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ABSTRACT  

Real-world data can be essential for our understanding of clinical data, especially with the emergence of phenomena 
such as the COVID-19 outbreak. In this paper, we analyze how the spread of the virus has advanced across the U.S. 
during the initial phase of the pandemic using novel graph-based machine-learning techniques. First, a cloud of graphs 
is extracted from several publicly available datasets. In these graphs, each node corresponds to a single county (>3000 

nodes per graph), whereby two counties are connected with an edge if they have similar patterns in the advance of the 
pandemic spread over a specific timeframe. A graph (or a subset of graphs) from the cloud with the most robust geo-
metric properties is subsequently revealed. This constitutes a topological model of data. Next, unsupervised machine 
learning algorithms discover communities of nodes within the chosen graph relying on pure geometric properties of the 

model. Finally, the highlighted communities are compared to each other based on the real-world data employed by the 
model to explain dissimilarities between the communities. A variety of publicly available real-world data, including 
healthcare, social, demographic, economic, and geographic data, was used in the analysis. Our geometric, data-driven 
approach reveals insights that would otherwise have been difficult to identify through the implementation of standard 

statistical methods alone. The focus on topological properties helps to identify the underlying geometry of the dataset 
and to discover a set of unrelated features that may be causing the similarity in the spread of COVID-19 across the 
U.S. 

KEYWORDS: real-world data, graph-based machine learning, topological data analysis, COVID-19, time series, un-
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INTRODUCTION 

Topological Data Analysis, or TDA for short, is a modern approach in data analysis for discovering hidden patterns in 
large and complex datasets. Besides traditional analytics, such as geometric, statistical, and data-driven algorithms, 
TDA employs a wide range of machine learning (ML) techniques, both supervised and unsupervised by humans. In 
unsupervised ML, unlike supervised, only input data is used to identify a hidden structure of the dataset. Algorithms do 

not rely on prior training in order to discover and present previously unknown insights in the data. This is extremely 
important for real-world analytics when expected results may not be obvious, considering the volume and variety of 
data that is needed to be processed. Utilizing unsupervised ML such as TDA allows us to extract comprehensive top-

ological data maps represented by graphs without first having to develop a hypothesis. 

In this paper, we discuss a TDA-based workflow designed to analyze clinical and other types of data in an automated 
way. We will specify this approach to analyze how the spread of COVID-19 has advanced in every county of the USA 
and look for similarities in a specific timeframe. Focusing on the geometric properties of datasets, we unveil a set of 

unrelated features that could have caused similarities in the pandemic spread. 

Researchers worldwide have constructed multiple data models related to the spread of COVID-19; in the current ex-
periment, however, the analysis focuses on the early stage of the pandemic. The objective is to identify why in some 

regions of the USA the pandemic spread much faster after the first case had been confirmed than in the others where 
the transmission was much slower. Healthcare, social, economic, demographic, geographic, and other factors, which 

could influence similarities in pandemic spread, are addressed.  

The analysis was performed on a county-by-county basis, yielding a topological data model in form of a graph in which 
each of 3,142 nodes corresponds to one county, and two nodes are connected if they share similarities. The graph was 
built using TDA. The dataset incorporated a variety of outcomes corresponding to the number of confirmed cases and 

deaths in each county over a specified time interval. 

The key focus of the experiment is to investigate the spread of the pandemic since its outset. Thus, the first confirmed 
and recorded case of COVID-19 in each county was taken as the starting point of the observation interval. Given the 

speed with which the pandemic has advanced, it was critical not only to select an appropriate starting point but also to 
limit the analysis by carefully selecting the endpoint of the time interval to make it relevant without overloading the 

model. 

After the graph was built, real-world data were used to integrate into the model any predictors which might be respon-
sible for similarities in the early stage spread of the pandemic. Over 250 predictors from different publicly available 
sources were used during the course of the experiment. Further, we performed a statistical analysis of discovered 
patterns to explain similarities in the spread of the pandemic based on the predictors integrated into the model. At any 

time, additional predictors can be added into the model to expand the search of unrelated features that might be re-

sponsible for similarities in the pandemic spread. 

1. TOPOLOGY-BASED WORKFLOW FOR DATA ANALYSIS  

Topological data analysis (TDA) is a novel approach of building a visual representation of a complex dataset. This 

analysis allows the extraction of comprehensive graphs from a dataset to provide a compressed graphical representa-
tion of a multidimensional set of interrelated outcomes. When applied to clinical data, this graph consists of nodes 
corresponding to patients participating in a clinical study and edges connecting those who share similarities. In this 
section, we present a general introduction to TDA in clinical trials. This general approach will be specified in Section 2 

and applied to the COVID data of the pandemic spread in the USA.  
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1.1. Topology and data mining 

Topology is a field of mathematics that deals with the properties of objects that remain invariant under continuous 

deformation. Imagine a surface that is made of a very thin and elastic material. The surface can be bent, stretched, or 
crumpled in any way; however, it cannot be torn and its parts cannot be glued together. As the surface is deformed, it 
changes in many ways, but some properties remain the same. The idea underpinning topology is that some geometric 
properties depend not on the exact shape of an object but, rather, on how its parts are combined. 

As a simple example, consider geometric figures on the plane representing the numerical digits 0, 1, 2, … 9. For a 
topologist, various representations of the digit 0 are equivalent since they can all be continuously transformed into each 
other without cutting or gluing (see Figure 1 a-d). It is possible to change the size, thickness, or slope of the digit 0 
through continuous deformation; however, one property remains invariant: the object separates the plane into two 

regions, namely the interior and the exterior. At the same time, 0 is not topologically equivalent to 1 or 8: 1 does not 
encircle a region and 8 contains two holes (see Fig. 1e). The topological classification of the digits 0, 1, 2, … 9 results 
in the following five classes: 

{0}, {1, 2, 3, 5, 7}, {4}, {6, 9}, {8}. 

The digits in any of the classes are topologically identical, but no two digits taken from distinct classes are equivalent 
from the topological point of view. 

The number of holes in a geometric object is a basic topological property. Another significant property is connectedness. 
Intuitively, an object is connected if it consists of a single piece. For example, the curve representing 0 is connected; if 

any two points are removed from it, it will become disconnected. Pieces of a disconnected object that are themselves 
connected are referred to as connected components. In the mathematical study of topology, all of these intuitive con-
cepts are examined on a rigorous basis and generalized to higher dimensions. 

 

        a)          b)        c)         d)               e) 
 

Figure 1.  Different representations of the digit 0 (a-d) are topologically equivalent.  

All share a common topological property: they divide the plane into an interior region  
and an exterior region. The digit e) is not equivalent to 0 since it encloses two internal regions 

Topology deals with abstract mathematical entities, such as curves and surfaces, that consist of an infinite number of 
points. In practice, however, all datasets are necessarily finite. Recently, a new field has emerged at the crossroads of 
topology and data science. TDA aims to extract topological data, that is, qualitative information, from finite sets of data 
points. It involves exploring datasets (viewed as finite clouds of points in multidimensional space) at multiple scales or 
resolutions, from fine- to coarse-grained. Given a complex dataset, TDA can be used to extrapolate the underlying 

topology and build a compressed yet comprehensive topological summary of the dataset. TDA exploits various methods 
and algorithms stemming from computational topology and geometry, statistics, and data mining. For detailed exposi-
tions of the mathematical theories that underpin TDA and certain applications in biology, see [1, 2] and the references 

therein. 

1.2. Understanding clinical data using topology 

Topology was originally developed to distinguish between the qualitative properties of geometric objects. It can be used 

in conjunction with the usual data-analytic tools for the following tasks: 
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1. Characterization and classification. Topological features succinctly express qualitative characteristics. In 
particular, the number of connected components of an object is of importance for classification. 

