
1

PharmaSUG 2023 - Paper RW-154
Automating Non-Standard New Study Set Up

with a SAS® Based Work Process
Bo Zheng, Li Ma, and Xingshu Zhu, Merck & Co., Inc., Rahway, NJ, USA

ABSTRACT

It’s essential and effective to start a new study utilizing broad institutional standard macros, especially for
data quality review (DQR) and analysis and reporting (A&R) in real-world-evidence (RWE) studies.
However, the rapid developmental pace of studies introduces the challenge of effectively managing
standard macros and often requires the identification of what standard macros are needed and where
they are located. Having a clearly defined work process and tool for automatically copying specific
macros and folders to the new study directory significantly reduces the time spent on manual work and
improves reliability and efficiency across multiple studies. This paper highlights the functional portions of
a real-life work process and a SAS macro to easily automate this task while preserving the original file
timestamps for traceability.

INTRODUCTION
The increasing popularity of RWE studies and the rapid development of customized macros and code
libraries have created new challenges for organizations. Macros and code snippets may reside in
multiple separate folders, leading to difficulties in copying these helpful programs over to a new study.
This can be a time-consuming and complex process, with end-users often having to manually copy files
from multiple subfolders into the new or desired study folder. In this paper, we defined a clear work
process and developed a SAS macro to automatically aggregate and copy user-specified files into a new
or existing study directory. We’ve found that this approach made our project work more consistent,
improved reliability and efficiency across multiple new studies, and helped to improve the onboarding
experience for new staff members.

DEFINE THE GENERAL WORK PROCESS
Defining a work process involves several important considerations such as the type of analysis platform,
its operating system, and the software and hardware involved. Consistency is key when organizing
folders, and it's recommended to use a uniform folder structure across studies that also include clearly
defined subfolders for documents, programs, and macros. This example approach can help to streamline
existing workflows and to improve collaboration within and across teams.

Figure 1. Suggestions for Defining the General Work Process

• Identify platform OS.
• Identify folder delimiter.
• Standardize folder structure

across studies.
• Integrate with any existing

study set up work processes.

Determine Platform
System Hardware

• Define a list of all essential
items such as: macro code,
SOP documents, references,
and startup files.

• Define intuitive keywords for
these major item categories.

Define & Categorize
List of Essentials • Automate the following

through SAS macro code:
• OS identification
• key folder identification
• file copying process
• parameter checking

Automate the
Copying Process

• Verify that all items from the
essentials list has been copied
to the new study folder.

• Verify that the time stamps of
the original files and
documents are retained
correctly.

Finalize Quality &
Consistency Review

2

To ensure a smooth transition, start by mapping out a list of essential program codes, documents, and
folder locations needed for the new study, including any traditionally manually copied files. File
extensions and subfolder names are generally useful to identify for filtering out nonrelevant files from the
copying process. Categorizing groups of similar files to be passed as SAS macro parameter inputs can
also improve the automation planning process, especially for different types of files located in different
folders, for example: “MACROS”, “STARTUP”, or “SOPDOCS”.

Once the list of critical files and their folder locations have been finalized, it’s time to plan an automated
process for copying the list of files from source to destination with a simple SAS macro. This paper
covers SAS automation examples for Windows and Unix/Linux-based systems but most of the general
code and logic can be applied to other operating systems. It’s recommended to also define a set of post-
run quality and consistency review requirements and checks at the group or organization level. Additional
functionality, such as automatically generating a checklist of files copied for manual review, can also be
added to the final process.

The general automation needs for our work group are defined below:

Figure 2. Priority automation components of example work process

AUTOMATE THE WORK PROCESS IN SAS
After defining the list of essential files to copy, their locations, and any operating system requirements, the
next step is automating the copying process in SAS. For easier debugging, the provided example macro
covers one folder/directory and its file contents per call, though it can be modified with additional code to
handle more than one at a time if the file type, category, and input and output locations are consistent.

Macro parameters that define the source, destination, file extension, and additional filtering and
debugging options can be used to enhance overall functionality:

SAS Macro Parameter Description
COPY_FILETYPE Required; a predefined keyword that can be used to

designate the file category to copy.
Examples: “MACROS”, “STARTUP”, or “SOPDOCS”.

SOURCEPATH Required; source file or folder location path to copy from.
DESTPATH Required; destination folder location path to copy to.
FILTER Optional; this parameter can be used to filter out subfolders

that do not need to be copied, such as backups.

Code
Standards

•Copy the latest versions of all work-group developed custom macros and job aids to the
project’s standards library folder.

SAS Startup

•Copy the latest version of the SAS startup program that creates the necessary library
references to the new projects’ program setup folder

SOPs &
Docs

•Copy all necessary SOP and template or reference files for tables, listings, figures, and
methodology to the documents and any related sub folders.

3

SAS Macro Parameter Description
LOGPATH Optional; this parameter can be used to specify where the

external log is saved, otherwise it will be saved in the same
folder defined by DESTPATH in the example code.

DEBUG Optional; this parameter can be used to delete or retain
intermediate datasets for debugging in the example code.

