
1

PharmaSUG 2023 - Paper QT-222

A SAS® System Macro to Quickly Display Discrepant Values that are too
Long for the COMPARE Procedure Output

Kevin R. Viel, Ph.D., Navitas Data Sciences; Histonis, Incorporated

ABSTRACT

At times, values being compared by the SAS® System COMPARE procedure are truncated in the output
(.lst) because they are too long and the differences are not shown. While the COMPARE procedure can
produce various data sets, that approach can be cumbersome. Instead, the programmer might want to
display the discrepant values in the log or redirect the log to a permanent file for a quick view. The goal
of this paper is to introduce a SAS macro that quickly displays these overly long values in the log for quick
comparison.

INTRODUCTION

Independent Validation usually involves a 100% match on the data set of interest, whether it is a CDISC
(Clinical Data Interchange Standards Consortium) SDTM (Study Data Tabulation Model) domain, a
CDISC ADaM (Analysis Data Model) data set, or a VALDS (Validation Data Sets from Tables, Figures,
and Listings programs, also known as TFLs). For Validation programming using the SAS® System, the
COMPARE procedure is nearly ubiquitous and one may not infrequently see the abbreviation DP-PC
(Double Programming-Proc COMPARE) in SOPs (standard operating procedures) and WIs (work
instructions).

Depending on the Validation Plan and applicable SOPs/WIs, the Validation programmer may need to
exactly match:

• Variable names

• Variable attributes (type, label, and length)

• Variable Order within the data set (essential for SDTM domains)

• Variable Values

This paper pertains to matching of values in the Validation process. With an exact match of the Main and
Validation data sets, the results, i.e. the COMPARE output in the .lst file or Output window of an
interactive SAS session, are the minimal possible and easy to interpret. When discrepancies occur,
investigating the origins of them can be complex and challenging, i.e., time consuming, especially if the
Main and Validation data sets are not correctly sorted on the key variables. A further complication occurs
when values are too long to be fully displayed in the COMPARE output, in which case they may appear to
match exactly to the point of truncation. The goal of this paper is to introduce a SAS macro that quickly
displays these overly long values fully in the log or a file for quick comparison, with flexibility in the format
of the display, and the option to show a byte-by-byte comparison, including showing the hexadecimal (the
SAS HEX. format) valued to emphasize discrepant non-printable bytes. The second goal of this paper is
to introduce another SAS macro to display values with leading spaces, an issue that is notoriously hard to
spot in COMPARE procedure output. The third goal of this paper is to discuss additions to values solely
to create formatting, modifications such as leading spaces, versus using logic and styles to achieve
selective formatting with the least complex value possible, i.e., to expedite Validation and minimize the
data and comparisons required.

COMPARE RESULTS

The following data steps and COMPARE procedure generates the output in Display 1:

2

data one ;

 x = 8 ;

 id1 = 1 ;

 id2 = "LONG INDENTIFICATION A" ;

run ;

data two ;

 set one ;

 x = 9 ;

run ;

proc compare

 data = one

 comp = one

 listall

 ;

run ;

The desired scenario of an exact match is assured because the base data set and the comparison data
set are the same (WORK.ONE).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

The COMPARE Procedure

Comparison of WORK.ONE with WORK.ONE

(Method=EXACT)

Data Set Summary

Dataset Created Modified NVar NObs

WORK.ONE 05FEB23:14:46:00 05FEB23:14:46:00 3 1

WORK.ONE 05FEB23:14:46:00 05FEB23:14:46:00 3 1

Variables Summary

Number of Variables in Common: 3.

Number of ID Variables: 2.

Observation Summary

Observation Base Compare ID

First Obs 1 1 id1=1 id2=LONG INDENTIFICATION A

Last Obs 1 1 id1=1 id2=LONG INDENTIFICATION A

Number of Observations in Common: 1.

Total Number of Observations Read from WORK.ONE: 1.

Total Number of Observations Read from WORK.ONE: 1.

Number of Observations with Some Compared Variables Unequal: 0.

Number of Observations with All Compared Variables Equal: 1.

NOTE: No unequal values were found. All values compared are exactly

equal.

Display 1. COMPARE procedure output for exact matches.

3

Note that values of the ID2 variables (lines 23 and 24) show the entire length: “LONG INDENTIFICATION
A”. Contrast this with Display 2, specifically, line 60, which displays only the truncated value: “LONG
INDENTIFICATION” for ID2.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

The COMPARE Procedure

Comparison of WORK.ONE with WORK.TWO

(Method=EXACT)

Data Set Summary

Dataset Created Modified NVar NObs

WORK.ONE 05FEB23:14:46:00 05FEB23:14:46:00 3 1

WORK.TWO 05FEB23:14:46:00 05FEB23:14:46:00 3 1

Variables Summary

Number of Variables in Common: 3.