2. Integration and simplification. Topology is focused on global properties. From the topological perspective, 

a straight line and a circle are locally indistinguishable; however, they are not equivalent if they are considered 
as a whole. Topology offers a toolbox to integrate local information about an object into a global summary. 
Thus, topology can provide the researcher with a natural “big-picture” view of complex, multidimensional data. 

3. Features extraction. Topological properties are stable. The number of components or holes is likely to persist 

under small perturbations or measurement errors. This is essential in data mining applications because real 
data is always noisy. 
 

In the context of clinical research, the dataset under study is typically a table of outcomes in a particular clinical trial or 

study. The table rows correspond to individual participants in the clinical trial, and the columns contain information on 
specific outcome measures of interest, such as lab tests, vitals, questionnaires, etc. Given a table of clinical outcomes, 

the following parameters are required to generate a graph using TDA:  

1. A distance function as a similarity/dissimilarity measure between patients (i.e., similarity between the rows of 
the table of outcomes). Patients with similar outcomes, e.g., with sufficiently small distance, are connected 
with an edge. In application, this is done based on the projection: 

2. A projection function that is chosen to capture topological features of interest for the dataset by stratifying 
patients into certain subpopulations (bins).  

3. A projection specification, which includes: 

• the number of stratifying bins,  

• quantitative overlap of the bins,  

• a threshold for the value of the distance function below which the nodes are connected with an edge 
within a stratifying bin (i.e., a threshold below which the patients “have similar outcomes”). 

Graph nodes representing similar patients (in terms of a predefined sequence of clinical outcomes) are connected with 

edges if they have similar outcomes within each projection bin (measured by distance function). 

 

Figure 2.  Discovery of multivariate patterns in clinical trial outcomes. The graph represents  
groups of patients structured according to the similarity of their outcomes 

 
The core idea of clinical data mining using TDA relies on the visual discovery of subgroups of related patients in a graph 
(see Figure 2) that presents the relevant information about the dataset in a compact and efficient manner. For the 
clinical dataset, the following criteria have to be met to perform the analysis: 

− Each node represents a patient: a graph extracted from a clinical dataset is actually a graphical represen-
tation of the dataset in which each node represents an individual (trial subject).  

Unstructured 
group of patients

TCDM algorithm

Topological 
data map

Subgroup C

Subgroup B

Subgroup A

TDA algorithm 
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Unstructured  
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− Similar nodes are connected: two nodes representing similar patients (in terms of a predefined set of clinical 
outcomes) are connected with an edge.  

− Coloring focused on specific outcomes: the color of the nodes helps to highlight emerging patterns in the 
data and identify subgroups of patients related to the distribution of a variable of interest. 

− Discovery of subgroups: communities of nodes on a graph reflect a segmentation of patients that may indi-
cate robust patterns within the data. 

TDA was successfully applied in the context of clinical studies (see, e.g., [3, 4]). 

To be considered for further analysis, a graph extracted from the dataset using TDA algorithms should meet certain 
requirements. Namely, it should: 

− accurately represent the original dataset; 

− eliminate the features of the dataset that are not relevant to the purpose of the study; 

− reduce the complexity of the features that are shown on the data map; and 

− be insensitive and robust to small noise, such as errors of measurement, or missing data. 

For illustrative purposes, let us consider a simple two-dimensional dataset with the data points arranged in a “zero-like” 

shape.  

In order to show the robustness of the topological approach, some data points from the dataset were intentionally 
omitted at random, and additional graphs were built for the modified datasets whereby 50% and 90% of the original 

data points were missing (see Figure 3). 

The graphs show certain geometrical stability even in the case of 90% missingness. The shape of the graphs built on 
the remaining data points is structurally similar to the shape of the graph corresponding to the complete dataset. There-

fore, in this example, graphs representing a relatively small portion of the data still have a similar shape to the graph 

representing a complete dataset.  

 

   

No missing data 50% missingness 90% missingness 

Figure 3.  Graphs representing a dataset with varying proportions of randomly missing data. 

Graphs produced by the TDA algorithm for a complete dataset (left panel) and datasets where 50% and 90% of the 

data points are missing at random (middle and right panels, respectively). This example illustrates that even with 90% 

of the data missing, the cyclic shape of the dataset is preserved in the corresponding graph. 
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1.3. A workflow for graph-based data analysis 

Topological Data Analysis is used to create a flexible and versatile workflow to perform graph-based data analysis. This 

workflow can be adapted to a variety of scenarios and types of data in order to identify hidden patterns. The key steps 
are summarized and highlighted in Figure 4. We will see their implementation in our experiment in Section 2. All of the 

steps in the workflow except Steps 1, 5, 8, are performed automatically using machine-leaning algorithms. 

Let us expand on the steps in our workflow: 

STEP 1. From a given dataset, the outcomes of interest are selected. At this step, some pre-processing of data might 
be required to deal with irregularity, e.g., to account for missing data, to aggregate noisy data, etc. 

STEP 2. Using the selected outcomes of interest, a large volume of TDA-graphs is built by varying parameters of the 
TDA algorithm, e.g., the parameters in the distance function, in the projection function, etc. (see Section 1.2). 

STEP 3. The most robust and representative graph is selected based on an array of criteria, e.g., adapter modularity  
score, Kolmogorov complexity, etc. (see Section 1.4). In many applications, the most representative graph is 
selected by the majority vote or the cumulative ranking among the optimality scores. 

STEP 4. A selection of community detection algorithms is applied to the most representative graph at this step to 

reveal hidden patterns within data in form of communities on the graph (see Section 1.5). The discovered 
communities are highlighted on the graph by coloring and are subject to further analysis.  

STEP 5. A selection of predictors of interest is integrated into the model to explain the detected communities, and 
hence to explain hidden similarities within the dataset of study. At any time, additional predictors can be 

incorporated into the model at this step to expand the search of unrelated features.  

STEP 6. Communities on the graph correspond to subsets of patients. A comparison of communities is performed at 
this step, e.g., by comparing sizes, overlap, persistence over different community detection methods, etc. 

STEP 7. Further pairwise or community-against-the-rest comparison of communities is done at this step using statis-

tical analysis based on predictors. Statistically significant predictors are selected. This step helps to identify 
the key variables that are driving the community structure and involves a large volume of automatic statistical 
tests.  

STEP 8. At this final step, the statistically significant predictors of the discovered community structure are being further 

interpreted, e.g., using subject-matter expertise. 

1.4. Selection of the optimal graph  

When applying the TDA algorithm to a complex dataset based on various parameters, the algorithm generates a large 

volume of graphs, including those that capture non-relevant noise. The important step is to determine the most repre-
sentative graph based on available parameters of the topological model (the number and placement of stratifying bins, 
parameters of the projection, etc.). There is no strict definition, but usually by a representative graph we mean one that 

 
 

Figure 4.  Workflow of graph-based data analysis 
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is well structured with well-recognized geometric features: dense clusters, flares, loops, or other patterns that may 

indicate the robust geometric patterns in the data. The other graphs we refer to as dull graphs. 

In this subsection, we briefly discuss our approaches to tackling this problem. It should be noted that usually one should 
select a number of candidates to be the “best graph” and then look through all of them. The ways to define the most 

representative graph may include: 

• finding the graph that has the larger optimality score; 

• aggregating certain family of graphs; 

• finding the most stable graph. 

It should be noted the above approaches are not mutually exclusive. They both intersect (e.g., an optimal score could 
be a measure of graph stability or aggregation of graphs could yield a stable graph) and complement each other. 