Table 1. Suggested parameters for example SAS automation macro

EXAMPLE SAS MACRO & USAGE
Creating the example automation macro with the recommended parameters from table 1:
%macro example0macro(copy_filetype= ,sourcepath= ,destpath=
 ,filter= ,logpath=, debug=N);

Using the correct delimiter when separating different elements in a command line or file path argument is
important, as delimiters can be operating system specific. In Windows, the delimiter is “\”, while in Linux,
it's “/”. Using the wrong delimiter can cause errors in the SAS macro and prevent the process from
returning the correct results.

It's recommended to create a macro variable (&DELIM) to store the delimiter. The example code below
also outlines optional enhancements to perform additional automated preparation tasks for each of the
three path variables "sourcepath", "destpath", and "logpath":

• Replace any forward slashes with backward slashes if the operating system is "WIN".

• Replace any backward slashes with forward slashes if the operating system is "LIN X64".

• Remove the trailing slash from each path variable if one exists.

An abbreviated example of adding automatic preparation functionality to “sourcepath”:
%global delim;
%if %index('WIN',&sysscp)>0 %then %do;
%let delim=\;
 %let
sourcepath_temp=%sysfunc(tranwrd(%bquote(&sourcepath),%str(/),%str(\)));
 /* Check if directory ends with a slash, get rid of it if exists*/
 %if %substr(%sysfunc(strip(%sysfunc(reverse(&sourcepath_temp.)))),1,1)=\
 %then %do;
 %let sourcepath=%substr(&sourcepath_temp., 1,
 %eval(%length(&sourcepath_temp.)-1));
 %end;
 %else %do;
 %let sourcepath=&sourcepath_temp.;
 %end;

 ... /* use a similar technique to define destpath and logpath */

 %end;
%else %if %index('LIN X64',&sysscp)>0 %then %do;
 %let delim=/;

 ... /* use a similar technique for function on Linux on 64 platforms */

 %end;

4

This recommended section of SAS macro code retrieves a list of files in a specific directory (&sourcepath)
and uses various SAS functions that interact with the operating system (filename, dopen, dread, and
dclose) to create a new dataset called 'macpath':

/* Create dataset to store listing of files and attributes */
data macpath(keep=num file_name file);
 length file_name $100. file $80.;
 rc=filename('dir',"&sourcepath.");
 dirid=dopen('dir');
 do i=1 to dnum(dirid);
 file_name=dread(dirid,i);
 file=upcase(scan(file_name, 1, '.'));
 file_extension=substr(file_name, index(file_name, '.') + 1);
 num=i;
 output;
 end;
 rc=dclose(dirid);
run;

The code also includes an optional filter that can exclude certain files as defined by the &filter macro
variable:

/* Extra filtering of files if needed */
%if %length(&filter.) > 0 %then %do;
 data macpath;
 set macpath;
 where file not in (%upcase(&filter.)) and file_extension not in
(&filter.);
 run;
%end;

The total count of files that are copied is stored in a macro variable:

/* Total count of files */
proc sql;
 select count(distinct file_name) into: totcnt separated by ''
 from macpath
quit;
%put fff=&totcnt.;

The ‘macpath’ dataset is further refined using additional functions (filename, fopen, foptname, and finfo)
to aggregate the results and retrieve additional helpful details like file creation date, modified date, and file
size:

/* Create dataset for listing report of files only */
%let i=0;
data info_;
 length infoname infoval $600;
 do i = 1 to &totcnt.;
 set macpath;
 /* file_name_temp definition depends on platform folder structure */
 file_name_temp="&sourcepath."||"&delim."||strip(file_name);
 rc=filename("temp",file_name_temp);
 fid=fopen("temp");
 if (fid > 0) then do;
 infonum=foptnum(fid);
 do k=1 to infonum;
 infoname=foptname(fid,k);
 infoval =finfo(fid,infoname);

5

 output;
 end;
 close=fclose(fid);
 end;
 rc=filename("temp",'');
 end;
 drop rc fid;
run;

Finally, the intermediate dataset “info_” is sorted and transposed by “file_name” to produce the output
“info_ready” summary dataset. The “macpath” and “info_ready” datasets are useful for quickly creating a
list of files in a directory for quality and consistency review.

Display 1. Example of customized review listing created from “info_ready” summary dataset

The SAS code below first checks if the macro parameter “copy_filetype” is defined as "ANY" (any file
type) using the %if statement and what system type is being used with the %index function:

/* Example to copy contents of any single file or folder */
%if %upcase(©_filetype.)=ANY %then %do;

The essential commands “XCOPY” and “CP -P” can also be used in conjunction with SAS macro
variables that are user-created or automatically generated by the SAS system to enhance their versatility,
for example:

• &SYSSCP is an automatic variable that can identify the operating system.

• &SYSSCPL can be used for further refinement for specific operating system versions or bitness.

The value of &SYSSCP will depend on the computing platform being used:

• Windows-based platforms will have a value of 'WIN'.

• Linux on 64 will have a value of 'LIN X64'.

• z/OS will have a value of 'OS'.

