
1

PharmaSUG 2023 - Paper QT-280

Are you planning to create/validate CDISC data set in R? Here is a step-by-
step guide!

Ganeshchandra Gupta, Ephicacy Consulting Group, Inc

ABSTRACT

In recent years, many pharmaceutical companies have adopted R as a data analysis tool. The main
reasons for the increasing importance of R are the availability and ever-growing number of high-quality
statistical methods, very good graphics capabilities and a wide range of useful programming extensions.
However, no single programming language can solve every single problem you will encounter in your
programming career. Though SAS® is easy to learn and provides simpler coding options, R on the other
hand has a stepwise learning, depending upon programming language. To work with R, by rule of thumb,
you will have to know the basics of the R language which is quite easy. And still, no one ever talks about
how simple it is to do clinical trial data manipulation and creation of CDISC: SDTM/ADaM data sets.
Majority of Pharma/Biotech companies and CROs use double programming technique to validate SAS
data sets. And so, we can use R programming to validate data sets created in SAS environment which
could potentially reduce the license cost involved. This paper will provide a step-by-step guide on creating
and validating SDTM Demographics (DM) domain along with SAS code comparison. Begin from the
Beginning!

INTRODUCTION

R is a programming language and an analytics tool that was developed in 1993 by Robert Gentleman and
Ross Ihaka at the University of Auckland, Auckland, New Zealand. It is extensively used by Software
Programmers, Statisticians, Data Scientists, and Data Miners. It is one of the most popular Data analytics
tools used in Data Analytics and Business Analytics. It has numerous applications in domains like
healthcare, academics, consulting, finance, media, and many more. Its vast applicability
in Statistics, Data Visualization, and Machine Learning have given rise to the demand for certified trained
professionals in R. The purpose of this paper is to understand the difference between R and SAS codes
at each step. And then create a SDTM Demographics (DM) domain program in R.

CODE COMPARISON OF R VS SAS

Procedure/
Functions

SAS Code R Code

1. Importing and
Reading Dataset

libname rawdata "c:\rawdata";

data dm1; set rawdata.dm; run;

➔ similarly read drug, died,
term

library(haven)

rawdata <- "C:/Users/Ganesh
Gupta/Documents/R/R practice/rawdata"

dm <- read_sas("rawdata/dm.sas7bdat",
NULL)

➔ similarly read drug, died, term

2. Checking contents
of the dataset

proc contents data= dm; run; library(Hmisc)

contents(dm)

3. Assigning old
variable values to
new variable and
hardcoding

studyid= strip(proto);

domain= “DM”;

mutate(STUDYID = PROTO,

 DOMAIN = “DM”)

2

4. Creating character
variable and using
SUBSTR

length subjid $10;

subjid= strip(substr(patient,4,4));

SUBJID =
as.character(substr(PATIENT,4,7))

Here third attribute “7” is the position of the
string. This will extract from 4th position to 7th
position.

5. Concatenating and
deriving a new
variable

usubjid= catx(“-”, studyid, siteid,
subjid);

USUBJID= paste(STUDYID, SITEID,
SUBJID, sep="-")

6. Creating ISO date
variable

brthdtc= strip(put(birthdt,
yymmdd10.));

library(parsedate)

BRTHDTC=
format_iso_8601(parse_iso_8601(BIRTHDT)
)

7. Finding position of
the first occurrence
of that string’s first
character

index_result= index(BRTHDTC,
"\\T",);

BRTHDTC= substr(BRTHDTC, 1,
regexpr("\\T", BRTHDTC)-1)

The regexpr() function gives you the (a)
index into each string where the match
begins and the (b) length of the match for
that string. regexpr() only gives you
the first match of the string (reading left to
right).

8. Derive age from
birth date

age=int((today()-dob)/365.25); library(ggplot2)

library(eeptools)

AGE = floor(age_calc(as.Date(BIRTHDT),
as.Date(RANDDT), units="years", precise =
TRUE))

9. If-else statement if gender= ”FEMALE” then sex=
”F”;

else if gender= ”MALE” then sex=
”M”;

else sex=””;

SEX1 =
ifelse(SEX==”FEMALE”,”F”,ifelse(SEX==”MA
LE”,”M”,””))

10. Sorting a dataset proc sort data= dm out= sdtm.dm;

 by studyid usubjid; run;

dm <- arrange(STUDYID, USUBJID)

11. Remove missing
values

data f_dosedtc;

 set drug1;

 where not missing (dosedtc);

run;

f_dosedtc <- drug1 %>%

 filter(!is.na(DOSEDTC))

12. First and last
observation by
grouping variables

proc sort data=drug1; by subjid
dosedt; run;

data f_dosedtc l_dosedtc;

 set drug1;

f_dosedtc <- drug1 %>%

 group_by(SUBJID) %>%

 slice_min(order_by = DOSEDT)

 slice_max(order_by = DOSEDT)

3

 by subjid;

 if first.subjid then output
f_dosedtc;

 if last.subjid then output
l_dosedtc;

run;