1.4.1. Defining the most representative graph using an optimality score 

A. Null-model based modularity 

One of the scores that measures the quality of a partition of the graph into communities is the classical score of New-
man’s modularity [5]. Its idea is to evaluate how far the graph with a given partition of nodes is from some null-model 

graph, where the null-model graph is a random graph with the same number of nodes and the same given degrees of 
vertices. This idea can be generalized to define some other “null-model based” modularities as measures of “well-
structuredness” (i.e. “irrandomness”) of the graph. The null-models of random graph we use in experiments take into 
consideration the partition of the data cloud into stratifying bins. Such random graphs are considered dull. We assume 

the graph with the largest null-model based modularity (i.e., the largest difference between the graph under consider-
ation and a random graph in some null-model) to be the most well-structured and hence the most representative. 

 

  

  

i. a well-structured graph having high linear  

covering modularity (LCM = 0.38) 

ii. a random graph having low linear  

covering modularity (LCM = 0) 

Figure 5.  Linear covering modularity 

 

Our null-model based modularities include: 

• linear covering modularity (LCM), where the null-model is a random graph with the same list of edges 

connecting neighboring stratifying bins (see Figure 5); 

• generative modularity, where the null-model is a random graph with the same distribution by the stratifying 

bins;  

• multidimensional modularity, which is Newman modularity normalized by some nodes’ similarity measure, 

based on the number of occurrences in the same stratifying bins; 

• random walk-based modularity (RWM), and its variations (e.g. mixing rate and time), where the null-model 

is a graph with uniformly distributed random walks (see Figure 6). 



 

8 

 

  

a) a well-structured graph having high Ran-

dom walk-based modularity (RWM = 40.48) 

b) a random graph having low Random 
walk-based modularity (RWM = 2.31) 

Figure 6.  Random walk-based modularity 

 

B. Kolmogorov complexity 

Kolmogorov complexity originated in theoretical computer science and is a measure of information contained in a string 

or an arbitrary array of letters and digits. It measures how well an object (array, graph, text, etc.) can be compressed.  

For a given string (array), the Kolmogorov complexity is determined as the smallest length of the compressed descrip-

tion of the string (array). For example, the string "11111111111111111111" can have the following compressed de-
scription: "1 × 20 times". However, in the string "10011011110101011110" the digits seem to be spread randomly and 
it is difficult to give a shorter description of the string than a direct list of the digits within it. Therefore, the Kolmogorov 

complexity of the second string is higher than that of  the first string. 

The measure of information contained in graphs can be similarly estimated by using Kolmogorov complexity. Specifi-
cally, when the nodes of a graph are numbered, it can be described by a graph adjacency matrix, in which "1" is placed 
at the intersection of row i and column j if the nodes numbered i and j are connected, and "0" is placed at the intersection 

of row i and column j if the nodes numbered i and j are not connected.  

Graphs with a regular structure of edges have low Kolmogorov complexity, while graphs with a random structure of 

edges have high Kolmogorov complexity. Figure 7 a) shows a complete regular graph with 10 nodes that has a Kolmo-

gorov complexity of 103.79, while b) shows a random graph with 10 nodes that has a Kolmogorov complexity of 437.61: 

 
 

a) a regular graph having low  

Kolmogorov complexity (K.C. = 103.79) 

b) a random graph having high  

Kolmogorov complexity (K.C. = 437.61) 

Figure 7.  Kolmogorov complexity 
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Although it is known that the Kolmogorov complexity cannot be calculated in a general case, there are various methods 
for estimating it; a bit loosely, the term “Kolmogorov complexity” is still used when referring to these estimates. An 
example is the block decomposition method, which includes the decomposition of a string (array) into blocks having a 

limited length, estimation of the Kolmogorov complexity of each block, and summing up the estimates according to the 
information theory rules [6]. Experiments have shown that in graphs with low Kolmogorov complexity, nodes within the 
same stratifying bin tend to combine into groups (clusters) with a high density of edges. Conversely, graphs with high 
Kolmogorov complexity have a more uniform distribution of edges; that is, the selected parameters of the projection in 

such graphs distribute the nodes over the stratifying bins more evenly. Thus, in graphs having high Kolmogorov com-

plexity, the nodes within the stratifying bins tend to group into clusters of approximately equal size. 

In the current experiment, when the Kolmogorov complexity of the graph was estimated, consideration was given to 
partitioning the nodes of the graph into stratifying bins and the number of nodes in each bin, as well as to partitioning 
the graph into separately connected subgraphs and the number of connected subgraphs. The Kolmogorov complexity 
was measured within each stratifying bin separately. It was assumed that high Kolmogorov complexity implies a random 

distribution of edges in subgraphs of the graph, which in turn makes the influence of the node-clustering algorithm less 

significant than the influence of the projection, metric, and cover parameters. 

1.4.2. Defining the most representative graph using graph aggregation 

If some family of graphs is constructed for a given dataset and a number of predefined parameters, the aggregated 

graph can be built from this family. The nodes of aggregated graph correspond to data points from the dataset. The 
edge between vertices 𝑢 and 𝑣 is constructed based on the frequency of appearance of edges between 𝑢 and 𝑣 in the 
given family of graphs. The resulting graph is called an edge-aggregated graph (see Figure 8).  

 

 

a) “figure eight” dataset  b) edge-aggregated graph 

 

c) two non-representative dull graphs 

Figure 8.  Aggregating graphs for the “figure eight” 
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1.4.3. Defining the most representative graph using graph stability 

The topological model constructed using TDA should reveal robust properties of the dataset, and hence can be 

searched based on stability properties of graphs. Given a topological model 𝐺, one way to understand its stability is to 

construct a “derivative” graph using the matrix of graph distances between all pairs of vertices of 𝐺, with and without 
taking the weights of the edges into account. This results in a pair of derivative graphs 𝐷𝐺 and 𝐷𝐺𝑤𝑒𝑖𝑔ℎ𝑡. Recall that 

the graph distance between a pair of vertices 𝑢 and 𝑣 in a graph is the combinatorial length (i.e., the number of edges) 
of the shortest path along edges that connects 𝑢 and 𝑣. The graph distance can also take into account weights of 

edges. The smaller the difference between 𝐷𝐺 and 𝐷𝐺𝑤𝑒𝑖𝑔ℎ𝑡, the more stable the original graph 𝐺 (see Figure 9). 

 

 
  

a) the original point cloud b) the topological model with small 

distance between its derivative 

graphs (|𝐷𝐺 −𝐷𝐺𝑤𝑒𝑖𝑔ℎ𝑡| = 24.04) 

c) the topological model with large 

distance between the derivative 

graphs (|𝐷𝐺 −𝐷𝐺𝑤𝑒𝑖𝑔ℎ𝑡| = 63.84) 

Figure 9.  Selection of the optimal topological model based on graph stability 

1.5. Community detection on graphs 

In many problems, it is convenient to represent data as a point cloud in a multidimensional space. The points in the 

point cloud often tend to form dense subgroups. In these subgroups the points are closer to each other than to the 

points from the rest of the point cloud. We call these dense subgroups patterns as they help to identify and exploit 

relationships of interest in the dataset [7]. Searching for robust geometric patterns becomes one of the most important 

tasks in data analysis. In this section, we consider community detection methods as the way to search for such patterns.  

The modern approach to data science frequently employs graphs to enhance understanding of complex systems. A 
variety of problems can be represented and studied using graphs as described in previous subsections. The key feature 
of a graph is a community structure, which relates to the way the nodes are organized in communities. Specifically, 
many edges connect nodes within the same community, while comparably few edges connect nodes between different 

communities [8, 9]. These communities can be considered to represent independent structures within the graph, and 
the detection of those independent communities is one of the key goals in the analysis of large graphs. 

