
1

PharmaSUG 2023 Paper RW-163

CMS VRDC Overview and basics with Sample Code

Simplifying Adding Class Vars and Low Volume Limits

Zeke Torres Code629 Chicago, IL

ABSTRACT

The Center for Medicare and Medicaid Services (CMS) Virtual Research Data Center (VRDC)

is a resource that has strict stipulations on how to access and report on data. The ETL-

related macros covered in this paper help with understanding the data. Also included is a

useful SUMMARY procedure utility to help with obtaining useful facts from data (not just

VRDC data).

This set of ETL macros also includes a way to set Low Volume Limits and satisfy the

reporting requirements of the VRDC. That “Low Volume Limits” format and the function in

this tool box allows for an easier way of reporting and downloading data and meeting the

requirements of the VRDC.

MAIN PROBLEM THIS SOLVES

Users who work with the CMS CCW and VRDC will find this paper useful. It covers a typical

scenario where reports and results must be created on the VRDC system – and downloaded.

This download process must be done via a request for approval by an authorized agent at

the CMS CCW VRDC. If that request is rejected – the process (code) must be revised and a

new download request made.

With this set of code examples you will see how to quickly enable/disable that Low Volume

Limit without the need to revise your code extensively. You’ll also have a set of codes to

use and customize that are meant to help explore data – typically something that has to be

explored during ETL stages.

I use this code to start with small data to put thru and learn about. Then put thru more

data as I learn about the data.

HOW TO QUICKLY IMPLEMENT – PROOF OF CONCEPT

Quickest way to this Solution: See the Appendix, Copy Code, run code - go!

READER REQUIREMENTS – SAMPLE DATA - CODE OVERVIEW

USER SKILL LEVEL REQUIREMENTS

The intended reader and user should have a basic or better comprehension of:

• SAS® Macro Language

• PROC FORMAT – with PROC TEMPLATE

• PROC SUMMARY

• PROC FREQ

• Linux/Unix

• Data Used for this Paper/Topic

Extensive knowledge of these items is not a pre-requisite. Great – but not needed.

The paper should provide a useful template for someone to observe those elements working

together. Being familiar with those elements is simply going to determine how quickly and

2

easily the reader/user can take this code configure it to work and get it customized to their

situational needs.

DO YOU NEED THE VRDC – WHAT SAMPLE DATA CAN I USE?

I have written this paper to work with “SASHELP(.) Data” and therefore it does not require

the use of any VRDC data or access to that environment. A part of this paper is devoted to

explaining the CMS VRDC – but access to it is NOT a requirement.

A user with access to Base SAS should have all the necessary components to test and

evaluate this code.

SYSTEM AND ENVIRONMENT EXPECTATIONS

The goal is to deploy this code within the CMS VRDC environment. However this code was

crafted to work on any operating system where Base SAS can work. For the sake of

consistency and simplicity of authoring – I have decided to use a “Linux/Unix” style of code

and environmental considerations. This is because the CMS VRDC uses that at its core.

However – I have made every attempt to reduce or remove the influence of “OS” that

impact the usefulness and functionality of this ETL ToolBox.

Where it might be relevant – I will call that out to enable you to find the settings,

configuration elements needed in your environment.

CODE PERFORMANCE AND EFFICIENCY

This code is intended to be run while you evaluate and gauge the data you are working

with. Some parts of it may be useful in your final solution or operational implementation.

Some not.

As with many SAS topics – yes there are countless ways to solve this problem and each

brings its own efficiency considerations. I encourage you to explore those differences at

your leisure and if you could – please share them.

When I crafted this – it was not to push the boundaries of hyper optimal efficiency to the

limits. I often wish I had the time and resources to explore those differences and even

more to draft them into a paper to share with everyone.

So this paper demonstrates how I’ve chosen to collect and gather my code “ToolBox” in a

way that I can optimize, upgrade and explore the differences as time goes. I frequently use

this code and want to have it easily ready and accessible. A set of standard tools handy and

ready to interrogate data in a familiar and easy way.

DATA TO EFFICIENCY CONSIDERATIONS

With the exception of Very Large Data, Unstructured Data the following is true:

• Most of the ideas this paper explores will perform just fine for many sizes of data.

• There are other suitable SAS Procedures and/or functions you can swap out if you

wish.

• There may be SAS Options within these Procedures that can impact performance.

I’ve done my best to indicate where some of those differences exist that might be useful for

you to be aware of. Regrettably I have not delved deeply into details.