13. Remove duplicated
rows

proc sort data=f_dosedtc
out=f_dosedtc1 noduprecs; by
subjid; run;

f_dosedtc1 <- unique(f_dosedtc,
incomparables=FALSE)

#Unique returns a data table with duplicated
rows removed

14. Merge datasets
while keeping rows
from the left dataset

data dmall;

 merge dm1(in=indm) f_dosedtc1;

 by subjid;

 if indm;

run;

dmall <- left_join(dm1, f_dosedtc1,
by=”SUBJID”)

15. Order and keep only
required variables

data dm;

 retain studyid domain usubjid
subjid;

 set dmall;

 keep studyid domain usubjid
subjid;

run;

dm <- dmall %>%

 select(STUDYID, DOMAIN, USUBJID,
SUBJID)

16. Reset all the labels proc datasets lib=work
memtype=data;

 modify dm;

 attrib _all_ label=' ';

contents data= work.dm;

run;

dm <- remove_all_labels(dm)

17. Dropping a variable

data dmall;

 set dmall;

 drop subjid;

run;

dmall <- within(dmall, rm(SUBJID))

18. Renaming a variable data dm1;

 set dm;

 rename gender=sex;

run;

dm <- rename(SEX=SEX1, RACE=RACE1)

#new_name = old_name

19. Output dm.sas7bdat data sdtm.dm;

 set work.dm;

run;

write.table(dm, "C:/Users/Ganesh
Gupta/Documents/R/R practice/sdtm/dm.txt",
sep=",", row.names=F, col.names=T)

4

In R, you can create either CSV or TXT as
output.

20. Output dm.xpt libname xportout xport c:\xpt;

data xportout.dm;

 set work.dm;

run;

Library(“sasxport”)

write.xport(dm, file = "xpt/dm.xpt")

21. Comparing the
datasets

proc compare base= prod
compare= qc listall; run;

summary(comparedf(prod, qc))

Usage of summary() provides more detailed
summary, similar to listall in SAS

THE INITIAL SETUP

In this section we will go through the preliminary setup that needs to be done when starting to program
SDTM DM domain:

Install and Load Packages

install.packages("pacman")

library(pacman)

By using "pacman::p_load" you can use the p_load function from pacman without actually loading
pacman.

pacman::p_load(pacman, dplyr, haven, Hmisc, parsedate, ggplot2, lubridate, eeptools, sjlabelled,

 tidyr, foreign, SASxport)

Library setup

rawdata <- "C:/Users/Ganesh Gupta/Documents/R/R practice/rawdata"

sdtm <- "C:/Users/Ganesh Gupta/Documents/R/R practice/sdtm"

xpt <- "C:/Users/Ganesh Gupta/Documents/R/R practice/xpt"

Set the current working directory

setwd ('C:/Users/Ganesh Gupta/Documents/R/R practice')

Read the SAS dataset

dm <- read_sas("rawdata/dm.sas7bdat", NULL)

random <- read_sas("rawdata/random.sas7bdat", NULL)

drug <- read_sas("rawdata/drug.sas7bdat", NULL)

died <- read_sas("rawdata/died.sas7bdat", NULL)

term <- read_sas("rawdata/term.sas7bdat", NULL)

vitals <- read_sas("rawdata/vitals.sas7bdat", NULL)

5

Check contents of the dataset

contents(dm)

MAIN PROGRAM

Now that we have identified the initial steps it’s time to do data manipulation:

Create variables as per the spec from rawdata DM

dm1 <- dm %>% # read %>% as "and then”

mutate(STUDYID = PROTO,

DOMAIN="DM",

 SITEID = as.character(substr(SUBJID,1,3)),

 SUBJID1 = as.character(SUBJID),

 USUBJID = paste(STUDYID, SITEID, SUBJID, sep="-"),

 RFICDTC = "",

 BRTHDTC = format_iso_8601(parse_iso_8601(BIRTHDT)),

 BRTHDTC = substr(BRTHDTC, 1, regexpr("\\T", BRTHDTC)-1),

 AGE = floor(age_calc(as.Date(BIRTHDT), as.Date(RANDDT), units="years", precise = TRUE)),

 AGEU = "YEARS",

 SEX1 = ifelse(SEX=="FEMALE","F",ifelse(SEX=="MALE","M","")),

RACE1 = ifelse(RACE=="BLACK","BLACK OR AFRICAN AMERICAN",
ifelse(RACE=="CAUCASIAN","CAUCASIAN",ifelse(RACE=="ASIAN","ASIAN",""))),

 ETHNIC = ifelse(RACE=="HISPANIC","HISPANIC OR LATINO",""),

 ARMCD = ifelse(TRTGROUP=="Placebo","PBO",ifelse(TRTGROUP=="Active","ACT","")),

 ARM = TRTGROUP,

 ACTARMCD = ARMCD,

 ACTARM = TRTGROUP,

 ARMNRS = "",

 ACTARMUD = "",

 COUNTRY = "",

 DMDTC = "",

 DMDY = "") %>%

select(STUDYID, DOMAIN, USUBJID, SUBJID, SUBJID1, SITEID, RFICDTC,

 BRTHDTC, AGE, AGEU, SEX1, RACE1, ETHNIC, TRTGROUP,

 ARMCD, ARM, ACTARMCD, ACTARM, ARMNRS, ACTARMUD,

 COUNTRY, DMDTC, DMDY) %>%

arrange(SUBJID)