In graphs that represent real-world systems or data gathered in a study, the distribution of edges over subgroups of 
nodes is usually non-uniform. This reflects the possible presence of a hidden structure and patterns in the graph and, 

hence, in the data based on which the graph was created. Specifically, some groups of nodes may have high concen-
trations of intra-edges, while the concentrations of inter-edges between these groups of nodes may be low. The groups 
of densely connected nodes are referred to as communities. Figure 10 illustrates an example of a community structure 
within the graph that contains three groups of nodes (vertices) with dense internal connections within each group and 

comparably fewer connections between groups. 
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Figure 10. The schematic representation of the simple graph that has a community structure.  
The graph contains three communities of densely connected nodes with a much lower density of connections 

(gray edges) between the communities. 

A number of algorithms have been developed for community detection (see [8, 9] for a survey), in particular:  

• hierarchical methods, which build some dendrogram of communities by merging or splitting them, e.g., the 
Girvan-Newman algorithm described in subsection 1.5.1. Such dendrograms can be cut at some level 
to communities; the number of communities depends on the cut; 

• methods based on the specific nature of communities, e.g., methods for maximizing so-called modularity , 

assuming that communities should have structure different in some sense from that of a random graph; 

• propagation methods assuming that some structure (like a clique in the clique percolation method, de-
scribed in subsection 1.5.2, or the most frequent neighbors label as in the label propagation method) 
“propagates” through the graph; 

• random walk methods which are based on the assumption that the random walker spends more time inside 
a community and change communities with low probability. 

In this paper, we give emphasis to the Girvan-Newman algorithm and the clique percolation method (with modifications 
made to these methods by the authors, see [10]) as the most efficient and most popular methods when applied for 

analyzing data (see also [7] for a comparison between community detection on TDA graphs and clustering analysis). 

1.5.1. The Girvan-Newman algorithm 

The Girvan-Newman algorithm [11] attempts to identify the edges that are located “between” some pairs of nodes in 
the graph. In the algorithm, the distance between all pairs of nodes, i.e., the shortest edge-based path, is calculated. 

Such paths define the edge betweenness characteristic of the edges. The edge betweenness characteristic of an edge 

is the number of shortest paths between pairs of nodes that run along the edge.   

The method of community detection using the Girvan-Newman algorithm is based on calculating the edge betweenness 

characteristic for all edges in the graph. The method includes steps of removing the edge having the highest edge 
betweenness characteristic and recalculating the edge betweenness characteristic for all edges affected by the re-
moval. The steps are repeated until no edges remain. The edges that have the highest edge betweenness characteristic 
are the most “loaded” and, hence, are considered to lie the most “between” communities. The removal of the edges 

having the highest values of the edge betweenness characteristic from the graph results in the nodes falling into com-
munities. The removal of the edges that have the further highest values of the edge betweenness characteristic sepa-

rates further communities within the graph. See the main steps in Figure 11.   
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The Girvan-Newman algorithm has been widely applied to a variety of graphs, e.g., graphs of human and animal social 
networks, metabolic graphs, gene graphs, graphs representing collaborations between scientists and musicians, and 

so forth. However, this algorithm is computationally intensive and takes 𝑂(𝑚2𝑛) times for a graph with 𝑚 edges and 𝑛 
nodes. In view of the large amount of time required to perform the calculations, the use of the algorithm is limited to 

graphs that contain less than a few thousand nodes. Furthermore, the algorithm does not show how many edges need 
to be removed to provide the most optimal community detection.  

 

Figure 11. A hierarchical decomposition of the graph.  

As one moves down the dendrogram, the detailed partitioning into communities starts to appear. 

1.5.2. The clique percolation method 

The clique percolation method [12] operates based on the assumption that internal edges within a community form k-
cliques (i.e., subgraphs with k nodes in which every pair of nodes is connected by an edge) and edges that lie between 
the communities are not likely to form cliques.  

The use of this method is based on the assumption that if a clique can “move” in the graph, the clique will get trapped 
inside the community and will not manage to pass in between two communities due to a lack of connecting paths. In 
this method, one clique can be “moved” to another if they share all but one node, and a community is defined as a 
maximal connected subgraph of the original graph so that each node in this graph belongs to some k-clique that lies 

entirely in the subgraph. The classical clique percolation method receives a value of k as an input and produces the list 
of all possible communities (as described above for the given value of k) as an output. The peculiarities of the method 
include the ability of some nodes to belong to several communities as several k-cliques may pass through these nodes 
and the ability of some nodes to occur out of communities as no k-clique contains them. 

The example of the 3-clique percolation method can be seen at Figure 12: the 3-clique cannot pass through node 3, 
but the blue community and the green community overlap in node 3. 

 

Figure 12. Example of overlapping community detection by the 3-clique percolation on a simple graph 
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Although theoretically the clique percolation method is computationally intensive because the detection of maximal 
cliques requires processing time that runs exponentially to the size of the graph, it was shown by the practical applica-
tions of this algorithm to real-world systems that this method works reasonably fast due to a limited number of cliques 

in real-world-based graphs. 

2. THE COVID-19 EXPERIMENT 

The goal of the experiment is to find similarities in the spread of COVID-19 since the beginning of the pandemic in 
February 2020. The start of the pandemic is defined by the date when the first confirmed cases were reported in the 

United States. The analysis is performed on a county-by-county basis, which will yield a topological model in the form 
of a graph in which every node corresponds to one county (total 3,142 nodes), and two nodes are connected if they 
share similarities. Focusing on the geometric properties of datasets, the experiment aimed to unveil a set of unrelated 
features that could have caused similarities in the spread of the pandemic. A representative graph will automatically 

highlight possible similarities in pandemic spread patterns and discover meaningful subgroups within the data as com-
munities on the graph. Further, by integrating various predictors from different areas, such as demographic, social, 

geographic, etc., the revealed similarities will be described. 

2.1. Experiment workflow 

In this subsection, we show how to specify the versatile TDA workflow presented in Figure 4 for exploration of the 

advance of COVID-19 in the United States at the initial stages of the pandemic. Table 1 illustrates the order of steps 

in the experimental set-up. 

Table 1. Phases in the experimental set-up 

1) Define outcomes 
 

Integrate the number of confirmed cases and deaths in every county of the 
United States over a specified timeframe since the beginning of the pandemic  
 

2) Build the topological model 
(graph)  

Based on defined outcomes and using TDA, build a large volume of topolog-
ical models (TDA graphs). Each node in these graphs corresponds to a single 

county and encodes its number of confirmed cases, number of deaths, and a 
piece of the epidemic curve within the chosen timeframe  
 

3) Select the graph Select an optimal graph with robust geometry revealing the geometric prop-
erties of the dataset and hidden interdependencies. The choice is based upon 

one or more methods described in Section 1.4.  
 

4) Search for communities Perform an automatic search for communities by Girvan-Newman and perco-
lation algorithms  

 

5) Employ predictors Integrate real-world data (from a variety of publicly-available sources) which 
may influence similarities in the spread of the pandemic. (The number of pre-
dictors can be expanded at any time after the model is built) 
 

6) Compare discovered com-

munities 

Pairwise comparison of identified communities by outcomes and predictors, 

hypotheses 
 

7) Identify statistically signifi-
cant predictors 

Perform a statistical analysis of discovered patterns to explain similarities in 
the spread of the pandemic based on the predictors integrated into the model  

 

8) Findings evaluation and in-
terpretation 

Results interpretation, suggesting explanations and drawing conclusions 
 
 

 
 

 

2.2. Sources of data used to define outcomes 

Since the outbreak of the COVID-19 pandemic, multiple organizations and authorities across the globe have continu-

ously collected statistical data related to the occurrence and spread of the disease and, as a result, accumulated a 
large volume of complex real-world data. In this paper, we use data obtained from an open-source data repository 
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available at Github and named COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) 
at Johns Hopkins University [13]. Collected data include aggregated data sources such as the World Health Organiza-
tion, European Centre for Disease Prevention and Control, US Centers for Disease Control and Prevention, etc. In this 

dataset, data related to US statistics are represented at state or county/city level, including data from public health 
authorities all over the US states and counties, while non-US data sources are aggregated at country/region or province 
level. The current research focuses on data which corresponds to the location and number of confirmed COVID-19 

cases and deaths in all affected counties of the US. 