Number of ID Variables: 2.

Observation Summary

Observation Base Compare ID

First Obs 1 1 id1=1 id2=LONG INDENTIFICATION A

First Unequal 1 1 id1=1 id2=LONG INDENTIFICATION A

Last Unequal 1 1 id1=1 id2=LONG INDENTIFICATION A

Last Obs 1 1 id1=1 id2=LONG INDENTIFICATION A

Number of Observations in Common: 1.

Total Number of Observations Read from WORK.ONE: 1.

Total Number of Observations Read from WORK.TWO: 1.

Number of Observations with Some Compared Variables Unequal: 1.

Number of Observations with All Compared Variables Equal: 0.

Values Comparison Summary

Number of Variables Compared with All Observations Equal: 0.

Number of Variables Compared with Some Observations Unequal: 1.

Total Number of Values which Compare Unequal: 1.

Maximum Difference: 1.

The COMPARE Procedure

Comparison of WORK.ONE with WORK.TWO

(Method=EXACT)

All Variables Compared have Unequal Values

Variable Type Len Ndif MaxDif

x NUM 8 1 1.000

Value Comparison Results for Variables

 || Base Compare

 id1 id2 || x x Diff. % Diff

 _______ ____________________ || _________ _________ _________ _________

 ||

 1 LONG INDENTIFICATION || 8.0000 9.0000 1.0000 12.5000

Display 2. COMPARE procedure with a mismatch and truncation of an ID variable value.

4

When one searches for the observations of interest, one might not find the observations, but instead
received:

NOTE: No observations were selected from data set WORK.ONE.

NOTE: There were 0 observations read from the data set WORK.ONE.

 WHERE (id1=1) and (id2='LONG INDENTIFICATION');

NOTE: PROCEDURE PRINT used (Total process time):

 real time 0.05 seconds

 cpu time 0.00 seconds

Depending on the data, one might not easily detect which (group of) observations to investigate. For
instance, a possible DUT (Device Under Test), or UAT (User Acceptance Testing), program might
include:

%let usub = "LONG INDENTIFICATION A1"

 , "LONG INDENTIFICATION A2"

 ;

proc print

 data = adam.adlb

 (keep = usubjid

 visitnum

 paramcd

 lbtestcd

 aval

 where = (lbtestcd = "ALB"

 and usubjid in

 (&usub.)

)

)

 ;

run ;

proc print

 data = v_adlb

 (keep = usubjid

 visitnum

 paramcd

 lbtestcd

 aval

 where = (lbtestcd = "ALB"

 and usubjid in

 (&usub.)

)

)

 ;

run ;

proc print

 data = sdtm.lb

 (keep = usubjid

 visitnum

 lbtestcd

 lbstresn

 where = (lbtestcd = "ALB"

 and usubjid in

 (&usub.)

)

)

 ;

run ;

5

In this case, suspicion is immediate on ID2 since ID1 is numeric variable. We know both values match,
so we might switch to the “in :” operator instead of “in”, but that could result in voluminous output.
Discerning the exact value and being able to copy and paste is preferrable.

MAC_R_LONG_COMPARE RESULTS

One could not copy the correct value of ID2 from the output in Display 2 for an observation of interest
because the value is truncated, perhaps undetectably unless one is rather familiar with the data; which of
the values is truncated might not be obvious if the ID variables include several “long” variables. The
macro, MAC_R_LONG_COMPARE, overcomes this issue by rapidly displaying the values in either the
log or directing the results to a file. The latter options does not pertain to most aspects of programming in
clinical trials that follow CDISC guidance since the maximum length of variables is 200 bytes, which can
be fully displayed in a SAS log. For issues concerning long DNA, RNA, or amino acid sequences, the
reader may wish to consider BLAST®1,2 and the SAS macro previously presented3,4 noting that an
updated version of MAC_U_BLAST is available upon request.

 Appendix 1 presents MAC_R_LONG_COMPARE and invoking the HELP option of
MAC_R_LONG_COMPARE results in a short description of the macro in the log:

%mac_r_long_compare

 (help = Y) ;

Purpose of program: This macro displays values of mismatching variables that cannot be

 displayed fully by the COMPARE procedure output due to truncation.

Macro Parameter Description

_________________ ___

data = Name of the base data set.

comp = Name of the compare data set.

out = Name of the output data set.

 Default: __lc

var = Variable to compare.

id = ID variables.

id_rows = Whether to put one ID variable per row.

 Default: N

where = Where clause.

 Default: 1

differences = Whether to use a bar/hyphen to emphasize differences.

 Default: N

transpose = The threshold of the length to transpose the values.

 Default: 256

format = The format to display the values when not transposed.