3

CMS VRDC - BACKGROUND

COMMON HIGH LEVEL TERMS

This paper includes links in the References Section that can help readers learn more about

the CMS CCW VRDC.

• CMS – Center for Medicaid and Medicare Services;

• CCW – Chronic Condition Warehouse;

• VRDC – Virtual Resource Data Center.

• DUA – Data Use Agreement

• VRDC User – the person who is using and accessing the VRDC data and systems

• DUA Organization – the organization and/or company who holds the overall DUA

agreement with CMS/CCW and is responsible for its VRDC Users and Licenses.

• SAS and SAS EG – SAS Enterprise Guide. The system and software tool of choice for

CMS/CCW.

VRDC BASICS

The VRDC is a secure, hosted environment in which CMS/CCW has individual seats or access

available to licensed users. These users and the organizations or employers they represent

have to undergo a rigorous application process to be granted access to the system. This

also requires financial application fees and system fees to be paid.

The VRDC system is a virtual remote desktop which is stripped down to the most basic

Windows Operating system and a fully operational license of SAS Enterprise Guide.

That SAS Enterprise Guide license and environment – brings with it access to CMS/CCW

data. The Remote Desk Top and VRDC from here in will be referred to as “VRDC” for

simplicity.

PATIENT PRIVACY ON VRDC AND CMS DATA

The data that is held within the VRDC system is Medicare and Medicaid claims for patients

across the United States healthcare system. The system is not directly accessible to the

web and secured. There is sample CMS data available on the web.

This data is for about 100m patients. The entire United States – with some exceptions on

some states, counties. But for this paper and practical purposes of the paper – lets just

agree – it’s a lot of healthcare data.

The important idea to understand is that CMS/CCW strive to enforce and protect patient

facts and data. So much so that the system and people using it are monitored.

Key patient facts are de-identified. And I will refrain from delving into details further about

the environment and its encryption and processing in an open forum and format to ensure

the system continues being safe and secure. I encourage you to read on topics concerning

HIPPA and Patient Privacy as well as IFRB and CMS DUA (See References).

4

MORE ABOUT THE DATA

The quick list of “types” of data on the VRDC includes: Inpatient, Outpatient, Skilled Nursing

Facilities, Home Hospice, Part A/B/C just to name a few. Including: Costs, Plan types, Line

Items etc.

And it spans numerous years going back in time. Typically cataloged quarterly chunks of

the most immediately retrospective date we are on – become available in exploratory

releases. Until the conclusion of a ‘year’ and then with CMS/CCW closing a year – and

releasing the final year(s) version.

The data is stored or organized by CMS/CCW in a method such as: File_type/YYYYMM.

So while the data is not exactly real time – it is very much – large data and very much

important to ensure security and privacy. Its also updated in a useful frequency to suite

most typical research needs.

The subject of the VRDC itself, how the SAS data and views are kept as well as performance

considerations regarding SQL, SAS in general – all warrant their own paper and

presentation. There are plenty of details and worthwhile bits of information to share.

With that much data – for that many patients its clearly a valuable resource for research

and organizations.

The data can allow an organization to learn about:

• Patient Care

• Hospital Performance

• Physician Specialties

• Physician Performance

• Medication and Outcomes

• Treatment Outcomes

• Patient Complications

• Adverse Outcomes for Patients

• Patient Long Term Care

• Episode Analysis

• Cost and Revenue Analysis

• Length of Stay Analysis

These are just a small sampling of possible uses of the data.

GETTING ACCESS TO THE VRDC

Access to that data and the VRDC system – all fall under a DUA and contractual agreement.

The DUA is typically something that isn’t at a ‘user’ level – its often part of an organizational

contract and agreement. Users of the VRDC have a ‘seat’ or VRDC license which is only

granted after the Organization the user belongs to passes the application process – but the

user also completes the correct application and background checks.

The application process of an Organization to obtain an approved DUA and subsequent

VRDC seat or license will quickly demonstrate to anyone why this isn’t just accessible to just

anyone.

Your approved DUA could grant you access to 100% of the data. The DUA request,

application you have will determine the data and access you are granted for the research

and purposes you disclose and adhere to.

If your organization/employer wrote the DUA correctly and it passes the CMS/CCW review

and audits you could be granted access to the data.

If you do not have access to the VRDC – there are still sampling of data available by

CMS/CCW for research work. Typical dataset samples are in the 5% range.

5

RELEVANCE TO THIS PAPER AND CODE

With the requirements for DUA’s and applications and fees associated with getting access –

its clear that no one wants to jeopardize access to the VRDC. Especially if it involves

violating some of the protocols and rules in place.

