability between 

MI results under MAR and tipping point analysis (MI analysis under MNAR) results, the specifications for 

the two analysis models should be the same including the random seed, the covariates, and the order of 

the covariates in each FCS REG statement. 

For binary outcomes, the MNAR statement cannot achieve pre-specified response rate exactly since the 

shift parameter in MNAR statement was applied on the logit scale. Alternatively, a direct Bernoulli 

sampling method is proposed to achieve the prespecified response rates for the missing population for 

conducting tipping point analysis for binary endpoints.  



In conclusion, the tipping point analyses are becoming increasingly popular as a sensitivity analysis in 

clinical trials to address potential MNAR assumption for missing data. We discussed practical applications 

of the tipping point analyses using MI in SAS and proposed modelling approaches to achieve the desired 

MNAR assumptions as specified for both continuous and binary outcomes.  
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APPENDIX  

The simulated dataset used in the tipping point analysis in the article is described in this appendix. In the 

simulated dataset, the longitudinal data for both continuous and binary outcomes are generated by the 

following steps: (1) simulate complete longitudinal data of the continuous outcome, (2) simulate dropouts, 

and (3) dichotomize the observed continuous outcomes to generate binary outcomes, as described in 

more details below.  

Step (1): Simulate complete longitudinal continuous outcomes. 

The longitudinal continuous outcome is simulated from a multivariate normal distribution. The two 

treatment groups are assumed to have different mean profiles but the same variance-covariance matrix. 

The mean vectors for the two groups from visit 1- 6 are: 



μtrt = (20, 19, 18, 15, 15, 13) 

μpbo = (20, 20, 19, 19, 18, 17) 

The 6x6 correlation matrix is 

⎝

⎜⎜
⎛

1 0.7 0.6
0.7 1 0.7
0.6 0.7 1

0.5 0.4 0.3
0.6 0.5 0.4
0.7 0.6 0.5

0.5 0.6 0.7
0.4 0.5 0.6
0.3 0.4 0.5

1 0.7 0.6
0.7 1 0.7
0.6 0.7 1 ⎠

⎟⎟
⎞

 

Heterogeneous Toeplitz variance-covariance structure is used to model correlation between individual 

subject’s outcomes, where the correlation decreases as the visits are further apart. 

The standard deviation of the multivariate normal distribution is assumed to be heterogeneous across 

visits:(7.75, 8.37, 8.94, 9.22, 9.49, 9.49). 

Step (2): Simulate dropouts 

After obtaining the complete data, we simulate the observed data under a monotone missing pattern. The 

probability of missing 𝑀𝑗  at timepoint 𝑗,  𝑗 > 2 and up to visit 6, follows a logistic model. The models and 

corresponding parameters are set as the following:  

                      Log (
𝑀𝑗

1−𝑀𝑗
) = − 110 − 6 ∗ 𝐺𝑟𝑜𝑢𝑝 + 2 ∗ 𝑌𝑗−1 + 2 ∗ 𝑌𝑗−2   

Where Group is the treatment indicator: active vs control; 𝑌𝑗−1 is the continuous outcome at previous visit. 

We use 𝑍𝑗 to denote the binary outcomes in our example at visit j, where j=1,2,…,6. The model depends 

on the treatment group and the continuous outcome from the previous two visits. Then a random 

Bernoulli variable is generated to determine if the subject dropped out or not. This process is repeated for 

each patient from the third visit until the patient dropped out or until the end of the study. Observed data 

are obtained by removing all data at and after the dropout visit. 

Step (3): Dichotomize to get longitudinal binary data 

After the observed longitudinal continuous data are generated, the continuous outcomes are 

dichotomized into binary response data, by defining a “response” as a score 𝑌𝑗≤ 8.  
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