 Default: %str()

byte_format = The format to display the individual bytes of the values when transposed.

 Default: $char1.

both_formats = When transposed and a HEXw. format is used, whether to display both the

 values with a HEXw. format and with a $CHAR1. format.

 Default: Y

file = The path and filename to FILE (write) the results (discrepancies).

 Default: %str()

End of help

Display 3 presents two calls of MAC_R_LONG_COMPARE and their respective output for what should
be the two most frequent uses of it. Note that the entire value of ID2 is displayed, i.e. no truncation, in
contrast to the COMPARE results in Display 2 (line 60). Given that the most likely ID variables will be the
keys of the SDTM domain or ADaM data sets, and thus could be five or more variables, some with long
values, i.e., USUBJID, PARAM, VISIT, displaying each variable-value pair on its own row might be
preferred (right panels of Display 3).

6

%mac_r_long_compare

 (data = one

 , comp = two

 , var = x

 , id = id1

 id2

) ;

%mac_r_long_compare

 (data = one

 , comp = two

 , var = x

 , id = id1

 id2

 , id_rows = Y

) ;

id1=1 id2=LONG INDENTIFICATION A

8

9

id1=1

id2=LONG INDENTIFICATION A

8

9

Display 3. Two typical uses of MAC_R_LONG_COMPARE.

Another use of MAC_R_LONG_COMPARE is to elucidate values that appear to match in the output but
one or both have one or more leading spaces. The presence of leading spaces may be obvious, but the
number of leading spaces is not readily discernable. The following two data steps and COMPARE
procedure produces the subset of the output in Display 4:

data three ;

 length x $ 30 ;

 x = " 9 (10)" ;

 id1 = 1 ;

 id2 = "LONG INDENTIFICATION A" ;

 output ;

 x = " 18 (20)" ;

 id1 = 2 ;

 id2 = "LONG INDENTIFICATION B" ;

 output ;

run ;

data four ;

 length x $ 30 ;

 x = " 9 (10)" ;

 id1 = 1 ;

 id2 = "LONG INDENTIFICATION A" ;

 output ;

 x = " 18 (20)" ;

 id1 = 2 ;

 id2 = "LONG INDENTIFICATION B" ;

 output ;

run ;

proc compare

 data = three

 comp = four

 listall

 ;

 id id1

 id2

 ;

run ;

Value Comparison Results for Variables

 || Base Value Compare Value

 id1 id2 || x x

 _______ ____________________ || ___________________+ ___________________+

 ||

 1 LONG INDENTIFICATION || 9 (10) 9 (10)

 2 LONG INDENTIFICATION || 18 (20) 18 (20)

Display 4. Partial COMPARE output demonstrating leading spaces mismatches.

7

Depending on where the mismatching observations occur in the list, one may not discern a leading space
or two. With some experience, when one cannot see the mismatching characters, one suspects leading
spaces, especially for VALDS’s in which a programmer may use leading spaces to format the output
(PDF/RTF) or fail to use LEFT() or STRIP() when converting a numeric variable to its character version.
One manual approach would be to open the data set in the SAS Explorer in an interactive session, find
the observation(s) of interest, copy the value and paste it to an editor. One may need to manually
increase the width of the variable in the SAS Explorer to see the entire value (and potential leading
spaces); the next section discusses this is in more detail. Display 5 demonstrates a quicker approach
using MAC_R_LONG_COMPARE.

%mac_r_long_compare

 (data = three

 , comp = four

 , var = x

 , id = id1

 id2

) ;

%mac_r_long_compare

 (data = three

 , comp = four

 , var = x

 , id = id1

 id2

 , differences = Y

) ;

id1=1 id2=LONG INDENTIFICATION A

 9 (10)

 9 (10)

id1=2 id2=LONG INDENTIFICATION B

 18 (20)

 18 (20)

id1=1 id2=LONG INDENTIFICATION A

 9 (10)

 |||||||

 9 (10)

id1=2 id2=LONG INDENTIFICATION B

 18 (20)

 ||||||||

 18 (20)

Display 5. MAC_R_LONG_COMARE output demonstrating leading spaces mismatches.

The limitation of this approach is that one may still need to count the number of spaces by placing the
cursor in column one and moving it using the right arrow key. That these values differ by one leading
space is readily obvious from this output, however. Using the value of 0 (zero) for the macro parameter
TRANSPOSE forces the display to be transposed, that is, to be displayed byte-by-byte across the rows of
the log (or file). Display 6 demonstrates this effect with the number of leading spaces being easily read
from the row number.