The data used to set up the outcomes for the model were collected at the level of counties (administrative or political 
subdivisions of a state in the United States) and county equivalents (other functionally equivalent subdivisions under 

US jurisdiction). In total, the resulting dataset includes data related to 3,142 counties and county equivalents. The 

selected dataset includes the number of confirmed COVID-19 cases and the number of deaths reported by each county.  

Data collection started on January 22, 2020, when the first confirmed case of COVID-19 was reported in King County, 

Washington State, and has since been continuously undertaken. Figure 13 illustrates the rapidity of the spread of the 
pandemic across the United States during a short period. There were only 451 confirmed cases on the 47 th day 
(March 8) in 92 counties. Just 14 days later, on March 22, there were 32,899 cases, with 1,136 counties affected. 
Snapshots c) and d) illustrate how fast the pandemic advanced thereafter, reaching 330,384 and 1,151,933 cases on 

April 5 and May 3, respectively.  

  

a)  

The number of  conf irmed cases  

on March 8, 2020: 451 cases in 92 counties 

b)  

The number of  conf irmed cases  

on March 22, 2020: 32,899 cases in 1,136 counties 

  

c)  

The number of  conf irmed cases  

on April 5, 2020: 330,384 cases in 2,406 counties 

d)  

The number of  conf irmed cases  

on May 3, 2020: 1,151,933 cases in 2,831 counties 

Figure 13. The spread of the pandemic across counties 
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2.3. Selection of observation time interval  

The key focus of the experiment was to target the spread of the pandemic since its outset. Thus, the first confirmed 

and recorded case of COVID-19 in each county was taken as the starting point of the observation interval. Many coun-
ties recorded no new cases for several days after the first case was reported, so the day the second confirmed case 

was recorded was taken as the start day to reduce the gap in the number of days for which no new data were collected.  

In order to implement ML algorithms for time series, it was necessary to select a time interval of the same fixed length 
for every county, as this would allow the construction of a graph using TDA based on an n-dimensional vector repre-
senting each county over a specific time interval. Given the speed with which the pandemic has advanced, it was critical 
not only to select an appropriate starting point but also to limit the analysis by carefully selecting the endpoint of the 

time interval to make it relevant without overloading the model. 

Governmental and public health authorities across the United States implemented a stay-at-home policy to prevent the 

spread of COVID-19. During the stay-at-home period, typical measures included shuttering non-essential business 
operations and requiring people to stay home unless performing essential activities or attending medical facilities. The 
stay-at-home restriction was adopted in most states. The experiment aimed to analyze how COVID-19 spread in every 
county at the beginning of the outbreak and during the stay-at-home period when contacts among people were limited 

in most counties and conditions for spreading the disease in different counties were as similar as possible.  

For our model, the first day after the stay-at-home restrictions were lifted for each county was set as a maximum limit 
of our observation time interval. In other words, for each county, the observation time interval was determined to lie 

within Start_day – the second confirmed case in the county, and End_day – the day of release from the stay-at-home 
order based on statewide orders [14]. The jump in the number of cases was significant, going, for example, from 451 
to 330,384 between March 8 and April 5, with an additional 821,549 cases between April 5 and May 3 (see Figure 13); 
therefore, our time interval was set at 39 days so as not to overload the model. Figure 14 below illustrates the selection 

of the start day and end day of the observation interval, whereby the start day was selected as the day of the second 

confirmed case and the end day was selected as the release day of the stay-at-home period. 

 

Figure 14. Selection of time series observation interval 

 

In the scenario when more than 39 days elapse between start_day and end_day in a specific county, the observation 
interval was limited to the 39th day after the second reported case. In the opposite scenario when there were not enough 
data between start_day and end_day to cover a 39-day interval, the empty days were filled with zeros while the obser-

vation interval was expanded by an additional 5 days. It was assumed that social activities in the first five days after 
the release day from stay-at-home order did not affect the number of confirmed cases because of the disease incuba-
tion period and the delay in the availability of COVID-19 testing results. Figure 15 illustrates the selection of the 
start_day and end_day of the observation interval. The first diagram shows the observation interval within the 39-day 

limit, while the second demonstrates the scenario in which not enough data points are available to cover the 39-day 

time series.  

Interval=39 days

Start_day

2
nd

 confirmed case 

in the county

End_day

Release from 

stay-at-home order
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Figure 15. Selection of the start_day and end_day of the observation interval 

This 39-day observation interval was used to structure a table of outcomes for the model. The 𝑛-dimensional vector 
built for every county combined 13 data points of confirmed cases and 13 data points of deaths, with data aggregated 
every three days. This vector, with the additional transformation described in Section 2.5, was further processed by the 

computational platform to build a graph using TDA. 

2.4. Analysis of epidemic curves 

Epidemic curves are an important component of public health, especially during a pandemic outbreak, allowing epide-

miologists to represent the onset of disease cases over time visually. An epidemic curve is a histogram or plot illustrating 
the onset and progression of an outbreak of infectious disease in a particular population over a specific time [15]. The 
time interval is displayed on the X-axis and case numbers are shown on the Y-axis. This visual representation provides 

useful information on the size, pattern of spread, time trend, and exposure period of the outbreak. 

For the purpose of the current experiment, epidemic curves were built for every county based on the number of con-
firmed cases. The resulting epidemic curves are different in terms of a shape (e.g., the peak of confirmed cases differs 
across counties, falling at the beginning, middle, or end of the curve) and of total number of confirmed cases of the 

disease reported during the observation period. To incorporate all counties into the model during the pre-processing 
stage, the data were first normalized using the standard score (also known as the z-score). The normalized epidemic 
curves were used to compare different counties in terms of the varying number of confirmed cases within the observa-

tion interval.  

 

Figure 16. Five groups of epidemic curves built according to the number of confirmed cases 

After normalization, the epidemic curves were grouped according to the similarity of shape of the epidemic curves. The 
k-means clustering method was selected as a tool for grouping the epidemic curves into clusters. The k-means method 
starts with the selection of the number of groups (i.e., clusters) into which the epidemic curves should be grouped. In 
the current experiment, the number of groups was set to five types of epidemic curves. When performing the clustering, 

the k-means method enables calculation of the center of a cluster, which is then used to determine the type of shape 
of the epidemic curves within the cluster. Next, all counties were grouped according to similarity of epidemic curves 

and assigned to one of five types to illustrate similarity in terms of the pattern of disease spread (see Figure 16). 
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Interval=39 days
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For illustrative purposes, we assigned a specific color to the epidemic curve of each county, using five determined 
types. By combining administrative and geographical [16] maps of the United States (see Figure 17), it was possible to 
visually identify the similarity of pandemic spread based on geographical features. For example, counties located in 

mountainous areas, which probably indicates a lower population density, have a similar pattern: a peak at the beginning 
and a flattening of the curve thereafter (type 2 epidemic curve; colored pink). This visual approach, combined with the 
additional analysis of a variety of predictors (social, demographic, etc.), provides a much broader picture of the reasons 
behind the spread of the pandemic. The same approach was used to analyze the number of deaths integrated into the 

model for each county. 

 

 

 

Figure 17. Five types of epidemic curves on administrative and geographical maps 

1 2 3 4 5
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2.5. Outcomes selected for the model 

In the present experiment, TDA was used to build a graph that visually represents the geometric properties of the 

dataset. In other words, TDA allowed a comprehensive graph to be extracted from the original dataset to provide a 
compressed graphical representation of a multidimensional set of interrelated outcomes. The graph consists of 3,142 

nodes corresponding to each county and edges connecting the counties that are similar in terms of outcomes.  