The important one for this paper is: Low Volume Limits.

Due to the nature of the data and its contents the VRDC imposes some rules on not only

what can be uploaded but downloaded.

The reporting and summarization of data on the VRDC can not display facts in figures or

groups of patients of LESS THAN 10. If its not – the VRDC will not allow it to be

downloaded.

It’s a simple rule – and important. In order to protect patients and privacy – we should not

ever really construct code or facts that become so low in “counts” that we transcend into

questionable forms of practice which inherently jeopardize patient privacy.

The data is meant to help us learn about our healthcare system and ideally provide a benefit

to patients – which include us and our community, our families, our loved ones. The things

we learn should go towards improving things and not misusing this data.

It’s a simple idea to keep in mind as you create reports and code.

In working for years on the VRDC – this solution set has helped.

At best – someone will have a download request of an excel output rejected by the VRDC

agent auditing the request. They will inform you why and that person will need to revise

the work and adjust the output. The time spent depends on how fast they can make the

necessary adjustments and re-request the download.

At worst the VRDC agent can alert your organization that repeated attempts are being made

concerning this topic. With obvious escalations that I am happy to have little knowledge of

and can not describe here.

Just follow the rules – everyone will be happy.

SAS MACROS

The solution that we are crafting will all revolve around the use of SAS Macros to simplify

when we want to include this in to code we are working on.

We will have one long “.SAS” that will hold our code for this paper. However I recommend

you learn about how to create SAS Macro Catalogs in order to make your code more

portable and accessible.

One thing to be aware of is that many of these macros and code work together.

So as you: evaluate and test, upgrade this code, create more code that uses this code – do

not forget how interdependent they could become if they are not already.

6

KEY MACRO COMPONENTS

MACRO NAME DESCRIPTION/PURPOSE

DSREPORT1

See Appendix 4

This is my version of a more useful Proc Contents. It allows me to see the
contents in a way that I can quickly share and send to others who are not
typically familiar with SAS Proc Contents Output.

FIELD_STATS

See Appendix 5

I use this to determine if a field that is say an “ID” or “patient id” – truly is
unique. I want to use this when I’m trying to determine – missing,
duplicate etc.

FIELD_TOP15

See Appendix 6

I use this to quickly get the “top 15” of a field/variable. Giving me an idea
of the diversity of a field. And if there are missing observations.

FIELD_FREQ

See Appendix 7

This is basically just a Proc Freq – but pushed to a table or dataset. I can
then see the results better.

FIELD_FREQDT

See Appendix 8

Same as the Field_Freq – but I’d like to push Dates Thru. And not have
issues with forgetting to format the date as : YYYY/MM. Because if I
forget – I’ll get some really long output that might not be useful.

FIELD_NUMBERS

See Appendix 9

Having learned from all those other macros – now I’d like to use this to
push thru numeric fields and learn more. This is ideal for telling me about:
Amounts, Dates, Numbers in general. Since I’m going to obtain things
like: min max mean p10 p50 etc. With a more structured output in a table
layout.

VRDC AND SQL – PERFORMANCE CONSIDERATIONS

I am eager to hear from SAS and SQL colleagues far and wide about other ways to solve the

task and get the same results – and likely with better performance.

Drafting a paper to the SAS community invites countless discussions, conversations and

likely arguments. I invite all those constructive comments and ideas. Certainly, ways to

use more SQL. But I’ve taken these Base SAS over SQL or other methods because my

experience with SQL on the VRDC. Often a SQL approach has been observed to be

inconsistent on that platform. Its resulted in some inconsistent performance. I am not sure

where that can be directly attributed to. The VRDC is not open enough at the OS to enable

monitoring and gauging how they have configured the SQL engines.

I do look forward to meeting and talking with those who handle and administer this platform

to confirm some suspicions I have about this. One is that I believe they are trying to

optimize SQL engines and other SQL components. Which they may not announce

consistently. So what happens is you might have your code with SQL working great one

day/week – then soon(er) or later – it will perform horribly and/or crash.

We could also attribute some of these performance issues to the shared nature of the VRDC.

But I’ve also had mixed results or inconclusive metrics on that.

So in order to facilitate running the same code locally that I would on the VRDC – I’ve opted

for a very Base SAS Centric approach.

GETTING CODE SETUP

Obtain a copy of the code from either the Appendix portion of this paper and/or GitHub.

Get the code copied to your local machine with a valid operational Base SAS license.

Put the code in a folder – open Base SAS – initiate the macro(s) and your set.

I have tried this code on SAS University Edition via AWS and Local SAS.