8

%mac_r_long_compare

 (data = three

 , comp = four

 , var = x

 , id = id1

 id2

 , transpose = 0

) ;

%mac_r_long_compare

 (data = three

 , comp = four

 , var = x

 , id = id1

 id2

 , differences = Y

 , transpose = 0

) ;

id1=1 id2=LONG INDENTIFICATION A

1

2

3

4 9

5 9

6 (

7 (1

8 1 0

9 0)

10)

id1=2 id2=LONG INDENTIFICATION B

1

2

3 1

4 1 8

5 8

6 (

7 (2

8 2 0

9 0)

10)

id1=1 id2=LONG INDENTIFICATION A

1

2

3

4 - 9

5 9 -

6 - (

7 (- 1

8 1 - 0

9 0 -)

10) -

id1=2 id2=LONG INDENTIFICATION B

1

2

3 - 1

4 1 - 8

5 8 -

6 - (

7 (- 2

8 2 - 0

9 0 -)

10) -

Display 6. MAC_R_LONG_COMPARE output demonstrating leading spaces mismatches.

Another scourge of validation using the COMPARE procedure is the presence of non-printable
characters. The following two data steps and COMPARE procedure produces the subset of the output in
Display 7:

data five ;

length x $ 4 ;

 x = cat("ab"

 , "0A"x

 , "c"

) ;

 id1 = 1 ;

 id2 = "LONG INDENTIFICATION A" ;

run ;

data six ;

 x = "abc" ;

 id1 = 1 ;

 id2 = "LONG INDENTIFICATION A" ;

run ;

proc compare

 data = five

 comp = six

 listall

 ;

run ;

9

Variables with Unequal Values

Variable Type Len1 Len2 Ndif MaxDif

x CHAR 4 3 1

Value Comparison Results for Variables

__

 || Base Value Compare Value

 Obs || x x

 ________ || ____ ___

 ||

 1 || abc abc

__

Display 7. Partial COMPARE output demonstrating a mismatch due to non-printable characters.

A keen eye might have noted the LENGTH statement in the data step that created data set FIVE and the
difference between LEN1 and LEN2 in the COMPARE results, but that is likely an artifact of this contrived
example; also including that LENGTH statement in the data step that created data set SIX would not
affect this example. Further in independent Validation, one does not view the code or log of the peer
program. While the Validation Plan and/or applicable SOP/WI might require a match on the lengths of
variables, one can conclude that other values of X in data set FIVE could not have been length four
because that would obviously create more mismatches since no value of X in data set SIX could have
been length four, ignoring the fact that both data sets contain but one observation for this example.
Those who have experienced this extreme consternation (and the pressure it creates with regards to
deadlines), may have resorted to examining the hexadecimal representation of the values, and
reasonably display them byte-by-byte using a DO-LOOP and SUBSTR(). This is the approach used to
create the output in Display 8.

%mac_r_long_compare

 (data = five

 , comp = six

 , var = x

 , id = id1

 id2

 , differences = Y

 , transpose = 0

 , byte_format = hex.

 , both_formats = N

) ;

%mac_r_long_compare

 (data = five

 , comp = six

 , var = x

 , id = id1

 id2

 , differences = Y

 , transpose = 0

 , byte_format = hex.

) ;

id1=1 id2=LONG INDENTIFICATION A

1 61 61

2 62 62

3 0A - 63

4 63 - 20

id1=1 id2=LONG INDENTIFICATION A

1 a 61 61 a

2 b 62 62 b

3 0A - 63 c

4 c 63 - 20

Display 8. A side-by-side comparison of a byte-by-byte display of the hexadecimal
representation of each character.

From this output, it is easy to see that the values mismatches starting at byte 3. The mismatch is even
more obvious in the bottom right panel of Display 8 because of the “deformity” caused by the spacing
when the original values are also displayed. "0A"x is, again, “0 length”. The values in Display 7 both
appear to be “abc”, but note that the Compare Value is offset one byte to the left of the variable x and the
underline (both of the latter start under the “o” of Compare, but “a” of “abc” starts under the “C” of

10

“Compare”. Note that if one copies the value from the log or from the data set opened in the SAS
Explorer and pastes it to the SAS Enhanced Editor, the “c” of “abc” will be on the next line:

ab

c

which is expected since "0A"x is the line feed byte. One could (re)write the macro to COMPRESS(), for
instance, the non-printable character using the third argument “KW” (Keep Written), to avoid the
deformity, but the emphasis is appealing to the author and his eyes and one can copy the value origin
byte from the log, which has some other utilities.
 Another issue with the output in the bottom panels of Display 8 might catch a keen eye. The
length of the variable X is 3 (three) bytes in data set SIX. Why does the sequence of bytes show that the
fourth value is "20"x, a space (a byte, that does not exist in the value)? Would not displaying no value be
a better representation? Indeed, but this is supposed to be a “quick and dirty” macro, a service macro.
The discussion of the code below will elucidate the cause and provide a justification of the reason. Under
no circumstances would this macro be used in Production (formal) execution or be part of a final
Validation program, but it should be retained in a (dated) DUT/UAT program, especially for the astute
Validation programmer who retains such programs as alternative or supplemental documentation to the
Validation process beyond an issue tracker. Note that upon correction of the issue(s) that created a value
with non-printable characters, Validation becomes more rapid, but the DUT/UAT program/code
investigating mismatches can be “versioned” to document the original issue and it can be re-used for the
next tasks.