As described above, the analysis was performed with respect to a 39-day observation interval. Thus, the outcomes 
selected in this study include 13 (39 / 3) normalized numbers of confirmed cases, the logarithm of the total number of 
confirmed cases, 13 (39 / 3) normalized numbers of cases of death, and the logarithms of the total number of deaths 
calculated for each county. Therefore, the total number of outcomes for each county is 13 + 1 + 13 + 1 and equals 28 

(see Figure 18). 

 

Figure 18. Outcomes selected for each county 

Therefore, the relevant information about the spread of COVID-19 in each county is encoded by a 28-dimensional 

vector as illustrated in Figure 19: 

 

Figure 19. 28-dimensional vector constructed for each county 

Encoding this information into this vector allowed investigation of the dataset based on four characteristics of the spread 
of COVID-19: the shape of epidemic curves built on confirmed cases, the total number of confirmed cases, the shape 

of the epidemic curve built on the number of deaths, and the total number of deaths. 

To determine similarities between two counties while building a graph, it is necessary to calculate the distance between 

two 28-dimensional vectors. For that purpose, a distance function based on modified Euclidean distance was used to 

measure the similarity in the spread of the pandemic between the counties (see Figure 20). 

 

 

 

Figure 20. The distance function measuring similarities between two counties 

 

Thereafter, using the two-dimensional projection based on density and centrality of nodes with respect to selected 

outcomes, the resulting TDA graph was built. 
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2.6. Defining the most representative graph  

By changing parameters (the number of bins and percentage of their overlap) of the topological model, we built a family 
of more than 200 graphs. The most representative graph (see Figure 21) was selected from this family using the ap-

proaches described in Section 1.4. This graph has received high scores by methods such as random walk-based 

modularity, Kolmogorov complexity, edge-aggregated graph selection. 

 

Figure 21. The topological model of COVID-19 spread over the United States 

The most representative graph capturing key features of our dataset with selected outcomes will be further analyzed 

using ML algorithms, visual exploration, and statistical analysis of predictors. To summarize, here are a few essential 

points that describe this graph: 

− Each node on the graph corresponds to one US county (total 3,142 nodes). 

− Two nodes are connected with an edge if they are similar in terms of predefined outcomes. 

− Outcomes integrate the number of confirmed cases and deaths within a 39-day observation interval from the 
start of the pandemic. 

− The similarity in pandemic spread is measured by a modified Euclidean distance function. 
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2.7. Predictors used for statistical analysis  

After a topological model is extracted, the researcher visually explores the graph to discover interesting subgroups 
within the data. These subgroups can be further studied by utilizing standard statistical methods to determine the pre-

dictors that may be responsible for the similarity of the pandemic spread observed within the identified subgroup of 

counties. 

A very common situation in statistics occurs when the distribution of an outcome (or response variable) is related to 

one or several predictors (or explanatory variables). A standard approach used by researchers to study the relationship 
between a predictor and an outcome is the application of a suitable statistical model. The model selection depends on 
the data types of the predictor and outcome (quantitative, binary, categorical, etc.) and often involves additional as-
sumptions concerning the distribution of the outcome. To describe similarities in pandemic spread, we integrated over 

250 predictors into our model, available from a variety of public sources (see Figure 22). At any time, additional predic-

tors can be easily integrated into the analysis without any changes in the topological model. 

  

Figure 22. Group of predictors incorporated into the model. 

Interactive visualization provides researchers with an opportunity to manually perform a visual inspection of a graph to 
identify regions of interest. For example, the nodes that form fork-like structures or loops might be of interest for further 
research. In addition, isolated components or highly concentrated groups of nodes that form communities may indicate 
meaningful relationships in the outcomes dataset. While performing a visual inspection, the researcher can also re-

color the graph in accordance with the value of an outcome or predictor selected from the corresponding datasets. The 
use of color codes may highlight how a subgroup of nodes represented by a given region of the graph might be different 

from the rest of the nodes. 

The researcher can select any region of the data map that exhibits interesting geometric properties to perform further 
statistical analysis. After running statistical tests, a table of predictors with the corresponding p-values can be calculated 
to determine whether the distribution of the predictors for the selected subgroup of nodes is different from that of the 

rest of the nodes. If the desired significance level of any predictor is found to be statistically significant, the researche r 
can construct a histogram that represents normalized frequency distributions of the predictor for both the nodes in the 
selected region of the graph and the rest of the nodes. The same can be done when comparing two different selected 

regions of nodes with each other. 

For the purpose of the statistical analyses undertaken for the present experiment, continuous, mixed, binary, and cat-
egorical (non-binary) univariate predictors were differentiated according to a variable type. Continuous predictors were 
examined using the standard two-sample Kolmogorov-Smirnov test. This method verifies whether two data samples 

are obtained from the same distribution. The test assumes that the underlying distributions are continuous (no ties in 
the variables’ values are allowed). To examine the statistical association between two samples within the categorical 

data, Fisher's exact test and the 𝜒2 test were used for the binary and non-binary categorical variables, respectively. 
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Social & Economic

Household statistics, Poverty, 

Labor data, Education, 

Criminal, Income inequality, 

Suicide rate, Unemployment

Healthcare

ICU beds, Hospital beds, 

Insurances, Medicare, Medicaid, 
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Figure 23 describes the variable type, data source, and other features of the predictors that were integrated into the 

model. 

 

Figure 23. The characteristics of predictors integrated into the model 

Subsequently, a number of communities were identified in the model using the methods of automatic community de-
tection described in Section 1.4. Comparing these communities with each other, as well as comparing each commu-

nity with the rest of the graph nodes, more than 5300 statistical tests were performed on predictors, of which about 

3700 were statistically significant with p-value ≤ 0.05.  

In the following section, we will describe several such comparisons that we found particularly interesting. 

3. FINDINGS EVALUATION AND INTERPRETATION 

3.1. Girvan-Newman communities 

By constructing a graph representing the original dataset with the number of confirmed cases and deaths, we were 
able to undertake a visual exploration to discover sub-populations within the data. For example, isolated components 
of the graph or highly interlinked groups of nodes may indicate meaningful relationships in the dataset. As datasets can 

span a large number of nodes and edges, visual inspection, and further discovery of sub-populations within the graph 
can be challenging or even misleading. Thus, we rely on some known machine-learning algorithms applied to the 

automatic detection of sub-populations using community search on the graph (see Section 1.5).  

Looking at the geometric properties of the graph extracted from the dataset that embeds the number of confirmed cases 
and deaths within a 39-day interval (see Figure 14), we can clearly distinguish four main regions. Using the Girvan-
Newman method, four communities were found on the graph that have more similarities (number of edges) with each 

other than with the rest of the counties. Figure 24 illustrates the communities to which we refer. 

The total number of counties within these four communities is 2,736 (out of 3,142), with the largest, the purple commu-
nity located on the lower left, corresponding to 1,029 counties. Let us first consider the map of the USA and the distri-
bution of these four communities. We colored the counties on the US administrative map according to the colors of the 

nodes corresponding to the counties in the detected communities (see Figure 25). An analysis of the map clearly 
indicates that counties colored red and green lie in regions with a lower population density. In contrast, purple counties 

are located in densely populated areas. 