7

OVERALL CODE SEQUENCE

The key in this process is because we will follow these steps:

1. Using the Format to declare the “Low Value” we want to assign.

2. Use a Proc Template to assign the Format Value to the SAS Template

3. Generate reports or information we need.

4. Remove the Proc Template from our session – because we are done. We don’t want

to keep it around and cause issues if we leave it. The next report we do may not

have the Low Volume Limit set the same.

Here in this four step process – we will be able to swap out “reports” within step 3 with just

about anything we choose. You can continue to find ways to adjust or modify to your

situation.

The rest of the macros found in this code are meant to facilitate studying your data.

See Appendix 10

PROC TEMPLATE

The statements we need for Proc Template are simply meant to:

1. Before we generate our report/output – we will make a copy of an existing template.

2. Edit or adjust that copy so that it now has the format value we generated from Proc

Format.

3. Clean up Step – is also quick – we simply delete the template we adjusted.

PROC FORMAT

The format we are using is straight forward and simple. We will use this format in our

process to enable/disable values that are too low for us to report.

What will be a bit different is the use of PROC TEMPLATE to adjust the SAS default to keep

this on/off when we run our code.

The useful part about this technique is we can adjust or modify the format as needed. We

do not need to use the Proc Template to apply the format. However its useful because

doing so reduces the places and areas where we need to modify our code.

COMBINING PROC TEMPLATE - PROC FORMAT – PROC FREQ

The useful part about this technique is we can adjust or modify the format as needed. We

do not need to use the Proc Template to apply the format. It offers flexibility by reducing

the need to modify code in many places. If we didn’t combine this approach – we would

need to explicitly declare the: Variable and FORMAT to apply within lines and code at many

steps of our process. This method – reduces that. It allows us to run the code with or

without the FORMAT – and evaluate. Once we are pleased with the output – we can

implement the format – and know the values are adjusted. But the majority of the code

stayed intact.

Everyone who writes SAS code has had a chance to explore parts of PROC FREQ. It’s a very

useful procedure which provides information on the field/variable we would like to study.

What we are doing is simply combining the template, PROC FORMAT and PROC FREQ.

8

LOW VOLUME LIMITS COMBINED WITH THIS PROCESS

See Appendix 10

What we are doing is represented below in these sequence of events.

The area where we “RUN YOUR SAS CODE” can be where you can include or run your code.

Here you can use the Format or use the PROC TEMPLATE method where updates to the

template and your desired procedure match up.

So the macros below and in this ETL toolbox – can be used in that “RUN YOUR SAS CODE”.

This allows the Low Volume Format and Proc Freq to work well together.

RUNNING THE CODE

I’ve tried to keep the code consistent from naming perspective. I take the data and create a
copy/subset of it. This is a matter of precaution. I do have other versions of my code where I don’t
make a copy. But I wanted to share this version. With this method – your source data is not jeopardized
if you didn’t configure the macros correctly or if you had some kind of freak naming convention mishap.
Special notice: It is important for you to decide if the prefix mentioned is ok to use.

The macro naming conventions and items to be aware of are:

Main “libname” for temp data is: work.

You can adjust this by updating to suite your needs

Temp dataset prefix are: tmpx_ and tmpz_

These two are stored within work. lib and

If they are created they are deleted using Proc Datasets with the use of prefix “:”

Above all pay notice to the overall naming convention to avoid any mix up with your

existing or future code.

The macro value: inds is meant to indicate the "incoming dataset"

The macro value: vartochk is meant to hold variable name and/or names

The vars should be listed one by one and space delimited. Here is an example:
vartochk= var_one var_two var_three

9

WHAT GETS RUN

Here is what you can run once you initiate and run the macro code.

%dsreport1(inds=sashelp.baseball);

%field_stats(inds=sashelp.baseball , vartochk=team);

%field_top15(inds=sashelp.baseball , vartochk=team);

%field_freq(inds=sashelp.baseball , vartochk=team);

%field_freqdt(inds=sashelp.stocks , vartochk=Date);

%field_numbers(inds=sashelp.baseball , vartochk=nhits nhome);

Note – I often create smaller data like “work.somesubset” and use that rather than my

source data. Because what I’ll do when I first start to investigate what is in my data I don’t

want to put TOO much data in one of these macros.

An example of a bad scenario – a FREQ on a variable like: PHONE_NUMBER.

So the rest of this report will cover what the output is once its “run” as shown above.

DSREPORT1

Here is what my optimal or preferred PROC CONTENTS would look like.