MAC_R_LEAD_SPACES

Appendix 2 presents the macro, MAC_R_LEAD_SPACES, which displays any value with a leading
space after replacing spaces with underscores and, optionally, removes those leading spaces with the
STRIP() function. The following call demonstrates a macro using data set THREE above:

%mac_r_lead_spaces

 (ds = three) ;

The SAS log shows that two values of the variable X have leading spaces:

x ____9_(10)____________________

x ___18_(20)____________________

For the purposes of investigation, one might wished to COMPARE the values of two data sets without leading
spaces. In that case, one can use the macro parameter REMOVE= and OUT= as follows:

%mac_r_lead_spaces

 (ds = three

 , out = tres

 , remove = Y

 , list = N

) ;

proc compare

 data = three

 comp = tres

 listall

 ;

 id id1

 id2

 ;

run ;

11

 || Base Value Compare Value

 id1 id2 || x x

 _______ ____________________ || ___________________+ ___________________+

 ||

 1 LONG INDENTIFICATION || 9 (10) 9 (10)

 2 LONG INDENTIFICATION || 18 (20) 18 (20)

The Validation programmer certainly would not want to modify a permanent data set or file created by the
Main programmer but using the macro to output a new (temporary) data set for investigational purposes
in a non-production program could be informative. In this case, following whatever processes the
Validation plan, SOPs, and WIs instruct, the Validation programmer could update the issue tracker and
send an email to the Production programmer that informally, i.e., in a non-production (unofficial) run, a
match occurs on the values without leading spaces and request either that the Production programmer
report the algorithm that decides how many leading spaces a value should have or that the leading
spaces be removed and to re-submit the Production program for another cycle of Validation.

INCLUDING FORMATTING IN VALUES

To increase the accuracy of Validation and to expedite the process, creating values of variables that are
the minimal complexity with the maximum clarity is essential. The author presented a poster5 describing
the structure (variable names, order, labels, types, and formats) of a standardized VALDS for Table and
Listings programs. The code in Appendix 3 presents a data step and REPORT procedure to achieve
indentation, for instance, the row labels, like “Female”, under section headers, like “Sex n(%)”, are
typically indented. Using actual leading spaces can lead to problems and not only in Validation, but also
in formatting of the output (PDF/RTF file), for instance, if the width of the column needs to be shorted or
the value wraps due to the width of the column.

 Display 9 presents the data set, INDENT, created by the data step in lines 1-64 of Appendix 3.
Even though more involved than manually type leading spaces, if one may prefer to use the SAS
function REPEAT(), on line 38, since one can explicitly see how many spaces were inserted. In this data
set, one can see that the value of COLUMN_1 in observation 3 has leading spaces, if one expands the
length of the column in the SAS Explorer (as the author did for Display 9).

 Display 9. The data set INDENT created by the data step in Appendix 3.

The value of ROW_1 of observation 4 demonstrates the complexity of adding inline formatting to a value
and that the length of the variable needs to be much greater than its intended display length. Note that
the lengths of character variables in the proposed standardized VALDS5 are 200 by default, since this is
the CDISC and Version 5 SAS Transport file (.xpt) maximum.

 Display 10 present the PDF output of this code. Note that both the Style INDENT and leading
spaces approach will not likely create acceptable wrapping of long text. The Style LEFTMARGIN,
however, insures that any text that wraps is also properly indented. Both values subject to formatting by
the REPORT procedure do not have leading spaces. Instead, the code in the COMPUTE block on lines
118-131 achieves the selective formatting and was demonstrated by Cynthia Zender6 on SAS
Communities.

12

 Display 10. The PDF output created by the REPORT procedure in Appendix 3.

MAC_R_LONG_COMPARE CODE

The macro is standard fare. Lines 99-141 create a SQL procedure that creates a data set containing
observations with mismatching values in the variable of interest via an inner join of observations that
match on the ID variables. If this data set contains observations, then the macro determines the type
(char or num) of the variable from the SASHELP.VCOLUMN view (lines 147-161). If that variable is
character, it then determines the maximum length of the values (lines 166-172). The remainder of the
macro creates a data step to display the mismatching values for the given ID variables values.