If the system is Windows, the “&filter” parameter won’t work with this simple example without Windows
batch to only copy specific files defined in the “macpath” dataset. Alternatively, replace the “&sourcepath”
wild cards (*.*) to control the file name or extension to be copied.

For general applications, use the %sysexec statement to execute the XCOPY command to copy the files
from the user-defined source path to the destination path:

 %if %index('WIN', &sysscp)>0 %then %do;
 %sysexec xcopy "&sourcepath.*.*" "&destpath.*.*" ;
 %end;

6

A more complex example could involve copying over standard code from multiple source folders, then
this general example using Windows batch processing can be useful:

options noxwait mprint;
data _null_;
 file "C:\Users\&SYSUSERID\macrocopy_example.bat" LRECL=2000;
 /* Exact folder and delimiter structure will vary based on application */
 %do i = 1 %to &totcnt.;
 put 'xcopy /k /r /y' ' "' "&&srcfile&i." '"' ' "' "&destpath." '"' ‘
 >> ' '"' "&logpath.\macrocopy_logfile.txt" '“’;
 %end;
run;

/* Executing the .bat file */
%sysexec C:\Users\&SYSUSERID\macrocopy_example.bat;

If the system is a Linux system, the code first filters out any directory names in the source path and then
recreates the dataset "macpath" containing the remaining file names and extensions in the source path:

%else %if %index('LIN X64', &sysscp)>0 %then %do;
 data macpath;
 set macpath;
 where index(file_name, '.') > 0 ; /* exclude folders */
 run;

The code then creates a series of macro variables to hold the total number of files and the source and
destination paths for each file to be copied:

 data _null_;
 set macpath end=eof;
 call symput('srcfile'||compress(put(_n_,3.))
 ,cats("&sourcepath./", strip(file_name)));
 call symput('destfile'||compress(put(_n_,3.))
 ,cats("&destpath./", strip(file_name)));
 if eof then call symput('totcnt', compress(put(_n_,3.)));
 run;
 %put srcfile1=&srcfile1 srcfile2=&srcfile2 totcnt=&totcnt;
 %put destfile1=&destfile1 destfile2=&destfile2;

Finally, the %do loop uses the %sysexec statement to execute a Unix/Linux shell command “CP -P”,
which is used to copy files within a specified directory with the option to preserve their permissions and
other attributes such as timestamps and ownership:

 %do j = 1 %to &totcnt.;
 %sysexec cp -p "&&srcfile&j." "&&destfile&j.";
 %end;
%end;

This simplified SAS example can be enhanced for complex applications such as pulling from multiple
code repositories using Windows batch files or Linux shell scripts if the platform-specific security and user
permissions are enabled.

DISCUSSION
The example macro codes provide a comprehensive overview for defining and automating a work
process for copying files to a new or existing study folder. We found that utilizing an existing
standardized folder structure, program naming convention, and startup program, alongside the
organization or group's standard operating protocol (SOP) made the entire process much more intuitive.

7

It also eliminated the risk of human error during the copying process and ensured that all important files
were included. We did test multiple other copy methods but found that on Windows “XCOPY” and on
Unix/Linux “CP -P” were the most consistent methods to copy files while also retaining their permissions,
original creation timestamps, and other important system attributes.

CONCLUSION
Implementing the proposed work process and the automated SAS copy macro:

• Significantly improved reliability and efficiency across multiple new studies.

• Enhanced the onboarding experience for new staff members and contractors by reducing the time
they spent searching for templates and developing redundant analysis code.

• Eliminated the risk of manual copy/paste errors and poor version control issues with a seamless and
reliable method to move files from multiple repositories to their correct destinations.

Overall, we found that automating this work process in SAS significantly streamlined our existing
workflows and noticeably improved collaboration within and across our various teams, and improved the
consistency, quality, and compliance of RWE and other non-standard studies with our organization's
broader standards and SOPs.

ACKNOWLEDGMENTS
The authors would like to thank their real-world evidence and epidemiology colleagues at Merck & Co.,
Inc., Upper Gwynedd, PA, USA, for their partnership in support of this work.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Bo Zheng
Merck & Co. Inc.
351 N Sumneytown Pike
North Wales, PA 19454, USA
bo.zheng1@merck.com

Li Ma
Merck & Co. Inc.
351 N Sumneytown Pike
North Wales, PA 19454, USA
li.ma2@merck.com

Xingshu Zhu
Merck & Co. Inc.
351 N Sumneytown Pike
North Wales, PA 19454, USA
xingshu_zhu@merck.com

TRADEMARK
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:bo.zheng1@merck.com
mailto:li.ma2@merck.com
mailto:xingshu_zhu@merck.com

	Abstract
	It’s essential and effective to start a new study utilizing broad institutional standard macros, especially for data quality review (DQR) and analysis and reporting (A&R) in real-world-evidence (RWE) studies. However, the rapid developmental pace of s...
	Introduction
	DEFINE THE GENERAL WORK PROCESS
	AUTOMATE THE WORK PROCESS IN SAS
	EXAMPLE SAS MACRO & Usage
	DISCUSSION
	Conclusion
	Acknowledgments
	Contact Information
	TRADEMARK