%dsreport1(inds=sashelp.baseball);

The reason I like my Contents – I get an output that I can share with someone who isn’t

familiar with a standard SAS Proc Contents. Along with a small sample of data.

10

FIELD_STATS

This macro tells me if the field I’ve put thru is distinct and how many distinct values there

are.

%field_stats(inds=sashelp.baseball , vartochk=team);

FIELD_TOP15

Sometimes I just want to see if the field has the right amount of values for the “major”

values I’m expecting. A good use for this is – say a Hospital field in claims. Or Physician

field in claims. Who are my top 15 of those?

%field_top15(inds=sashelp.baseball , vartochk=team);

FIELD_FREQ

If I do want the full frequency – this is what is useful to me. Not because I’ve done

anything fancy – but because I can spin thru a number of fields with one macro. So you

can see the same output – but now we can do this:

%field_freq(inds=sashelp.baseball , vartochk=team);

11

FIELD_FREQDT

This macro uses Proc Freq – but for Dates. And I don’t have to remember to apply a useful

format. All we need to have is a valid SAS Date value. This macro does the rest. It also

works if you add more fields to “VARTOCHK”. So can quickly examine many fields.

%field_freqdt(inds=sashelp.stocks , vartochk=Date);

Please note that in the other macro examples here in this paper I was able to use

sashelp.baseball. For this macro I need a date field. Sashelp.stocks has that such field.

This is not a full visual of all the values in sashelp.stocks. It’s a small cut/paste image.

FIELD_NUMBERS

This macro allows me to see the numeric variables in my data and the variety of facts about

them. I’ve configured my macro to use some common stat output in Proc Summary. This

way I can see if fields are viable for analytic use.

%field_numbers(inds=sashelp.baseball , vartochk=nhits nhome);

So with this method – we now have a quick way to learn about the data.

12

CONCLUSION

This paper describes how to bring together a few useful macros into a “ToolBox”. This allows

you to customize some common things you would use in your day to day work.

How employing a simple Proc Format with these macros can allow you a way to toggle

between the report you want to review before downloading and the final report to create

when you actually do download from the VRDC.

THE FINE PRINT

This software is provided to you "as is" without any warranties, express or implied, including

but not limited to implied warranties or merchantability and/or fitness for a particular

purpose. The Author, SAS Institute and its licensor(s) disclaim any liability connected with

the use of the software and/or proposed code solution presented. The Author, SAS Institute

offers no technical support for the software and/or proposed code solution presented.

ABOUT CODE PERFORMANCE AND DATA

In the early part of the paper I have stipulated that performance and the size/scope of data

are relevant. It is imperative that if you did configure this code to run on data like that

found in CMS CCW VRDC – that you be aware of the idea of code performance and the data.

I do not recommend anyone simply run any of these code elements in part or in full against

very large data in the first few attempts or while becoming familiar with the code and its

operation. Where there should be no severe consequences – likely the code will not

perform at its optimum. However – while I will not provide warranty over how this code

works on the VRDC because you overlooked these facts – I will take phone calls about how I

and my team can help you and your team solve the problems together under a services

contract.

BUT WAIT…

After all that in “the fine print” if you still want to exchange some ideas, comment, critique

or ask questions – just contact me and lets see what we can figure out together.

REFERENCES

http://support.sas.com/documentation/cdl/en/odsug/61723/HTML/default/viewer.htm#a00

3139134.htm

https://support.sas.com/resources/papers/proceedings/proceedings/sugi29/092-29.pdf

http://support.sas.com/publishing/pubcat/chaps/62007.pdf

https://support.sas.com/rnd/base/ods/scratch/reporting-styles.pdf

http://support.sas.com/documentation/cdl/en/odsug/61723/HTML/default/viewer.htm#a00

1020001.htm

http://support.sas.com/resources/papers/proceedings10/090-2010.pdf

http://support.sas.com/documentation/cdl/en/odsug/61723/HTML/default/viewer.htm#a003139134.htm
http://support.sas.com/documentation/cdl/en/odsug/61723/HTML/default/viewer.htm#a003139134.htm
https://support.sas.com/resources/papers/proceedings/proceedings/sugi29/092-29.pdf
http://support.sas.com/publishing/pubcat/chaps/62007.pdf
https://support.sas.com/rnd/base/ods/scratch/reporting-styles.pdf
http://support.sas.com/documentation/cdl/en/odsug/61723/HTML/default/viewer.htm#a001020001.htm
http://support.sas.com/documentation/cdl/en/odsug/61723/HTML/default/viewer.htm#a001020001.htm
http://support.sas.com/resources/papers/proceedings10/090-2010.pdf

13

ACKNOWLEDGMENTS

I want to thank some awesome co-workers that tolerated my numerous attempts to show

them this code and equally tolerated me getting it to work easy enough for anyone to use.