 Of note, instead of using column pointers, i.e. “@10” for each item, the columns are determined
by the +n pointer. With slight effort, if desired, that can be changed so that the “deformity” discussed
above can be rectified. Reading the output programmatically might be one reason to make the change.

 The use of regular expressions is worth explaining, for example on line 221:

%sysfunc(prxchange(s/([_a-z][_a-z0-9]{0,31})/$1=/i , -1 , &id.))

The first argument is a substitution with the “/” delimiter: “s///”. The pattern “[_a-z][_a-z0-9]{0,31}” is
within a grouping (). If a string in the value matches that pattern, then that string is retained in memory.
The value in the second part of the substitution is what is substituted. In this case $1 refer to the first
(and only) grouping. So the result returned by that code is that string followed by an equal sign. The
pattern is by bytes, “[_a-z]” matches one byte that is either an underscore or a letter. In this case the “i”
following “s///” directs that match to be case insensitive, so “a” or “A”. The “[_a-z0-9]” extends this match
to include the characters 0-9 (character versions of digits). The “{0,31}” following that pattern instructs the
regular expression engine to match 0 to 31 bytes following the first byte. Take in total, these are the rules
for a SAS variable as invoked by the SAS System Option VALIDVARNAME = V7. Note that the need for
quoting is obviated since it is macro code. In SAS code, this would be:

prxchange("s/([_a-z][_a-z0-9]{0,31})/$1=/i"

 , -1

 , "&id."

)

Such formatting of one argument per line allows one to more easily see the arguments, but it is also very
good for 1) debugging or experimenting since the arguments can be more easily commented out using a
block comment (Ctrl-/ and Shift-Ctrl-/) and 2) written by a program (that will be subsequently assigned to a
human programmer for fine tuning and approval). The second argument, “-1”, instructs the regular
expression engine to repeat the pattern substitution indefinitely.

Another viable way to write this is using the “#” delimiter: “s###”. When the target or substitution
text contains “/”, this may be easier to code (and read):

13

1 data _null_ ;

2

3 x = "1/2" ;

4

5 y = prxchange("s/\// divided by /" , 1 , x) ;

6 z = prxchange("s#/# divided by #" , 1 , x) ;

7

8 put x / y / z ;

9

10 run ;

1/2

1 divided by 2

1 divided by 2

NOTE: DATA statement used (Total process time):

 real time 0.20 seconds

 cpu time 0.01 seconds

Note the need to escape the “/” when it is the delimiter of the substitution or match, i.e., “s///”, but not
when the delimiter is “#”, i.e., “s###”.

 Finally, on lines 222-226, the PRXCHANGE() is worth explaining. The third argument is also a to
this PRXCHANGE() call is also a PRXCHANGE() call. The following code demonstrates:

%let id = id1

 id2

 ;

%put %sysfunc(prxchange(s/([_a-z][_a-z0-9]{0,31})/$1=\//i , -1 , &id.)) ;

id1=/ id2=/

%put %sysfunc(prxchange(s/\/$//

 , 1

 , %sysfunc(prxchange(s/([_a-z][_a-z0-9]{0,31})/$1=\//i , -1 , &id.))

)

) ;

id1=/ id2=

The inner PRXCHANGE() appends an “=/” to each variable in the list of variables provided in the ID=
macro parameter variable. The outer PRXCHANGE() removes the “/” if it is the last byte in the string,
indicated by “$” in the pattern. Effectively, substitution removes the “/” from the last variable in that list
and only from that variable.

CONCLUSION

Validation is a central, indispensable task in clinical trial programming that can be a bottleneck in the
delivery process. The SAS COMPARE procedure is an essential tool in Validation when the SAS System
is used. When values of the ID variables, variables being compared, or both are long, their values in the
COMPARE output (.lst) may be truncated, complicating either the identification of the observation (in the
case of ID variables) or the nature of the mismatch (in the case of the compared variable) and hampering
subsequent investigations into the origins of the mismatch. In fact, despite being in the COMPARE out
because the value of compared variable mismatched, the values may appear to match when the
mismatch occurs “downstream” of the point of truncation.

 This paper contributes to the accuracy and expeditiousness of Validation by presenting two
macros to aid the programmers in identification of observations that mismatch on the variable of concern.
MAC_R_LONG_COMPARE matches observations from two data sets on ID variables, but mismatch on
the variable of interest and displays the full values of those variables rapidly, with minimal coding. The

14

paper demonstrated how to use the macro when the long values of the variables were truncated in the
COMPARE results; such results can either show the pattern or can be used for further investigations.
The paper demonstrated mismatches due to varying numbers of leading spaces, often used to achieve
desired formatting in the TFL output (PDF/RTF) files and showed how to use the macros to investigate
and determine the number of leading spaces without manually counting. In contrast to a method such as

Length(X) - Length(Left(X))

the macro quantitates and visualizes the leading spaces. The paper demonstrated how to
MAC_R_LONG_COMPARE if non-printable characters were “embedded”, but hard to see or identify,
allowing the user to see the hexadecimal and original value in a byte-by-byte display.