Predictors by type

Missing  values

Predictors by year

Data Source

• Numerical: 55 predictors

• Categorial: 10 predictors

• Percent of population: 101 predictors

• Rate per 1,000, 10,000 or 100,000: 83 predictors

• Text: 2 predictors

• Over 700:  8 predictors

• 100-500:  15 predictors

• 10-100: 14 predictors

• Under 10: 93 predictors

• No missing values: 120 predictors

• 2020: 95 predictors

• 2019: 66 predictors

• 2018: 48 predictors

• 2010-2017: 41 predictors

• census.gov, usda.gov, fda.gov, bea.gov, kff.org, 

countryhealthranging.org, opendata.dc.gov, cdc.gov, 

healthdata.org, datausa.io, John Hopkins, MIT, etc.
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Figure 24. The four Girvan-Newman communities detected on the graph 

 

Figure 25. The US administrative map with the four Girvan-Newman communities detected on the graph 
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Figure 26. The graph colored according to the epidemic curves within the observation interval 

 

Let us next analyze how the four major communities differ in terms of pandemic spread patterns. To determine the 
significance of the type of onset and progression of an outbreak of the disease, the graph was re-colored according to 
the epidemic curves described earlier (see Figure 16). As we can see in Figure 26, the lower-left and upper-right 

communities are similar in terms of epi-curves. In these two communities, the nodes are mostly colored blue (3), brown 
(4), and orange (5), which corresponds to the delayed outbreak of the disease. The lower-right and central communities 
are mostly colored green (1) and pink (2), which corresponds to the disease outbreak at the beginning of the observation 

interval, with a further significant reduction of confirmed disease cases.  

To further determine specific features of these four communities in terms of the predefined outcomes, the graph was 
colored according to the number of confirmed cases within the 39-day observation interval (see Figure 27) and number 

of deaths (see Figure 28). The dark color indicates a higher number of cases, while the yellowish color indicates the 

opposite.  

Looking at these two colorings, we can clearly see that a lower-left (circled in purple) and upper-right community (circled 

in green) have similar patterns in regard to the number of confirmed cases as compared with the other two communities 
(cyan in the center and red on the lower right). On the other hand, referring to Figure 28, these two communities, purple 
and green, have different patterns in the number of deaths: the green community, on the upper right, has far fewer 
deaths. In other words, when the pandemic started, a similar pattern of spread was seen in both purple and green 

communities. At the same time, the number of deaths indicates that counties located in the green community handled 
the virus more effectively, which substantially reduced the number of fatalities. Even though there are almost twice as 

many counties in the purple than in the green community (1,029 versus 559), this is still important for further analysis. 

These two communities, purple and green, will become of interest for further analysis to determine why the number 
of deaths was significantly different while at the same time the spread of the disease showed a clear similarity, 
based on the shapes of epi-curves and the number of confirmed cases. For this purpose, we perform a statistical 
analysis of discovered patterns to explain similarities in the spread of the pandemic based on the predictors integrated 

into the model. 

After running statistical tests in these two communities, a table of predictors consisting of 267 rows with corresponding 

p-values, of which 211 were statistically significant with p-values ≤ 0.05, was calculated to determine whether the 
distribution of the predictors for the selected purple subgroup of nodes was different from that of the green subgroup. 
If the desired significance level of any predictor was found to be statistically significant, we were able to construct a 
histogram representing normalized frequency distributions of the predictor for both the nodes in the selected purple 

community and those from the green community.  
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Figure 27. The graph colored according to the number of confirmed cases within the observation interval  

 

 

Figure 28. The graph colored according to the number of deaths within the observation interval  



 

25 

 

For the purpose of the statistical analyses undertaken for the present experiment, continuous, mixed, binary, and cat-
egorical (non-binary) univariate predictors were differentiated according to variable type. Continuous predictors were 
examined using the standard two-sample Mann–Whitney–Wilcoxon test. To examine the statistical association be-

tween two samples within the categorical data, Fisher's exact test and the 𝜒2 test were used for the binary and non-

binary categorical variables, respectively. 

In the next step, we analyzed various predictors with statistically significant p-values ≤ 0.05 to describe the differences 
between the purple and green communities. Thus, Figure 29 shows a histogram that compares the population in both. 

The purple community appeared to have more densely populated counties, including cities and big urban centers. In 
contrast, the green community turned out to have moderately populated counties, mostly located in rural areas (see 

Figure 25 for more detail).  

 

 

 

Figure 29. The histogram showing the logarithm of population in the green and purple communities 

 

The next statistically significant predictor is the urban influence code, also called an “urban/rural score.” In the histogram 
illustrated in Figure 30, the value “1” on the scale corresponds to big urban centers while “12” corresponds to villages. 
The purple community mostly encompassed big urban centers, while the green community turned out to include coun-

ties in non-urban areas. 
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Figure 30. The histogram showing the urban influence code in the green and purple communities 

Another predictor found to be significant is the public transportation system, which might be responsible for the differ-

ence in the number of deaths between the green and purple communities. We compared these communities based on 
the public transportation score (see Figure 31). The public transportation score indicates how well a location is served 
by public transit. The purple community appeared to have a much higher public transportation score than the green 

one.  

 

 

Figure 31. The histogram showing the public transportation score in the green and purple communities 
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Analyzing more predictors in the transportation segment, Figure 32 shows a histogram comparing the purple and green 
communities based on highway length per 1,000 square kilometers. This predictor was found to be statistically signifi-
cant with the p-value ≤ 0.05. The purple community appeared to have a much greater highway length than the green 

one.  

 

 

Figure 32. The histogram showing the highway density in the green and purple communities 

The international migration rate within the purple and green communities was also compared. This rate illustrates the 
difference between the number of people coming to the county from outside of the USA and the number of people 
leaving the county for international destinations throughout the year. Figure 33 shows this histogram. The purple com-

munity appeared to have approximately twice the international migration rate of the green community.  

 

 

Figure 33. The histogram showing the international migration rate in the green and purple communities 
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Likewise, we analyzed the domestic migration rate, which, in contrast with the international migration rate, refers to the 

difference in the number of people coming into and leaving the county from within the USA (not internationally). Figure 
34 shows a histogram comparing the purple and green communities according to domestic migration rate. The purple 
community had a positive domestic migration rate, which means a surplus in arrivals into the counties of this community. 
The green community had a negative domestic migration rate, which means more people depart this community's 

counties than arrive. 

 

 

Figure 34. The histogram showing the domestic migration rate in the green and purple communities 

 

The next statistically significant predictor for the purple and green communities was found to be a climate region. In the 

purple community, the number of counties located in northeast, east north central, central northwest, west, southwest, 
south, southeast climate regions were higher than in the green community. In contrast, in the green community, the 
number of counties belonging to the west north central climate regions and Alaska was higher than in the purple com-
munity. Figure 35 shows the USA's climate regions, and Figure 36 shows histograms comparing the green and purple 

communities according to the climate region. 
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Figure 35. The climate regions of the USA 
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Figure 36. The histograms comparing the green and purple communities according to  
the climate region of the counties 
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Further, several predictors related to the race of the population are statistically significant. Figure 37 (a-d) shows the 
histograms comparing the green and the purple communities according to the percentage of different races and eth-
nicities. The green community appeared to have a higher percentage of White populations than the purple community 

did. The purple community had a higher percentage of African American, Hispanic, and Asian populations than the 

green community. 

 

 

 

 

a) Percent of Asian people b) Percent of African American people 

 

 

 

 
c) Percent of White people to population d) Percent of Hispanic population 

Figure 37.  The histogram comparing the green and purple communities based on the percentage  
of different races to population within the communities 

 

Another group of predictors that might be responsible for the difference in the number of deaths across the purple and 
green communities relates to the healthcare system. In the next step, the graph was recolored according to the number 
of hospitals per 100,000 people. Figure 38 shows a histogram comparing the purple and green communities. The green 
community appeared to have twice the number of hospitals per 100,000 people than the purple one. This could be one 

reason that counties in the green community handled the pandemic outbreak more effectively even though they expe-

rienced a similar pattern in the number of cases as counties from the purple community. 