Kay Whitman MPA Healthcare

Bryn David NORC

Bartosz Jabłoński Citibank Europe

Kean Chew Kemper Insurance

Allan Bowe sasensei.com

RECOMMENDED READING OR LEARNING

• SAS® Programming 1: Essentials – Found on the sas.com website under learning.

• SAS® For Dummies®

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Zeke Torres

CEO

Code629

Chicago Illinois USA

Email: info@ztorres.net

LinkedIn: https://www.linkedin.com/in/zeketorres/

Local SAS User Group: www.wcsug.com

ABOUT THE AUTHOR

I am a data engineer. The roles I play are preparing and constructing complex data for

analytic and statistical use. I enjoy designing and building data driven decision support

systems. A typical role for me is that of: data management, reporting and complex

analytics. Including the governance of metadata.

I translate complex business definitions, requirements and convert them into algorithms and

code. Then tackle the some of the toughest, ugliest most unstructured data (lots of it) and

make it valuable and useful.

Crafting end to end "Data to Decision" solutions that matter to an organization. I bridge the

gap between the IT DBA's and Statistics Quantitative Analysts. My main tool of choice is

SAS®. I'm also learning Python and enjoying it.

One of my hobbies are Local SAS User Groups. I lead the Chicago Area SAS Users Group –

WCSUG.com – if you are ever in the area stop by and say hello.

TRADEMARK CITATIONS

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration. Other brand and product names are trademarks of their respective companies.

https://www.linkedin.com/in/zeketorres/
http://www.wcsug.com/

14

APPENDIX 1: MACRO CODE – MACRO DOCUMENTATION

/**

* PROGRAM NAME : macros_toolbox_various.sas

* DESCRIPTION : basic stats and contents on sas data

* AUTHOR: zeke torres

* macro naming conventions to be aware of

* main libname for temp data is: work.

* - you can adjust this by updating to suite your needs

* temp dataset prefix is: tmpx_ and tmpz_

* - these two are stored within work. lib and

* if they are created they are deleted using

* proc datasets delete and that prefix

* *** special notice ***

* it is important for you to decide if the prefix mentioned

* above and overall naming convention will cause any mix up

* with existing or future code

*

* inds - is meant to indicate the "incoming dataset"

* vartochk - is meant to hold variable name and/or names

* the vars should be listed one by one and space delimited

* Here is an example:

* vartochk= var_one var_two var_three

*

* macro mkworktsrc()

* this macro creates subset data for the parent macro that calls it

* this way the original ds/table isnt going to be tampered or locked

* caution on using this method and tool box to explore large data

* without obs limits first to determine which next method to use

* this macro is used within these next macros:

* dsreport1

* field_stats

* field_top15

* field_freq

* field_freqdt

* field_numbers

*

* macro dsreport1(inds=)

* performs proc contents on the data and prints sample 10

* rows (first 10) the contents information is condensed

* macro field_stats(inds=,vartochk=)

* this will check fields like -id- to see if they are unique

* or not this is an ideal macro for fields like

* patient id, index type ids, claim number

* macro field_top15(inds=,vartochk=)

* this will check fields and provide a freq which then is

15

* sorted by descending occrnce only the top 15 are printed

* macro field_freq(inds=,vartochk=)

* performs a proc freq on field specified. Caution

* against using cms fields like provider/hospital, phone

* macro field_freqdt(inds=,vartochk=)

* performs a proc freq on field specified. Caution

* against using cms fields like but for a date field

* the date will be formated in yyyymm.

* macro field_numbers(inds=,vartochk=)

* this will check amount fields to see get

* basic info on them like

* min max mean p10 p50 etc

* with just a few rows of output

**/

APPENDIX 2: MKWORKTSRC

%macro mkworktsrc();

 /* keep data for use in freq and counts */

 data work.tmpz_&sysjobid ;

 set &inds (keep=&vartochk);

 length validation $35.;

 /* use this field -validation - to allow easier

presentation */

 validation='number_of:';

 run;

%mend;

APPENDIX 3: DELWORKSRC

%macro delworksrc();

 /*** this will clean up tables created - pay special attention

to the prefix ***/

 /*** if you happen to use this kind of prefix in your existing

code you will ***/

 /*** need to modify this macro code to a prefix style that wont

cause issues ***/

 proc datasets lib= work noprint;

 delete tmpy_: ;

 delete tmpz_: ;

 run;