The macro MAC_R_LEAD_SPACES displays values with leading spaces and the variables to
which they pertain from a single data set. Seeing multiple variable/value pairs in one frame with a clearly
defined starting point may assist the programmer in inferring a pattern, if any. Optionally,
MAC_R_LEAD_SPACES can remove leading spaces so that an informal comparison of values without
leading spaces can inform the programmers or guide further investigations if leading spaces are not the
cause of mismatches. Usually, once the programmers know that the values without leading spaces
match, arriving at the same algorithm to independently insert the same number of leading spaces occurs
rapidly.

 Finally, the paper contributes to an important discussion of whether values (in VALDS’s) should contain
modifications to achieve formatting in TFL output or whether a more parsimonious approach would be to
use programming logic in the REPORT procedure to achieve the desired formatting. The paper
demonstrated indentation or changes to the “left margin”, but this could easily be adopted to other
attributes or paging, for instance, changing font or background color or font emphasis (bold or italics, for
instance). Substantially, some modifications may be distinct to a given programming language, package,
or output destination, but “raw” values should be invariant, i.e., programming language-agnostic, for
instance.

The macros and code in this paper are provided “as is”. The author and his employers assume no
responsibility for their use, but do appreciate notification of errors, bugs, corrections, or suggestions.

REFERENCES
1 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct
5;215(3):403-10. doi: 10.1016/S0022-2836(05)80360-2. PMID: 2231712.

2 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and
applications. BMC Bioinformatics. 2009 Dec 15;10:421. doi: 10.1186/1471-2105-10-421. PMID: 20003500; PMCID:
PMC2803857.

3 Viel, K. 2012. "Using the SAS System as a bioinformatics tool: a macro that calls the standalone Basic Local
Alignment Search Tool (BLAST) setup." Proceedings of the PharmaSUG 2012 Conference, San Francisco, CA:
PharmaSUG. https://www.pharmasug.org/proceedings/2012/HO/PharmaSUG-2012-HO07.pdf

4 Viel, K. 2022. "Using the SAS System® with the National Center for Biotechnology Information resources and
Immune Epitope Database to explore the realm of potential SARS-CoV-2 variants." Proceedings of the PharmaSUG
2022 Conference, Austin, TX: PharmaSUG. https://www.pharmasug.org/proceedings/2022/AD/PharmaSUG-2022-
AD-167.pdf

5 KRV Holder, PHUSE Connect 2023, Orlando, FL.

6 SAS Communities. Zender, Cynthia (Cynthia_sas). “Re: ODS PDF/RTF and the REPORT procedure: break on space

not word.” 01-29-2017 04:14 PM. Available at https://communities.sas.com/t5/ODS-and-Base-Reporting/ODS-PDF-
RTF-and-the-REPORT-procedure-break-on-space-not-word/m-p/328300#M17819.

https://www.pharmasug.org/proceedings/2012/HO/PharmaSUG-2012-HO07.pdf
https://www.pharmasug.org/proceedings/2022/AD/PharmaSUG-2022-AD-167.pdf
https://www.pharmasug.org/proceedings/2022/AD/PharmaSUG-2022-AD-167.pdf

15

RECOMMENDED READING

SAS® 9– Perl Regular Expressions Tip Sheet

https://support.sas.com/rnd/base/datastep/perl_regexp/regexp-tip-sheet.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Kevin R. Viel, Ph.D.

Navitas Data Sciences
kevin.viel@navitaslifesciences.com
www.navitasdatasciences.com

Histonis, Incorporated
kviel@histonis.org

Any brand and product names are trademarks of their respective companies.

APPENDIX

Appendix 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

%macro mac_r_long_compare

 (data =

 , comp =

 , out = __lc

 , var =

 , id =

 , id_rows = N

 , where = 1

 , differences = N

 , transpose = 256

 , format = %str()

 , byte_format = $char1.