Create variables as per the spec from rawdata DRUG

drug1 <- drug %>%

6

mutate(DOSEDTC = format_iso_8601(parse_iso_8601(DOSEDT)),

 DOSEDTC = substr(DOSEDTC, 1, regexpr("\\+", DOSEDTC)-1)) %>%

select(SUBJID, DOSEDT, DOSEDTC) %>%

arrange(SUBJID, DOSEDTC)

Get first observation from data DOSEDTC

f_dosedtc <- drug1 %>%

 filter(!is.na(DOSEDTC)) %>% #For non-missing values

 group_by(SUBJID) %>%

 slice_min(order_by = DOSEDT) %>% #For 1st observation

 mutate(RFSTDTC = DOSEDTC, RFXSTDTC = DOSEDTC)%>%

 select(SUBJID, RFSTDTC, RFXSTDTC)

Unique returns a data table with duplicated rows removed

f_dosedtc1 <- unique(f_dosedtc, incomparables=FALSE)

Get last observation from data DOSEDTC

l_dosedtc <- drug1 %>%

 filter(!is.na(DOSEDTC)) %>%

 group_by(SUBJID) %>%

 slice_max(order_by = DOSEDT) %>%

 mutate(RFENDTC = DOSEDTC, RFXENDTC = DOSEDTC) %>%

 select(SUBJID, RFENDTC, RFXENDTC)

l_dosedtc1 <- unique(l_dosedtc, incomparables=FALSE)

Create variables as per the spec from rawdata DRUG

term1 <- term %>%

 mutate(RFPENDTC = format_iso_8601(parse_iso_8601(TERMDT)),

 RFPENDTC = substr(RFPENDTC, 1, regexpr("\\T", RFPENDTC)-1)) %>%

 select(SUBJID, RFPENDTC) %>%

 arrange(SUBJID)

Create variables as per the spec from rawdata DIED

died1 <- died %>%

 mutate(DTHDTC = format_iso_8601(parse_iso_8601(DEATHDT)),

 DTHDTC = substr(DTHDTC, 1, regexpr("\\T", DTHDTC)-1),

 DTHFL="Y") %>%

7

 select(SUBJID, DTHDTC, DTHFL) %>%

 arrange(SUBJID)

Merge all the datasets to create DM

dmall <- left_join(left_join(left_join(left_join(dm1, f_dosedtc1, by="SUBJID"),

 l_dosedtc1, by="SUBJID"),

 term1, by="SUBJID"),

 died1, by="SUBJID")

Dropping a variable SUBJID

dmall <- within(dmall, rm(SUBJID))

Rename variables

dmall <- dmall %>%

 rename(SUBJID=SUBJID1, SEX=SEX1, RACE=RACE1) #new_name = old_name

Order and keep only required variables in final DM

dm <- dmall %>%

select(STUDYID, DOMAIN, USUBJID, SUBJID, RFSTDTC, RFENDTC, RFXSTDTC, RFXENDTC,
RFICDTC, RFPENDTC, DTHDTC, DTHFL, SITEID, BRTHDTC, AGE, AGEU, SEX, RACE, ETHNIC,
ARMCD, ARM, ACTARMCD, ACTARM, ARMNRS, ACTARMUD, COUNTRY, DMDTC, DMDY)

Reset all the labels

dm <- remove_all_labels(dm)

Assign label to dataset

label(dm) <- "Demographics"

To check if unique subjects are present

check <- dm %>% distinct(SUBJID)

Below steps done to access SAS dataset from SAS applications

Function defined for converting factors and blanks

convert_format_r2sas <- function(dm){

 dm <- dm %>%

 dplyr::mutate_if(is.factor, as.character) %>%

 dplyr::mutate_if(is.character, tidyr::replace_na, replace = "")

 return(dm)

}

8

Convert some formatting

dm <- convert_format_r2sas(dm)

Ensure the data and code files are saved in an easily accessible location

(ideally in or downstream of your R project directory)

write.table(dm, "C:/Users/Ganesh Gupta/Documents/R/R practice/sdtm/dm.txt",

 sep=",",

 row.names=F,

 col.names=T)

Output DM.xpt

write.xport(dm, file = "xpt/dm.xpt")

CONCLUSION

Focus was on the SAS and R language to create the SDTM DM domain

- SAS comes along with a higher proof of quality.

- R packages implement the state-of-the-art algorithms

- There is no general better or worse.

ACKNOWLEDGMENTS

The author would like to extend their sincere thanks to Ephicacy Consulting Group, Inc for giving them an
opportunity to write this paper. Any brand and product names are trademarks of their respective
companies.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:
Ganeshchandra Gupta, (Senior Manager - Biostatistics & Programming), Ephicacy Consulting Group, Inc
Phone: +1-848-219-8131, E-mail: ganeshchandra.gupta@ephicacy.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

mailto:ganeshchandra.gupta@ephicacy.com