%mend;

16

APPENDIX 4: DSREPORT1

%macro dsreport1(inds=);

 data _null_;

 src_scan=scan("&inds",2,'.');

 call symput('src',src_scan);

 run;

 ods proclabel="Contents of file: &src";

 /* only keep certain fields from contents */

 proc contents data=&inds noprint

 out=work.tmpz_table_details

 (keep=memname varnum nobs

 Crdate idxusage sorted

 Name type length

 rename=(memname=data_set_name)

);

 run;

 data work.tmpz_table_facts

 (keep=data_set_name

 varnum

 nobs

 idxusage

 sorted

 crdate

 rename=(varnum =data_set_max_vars

 nobs =data_set_num_obs

 idxusage=data_set_index_usage

 sorted =data_set_sorted_flag

 crdate =data_set_create_date

))

 work.tmpz_table_details

 (keep=data_set_name

 field_type

 length

 name

 varnum

 rename=(name =field_name

 length=field_byte_length

 varnum=field_seq

));

 set work.tmpz_table_details;

 if type='1' then length=.;

 if type='1' then field_type='Num';

 if type='2' then field_type='Chr';

 drop type;

 name=upcase(name);

 run;

17

 /* get totals from content details on data */

 proc sort data=work.tmpz_table_facts;

 by data_set_name descending data_set_max_vars;

 run;

 /* rename fields to something client can understand */

 proc sort data=work.tmpz_table_facts nodupkey;

 by data_set_name ;

 run;

 /* print totals for the table */

 ods proclabel="Details of rows in file: &src";

 proc print data=work.tmpz_table_facts;

 title "data table facts: &src";

 run;

 title;

 proc sort data=work.tmpz_table_details ;

 by data_set_name field_type field_byte_length field_name;

 run;

 ods proclabel="Details of columns file: &src";

 proc print data=work.tmpz_table_details width=uniform;

 title "data table facts: &src";

 run;

 title;

 /* print 30 rows of data for sample */

 ods proclabel="Sample of Rows: &src";

 proc print data=&inds (obs=10) width=uniform;

 title "Sample Output - &src set to 10 rows if they exist";

 run;

 title;

%mend; ****************** end macro;

18

APPENDIX 5: FIELD_STATS

/* this will check fields like -id- to see if they are unique or not

*/

%macro field_stats(inds=,vartochk=);

 data _null_;

 src_scan=scan("&inds",2,'.');

 call symput('src',src_scan);

 run;

 %mkworktsrc;

 %let dschk_cnt = %sysfunc(countw(&vartochk, ' '));

 %do ggg = 1 %to &dschk_cnt;

 %let local_var = %scan(&vartochk, &ggg);

 proc freq data=work.tmpz_&sysjobid noprint;

 title1 "audit of data - &inds - for field &local_var";

 by validation;

 table &local_var /nocol norow nopercent

 out=work.tmpy_&sysjobid (drop=percent);

 run;

 title;

 proc summary data=work.tmpy_&sysjobid nway noprint;

 class validation;

 var count;

 output out=work.tmpy_&sysjobid (drop=_type_ _freq_)

 n=count_of_distinct_values

 max(count)=validate_unique;

 run;

 data work.tmpy_&sysjobid;

 set work.tmpy_&sysjobid;

 length validation $35.;

 validation="&local_var";

 is_field_unique='yes';

 if validate_unique gt 1 then do;

 is_field_unique='no';

 end;

 drop validate_unique;

 run;

 ods proclabel="Validation of &local_var in: &src";

 proc print data=work.tmpy_&sysjobid width=uniform;

 title1 "validating: &local_var variable in: &src - &inds";

 title2 "is field unique check";

 run;

 title;

 %end; *** end of do loop;

 %delworksrc();

%mend; ******************** end macro;

19

APPENDIX 6: FIELD_TOP15

%macro field_top15(inds=,vartochk=);

 data _null_;

 src_scan=scan("&inds",2,'.');

 call symput('src',src_scan);

 run;

 %mkworktsrc;

 %let dschk_cnt = %sysfunc(countw(&vartochk, ' '));

 %do ggg = 1 %to &dschk_cnt;

 %let local_var = %scan(&vartochk, &ggg);

 proc freq data=work.tmpz_&sysjobid order=freq noprint;

 title1 "audit of data - &inds - for field &local_var";

 table &local_var /nocol norow out=work.tmpy_&sysjobid;

 run;

 title;

 data work.tmpy_&sysjobid ;

 set work.tmpy_&sysjobid (obs=15);

 if percent lt 0 then do;