Analyzing the healthcare system further, the purple and green communities were also compared according to the num-

ber of general practice physicians per 1,000 people. Figure 39 shows the histogram comparing the purple and green 
communities. The green community appeared to have a slightly higher number of general practice physicians per 1,000 

people than the purple one. 
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Figure 38. The histogram showing the number of hospitals per 100,000 people  
in the green and the purple communities 

 

 

Figure 39. The histogram showing the number of general practice physicians per 1,000 people  
in the green and the purple communities 

The number of staffed beds per 10,000 people was also analyzed in relation to our communities. Figure 40 shows the 

histogram comparing the purple and green communities. The purple community appeared to have a higher number of 
staffed beds per 10,000 people than the green one. Whereas there are more beds in the purple community, there are 
more hospitals in the green community. More small hospitals and more general practice physicians proved to be pref-

erable for lower death rates. 
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Figure 40. The histogram showing the number of staffed beds per 10,000 people in the green  
and the purple communities 

The population 65 years and over with no health insurance coverage to total population within the purple and green 
communities was also compared. Figure 41 shows this histogram. The percentage of the population without insurance 

in the purple community is greater than in the green one. 

 

 

Figure 41. The histogram showing the population 65 years and over with no health insurance coverage  
to total population in the green and the purple communities 
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Likewise, we analyzed the population 65 years and over with Medicare coverage only to total population. Figure 42 
shows the histogram comparing the purple and the green communities according to this predictor. Unlike the previous 

predictor, the percentage of the population with Medicare insurance is higher in the green community . 

 

 

Figure 42. The histogram showing the population 65 years and over with Medicare coverage only  

to total population in the green and purple communities 

 

Multiple other predictors integrated into the model were found to be statistically significant with p-value ≤ 0.05 and could 
be responsible for the discrepancy between the green and purple communities in terms of the number of deaths. At 

any time, new predictors can be added to the model to find additional features that might be responsible either for 

similarities or dissimilarities in the patterns within selected communities. 

3.2. Percolation-detected communities  

The clique percolation method was applied to our graph to detect communities that might not be obviously identifiable 
when only visual exploration techniques are used. Figure 43 illustrates the result of the automatic percolation commu-

nity search algorithm. We focus our analysis on the comparison of blue and yellow communities, since they 
showed similar patterns in the number of confirmed cases and number of deaths (see colors of  nodes in Figure 27 
and Figure 28). Also, concentrating our analysis on differences between these two communities may enable us to 
discover reasons why the TDA algorithm has split green and red communities, which were among the four Girvan-

Newman communities described earlier (see Figure 24). 

To analyze these two communities, statistical tests were performed and a predictor table consisting of 267 rows with 

corresponding p-values was calculated. In this predictor table, 111 p-values were found to be statistically significant p-

values ≤ 0.05. 
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Figure 43. Communities detected on the graph using the clique percolation method 

We further compared these two communities using the statistical methods described above to analyze various predic-
tors integrated into the model. Figure 44 shows a histogram comparing the blue and yellow communities based on the 
population density predictor, which was statistically significant with the p-value ≤ 0.05. The blue community appeared 

to have a higher population density than the yellow one. 

 

 
Figure 44. The histogram comparing the blue and the yellow communities based on population density 
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Also, several predictors related to the race or ethnicity of the population are statistically significant. Figure 45 shows 
histograms comparing the blue and the yellow communities according to the percentage of different races and ethnic-
ities. The blue community appeared to have a higher percentage of African American and Hispanic populations than 

the yellow one.  

 

 

 

 
a) Percent of African American people b) Percent of Hispanic population 

 
Figure 45. The histogram comparing the blue and yellow communities based on the percentage  

of different races to population within the communities 

The next group of predictors that might be responsible for the difference of the blue and the yellow communities relates 

to the healthcare system.  

The histograms shown in Figure 46 and Figure 47 compare these communities according to the number of hospitals 
per 100,000 people and the number of professionally active specialist at emergency medicine per 1,000 people. The 
histogram analysis shows that the number of hospitals is greater in the blue community, while the number of specialist s 
at emergency medicine is greater in the yellow community. In addition, the histogram in Figure 48, showing the percent 

of population with no health insurance coverage, allows us to conclude that there are more people without insurance 

coverage in the blue community. 

 

 
Figure 46. The histogram showing the number of hospitals per 100,000 people in the blue and yellow communities 
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Figure 47. The histogram showing the number of professionally active specialist at emergency medicine  
per 1,000 people in the blue and the yellow communities 

 

 

 

Figure 48. The histogram showing the percent of population with no health insurance coverage  
in the blue and the yellow communities 

The next statistically significant predictor for the percolation-detected communities appeared to be the number of days 

which passed between the date on which the stay-at-home restriction was adopted and the start day of the observation 

interval, i.e., the date of detection of the second confirmed case in the county.  
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Figure 49 shows a histogram comparing the blue and yellow communities according to the number of days which 
passed between the date on which the stay-at-home restriction was adopted and the start date of detecting confirmed 
cases in each county. In the yellow community (with the smaller number of confirmed cases of the disease), the delta 

(number of days) between the stay-at-home restriction date and the start day of the observation interval appeared to 
be negative in most counties. This means that the stay-at-home restriction was adopted before the second confirmed 
case of the disease was detected in these counties (see Figure 49). It was determined that in the blue community 

counties, the stay-at-home restriction was adopted after the start day.  

 

 

Figure 49. The histogram comparing the yellow and blue communities according to the number of days  

which passed between the date on which the stay-at-home restriction was adopted and the start  
date of detection of confirmed cases in each county 

 

In the next step, the graph was re-colored based on the delta between the date on which restrictions were introduced 
for bars and restaurants and the start day of the observation interval (see a histogram comparing the yellow and blue 
communities in Figure 50). In the yellow community, the bars and restaurants were closed earlier with respect to the 

start day than they were in the blue community. 

The data mining experiments indicated various predictors that could influence the spread of COVID-19 in the USA. 
These include geographic conditions, population density, urban influence, public transportation, highway length, migra-

tion, number of hospitals, number of general practice physicians, number of days passed between introducing the stay-
at-home restriction and the start date of detection of confirmed cases of the disease, and many others. At any time, 
additional predictors can be easily integrated into the model to expand the search of parameters that might be respon-
sible for similarities in pandemic spread discovered by using TDA, machine learning algorithms, and visual exploration 

techniques. 
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Figure 50. The histogram comparing the yellow and blue communities according to the number of days  
which passed between the date on which restrictions were introduced for bars and restaurants  

and the start date of detection of confirmed cases in each county 

CONCLUSION 

In this paper, the authors present novel machine-learning techniques and workflow that rely on graphs as the funda-
mental tool to structuring and analyzing complex real-world data. The authors illustrate this workflow by analyzing how 
the spread of COVID-19 has advanced over the USA, looking for similarities in a specific timeframe. The analysis was 

performed on a county-by-county basis, by extracting from the dataset a topological data model represented as a graph 
in which each of 3,142 nodes corresponds to one county, and two nodes are connected if they share similarities. After 
the graph was built, real-world data was used to integrate into the model predictors which might be responsible for 
similarities in the early-stage spread of the pandemic. Over 250 predictors from different publicly available sources 

were used during the course of the experiment. The data mining experiments indicated various predictors that could 
influence the spread of COVID-19 in the USA. These include geographic conditions, population density, urban influ-
ence, public transportation, highway length, migration, number of hospitals, number of general practice physicians, 
number of days passed between introducing the stay-at-home restriction and the start date of detection of confirmed 

cases of the disease, and many others. At any time, additional predictors can be easily integrated into the model to 
expand the search of parameters that might be responsible for similarities in pandemic spread discovered by using 

TDA, machine learning algorithms, and visual exploration techniques. 
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