 &local_var = 'missing';

 end;

 run;

 ods proclabel="Top 15 of &local_var variable in: &src";

 proc print data=work.tmpy_&sysjobid noobs width=uniform;

 where percent gt 0;

 title "Top 15 of: &local_var in: &src ";

 run;

 title;

 ods proclabel="Any missing for &local_var variable in: &src";

 proc print data=work.tmpy_&sysjobid noobs width=uniform;

 where percent lt 0;

 var &local_var count;

 title "Number of Missing: &local_var variable in: &src ";

 run;

 title;

 %end; *** end of do loop;

 %delworksrc();

%mend; ****************** end macro;

20

APPENDIX 7: FIELD_FREQ

%macro field_freq(inds=,vartochk=);

 data _null_;

 src_scan=scan("&inds",2,'.');

 call symput('src',src_scan);

 run;

 %mkworktsrc;

 %let dschk_cnt = %sysfunc(countw(&vartochk, ' '));

 %do ggg = 1 %to &dschk_cnt;

 %let local_var = %scan(&vartochk, &ggg);

 ods proclabel="Freq of &local_var in &src";

 proc freq data=work.tmpz_&sysjobid;

 title "Freq of &local_var in &src";

 table &local_var /nocol norow ;

 run;

 title;

 %end; *** end of do loop;

 %delworksrc();

%mend; *************end macro;

APPENDIX 8: FIELD_FREQDT

%macro field_freqdt(inds=,vartochk=);

 data _null_;

 src_scan=scan("&inds",2,'.');

 call symput('src',src_scan);

 run;

 %mkworktsrc;

 %let dschk_cnt = %sysfunc(countw(&vartochk, ' '));

 %do ggg = 1 %to &dschk_cnt;

 %let local_var = %scan(&vartochk, &ggg);

 ods proclabel="Freq of &local_var in &src";

 proc freq data=work.tmpz_&sysjobid ;

 title "Freq of &local_var in &src";

 table &local_var /nocol norow ;

 format &local_var yymon8.;

 run;

 title;

 %end; *** end of do loop;

 %delworksrc();

%mend; *************end macro;

21

APPENDIX 9: FIELD_NUMBERS

/* this will check amount fields to see get basic info on them */

%macro field_numbers(inds=,vartochk=);

 data _null_;

 src_scan=scan("&inds",2,'.');

 call symput('src',src_scan);

 run;

 %mkworktsrc;

 %let dschk_cnt = %sysfunc(countw(&vartochk, ' '));

 %do ggg = 1 %to &dschk_cnt;

 %let local_var = %scan(&vartochk, &ggg);

 data work.tmpy_&sysjobid;

 set work.tmpz_&sysjobid (keep= &local_var);

 length validation $35.;

 validation="&local_var";

 audit=&local_var;

 drop &local_var;

 run;

 proc summary data=work.tmpy_&sysjobid nway noprint;

 class validation;

 var audit;

 output out=work.tmpy_&sysjobid (drop=_type_ _freq_)

 n=cnt_distinct_values

 min(audit) =min

 max(audit) =max

 mean(audit)=mean

 std(audit) =stdv

 p10(audit) =p10

 p25(audit) =p25

 p50(audit) =p50

 p75(audit) =p75

 p90(audit) =p90

 ;

 run;

 ods proclabel="Validation of &local_var in: &src";

 proc print data=work.tmpy_&sysjobid width=uniform;

 title1 "validating: &local_var variable in: &src - &inds";

 title2 "numeric field stats";

 run;

 title;

 %end; *** end of do loop;

 %delworksrc();

%mend; ************ end macro;

22

APPENDIX 10: LOW VOLUME FORMAT CODE WITH TEMPLATE

%let LOW_VOL_THRESHOLD = 10; /* set to 10 for VRDC downloads */

proc format;

 /* Default is to scrub values 10 or fewer */

 value scrub

 0-&LOW_VOL_THRESHOLD. = -999

 other=[12.0]

 ;

run;

/* Format the freq output to allow scrubbing. */

proc template;

 edit base.freq.OneWayList;

 edit Frequency;

 format=scrub.;

 end;

 end;

 edit base.freq.CrossTabFreqs;

 edit Frequency;

 format=scrub.;

 end;

 end;

run;

proc freq data=sashelp.baseball;

 table team /list missing nocum ;

run;

/* clean up template */

proc template;

 delete base.freq.CrossTabFreqs;

 delete base.freq.OneWayList;

run;