 , both_formats = Y

 , file = %str()

 , help = N

) ;

 %if &help. = Y

 %then

 %do ;

 %put ___ ;

 %put Purpose of program: This macro displays values of mismatching variables that cannot be ;

 %put %str() displayed fully by the COMPARE procedure output due to truncation. ;

 skip ;

 %put Macro Parameter Description ;

 %put _________________ ___ ;

 %put data = Name of the base data set. ;

 %put comp = Name of the compare data set. ;

 %put out = Name of the output data set. ;

 %put %str()Default: __lc ;

 %put var = Variable to compare. ;

 %put id = ID variables. ;

 %put id_rows = Whether to put one ID variable per row. ;

 %put %str()Default: N ;

 %put where = Where clause. ;

 %put %str()Default: 1 ;

 %put differences = Whether to use a bar/hyphen to emphasize differences. ;

 %put %str()Default: N ;

 %put transpose = The threshold of the length to transpose the values. ;

 %put %str()Default: 256 ;

 %put format = The format to display the values when not transposed. ;

 %put %str()Default: %nrstr(%%)str() ;

 %put byte_format = The format to display the individual bytes of the values when transposed. ;

 %put %str()Default: $char1. ;

 %put both_formats = When transposed and a HEXw. format is used, whether to display both the ;

 %put %str()values with a HEXw. format and with a $CHAR1. format. ;

 %put %str()Default: Y ;

mailto:kevin.viel@navitaslifesciences.com
http://www.navitasdatasciences.com/
mailto:kviel@histonis.org

16

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

 %put file = The path and filename to FILE (write) the results (discrepancies). ;

 %put %str()Default: %nrstr(%%)str() ;

 skip ;

 %put ___ ;

 %put End of help ;

 %goto __END ;

 %end ;

 proc sql ;

 create table &out. as

 select a.&var. as v1

 , b.&var. as v2

 %let i = 1 ;

 %let d = %scan(&id. , &i. , %str()) ;

 %do %while (&d. ne) ;

 , a.&d.

 %let i = %eval(&i. + 1) ;

 %let d = %scan(&id. , &i. , %str()) ;

 %end ;

 from &data. as a

 , &comp. as b

 where %let i = 1 ;

 %let d = %scan(&id. , &i. , %str()) ;

 %do %while (&d. ne) ;

 %if &i. > 1 %then and ;

 a.&d. = b.&d.

 %let i = %eval(&i. + 1) ;

 %let d = %scan(&id. , &i. , %str()) ;

 %end ;

 and a.&var. ne b.&var.

 and &where.

 order by %let i = 1 ;

 %let d = %scan(&id. , &i. , %str()) ;

 %do %while (&d. ne) ;

 %if &i. > 1 %then , ;

 a.&d.

 %let i = %eval(&i. + 1) ;

 %let d = %scan(&id. , &i. , %str()) ;

 %end ;

 ;

 quit ;

 %if &sqlobs. > 0

 %then

 %do ;

 proc sql

 noprint ;

 select type

 into : type

 from sashelp.vcolumn

 where %if %sysfunc(index(&out. , .))

 %then upcase(libname) = "%sysfunc(upcase(%sysfunc(scan(&out. , 1 , .))))"

 and upcase(memname) = "%sysfunc(upcase(%sysfunc(scan(&out. , 2 , .))))"

 ;

 %else upcase(libname) = "WORK"

 and upcase(memname) = "%sysfunc(upcase(&out.))"

 ;

 and upcase(name) = "V1"

 ;

 quit ;

 %if &type. = char

 %then

 %do ;

 proc sql

 noprint ;

 select strip(put(max(length(v1)) max max(length(v2)) , 8.0))

 into : length separated by ""

 from &out.

 ;

 quit ;

 %if &format. = %str()

 %then %let format = $char&length.. ;

 %end ;

 %else %let length = ;

 data _null_ ;

 %if %nrbquote(&file.) ne %str()

 %then file "&file." %str(;) ;

 set &out. ;

17

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

 if _n_ > 1 then put / ;

 %if &differences. = Y

 and &type. = char

 %then

 %do ;

 length diff $ &length.

 byte $ 1

 ;

 diff = " " ;

 l1 = length(v1) ;

 l2 = length(v2) ;

 min = min(l1 , l2) ;

 max = max(l1 , l2) ;

 do _n_ = 1 to min ;

 if substr(v1 , _n_ , 1) = substr(v2 , _n_ , 1)

 then byte = " " ;

 else byte = "|" ;

 substr(diff , _n_ , 1) = byte ;

 end ;

 if l1 ne l2

 then substr(diff , min + 1 , max - min) = repeat("|" , max - min - 1) ;

 %end ;

 %if &type. ne char

 or &length. <= &transpose.

 %then

 %do ;

 put %if &id_rows. = N %then %sysfunc(prxchange(s/([_a-z][_a-z0-9]{0,31})/$1=/i , -1 , &id.)) ;

 %else %sysfunc(prxchange(s/\/$//

 , 1

 , %sysfunc(prxchange(s/([_a-z][_a-z0-9]{0,31})/$1=\//i , -1 , &id.))

)

) ;

 / v1 %if &type. = char %then &format. ;

 %if &differences. = Y

 and &type. = char

 %then / diff &format. ;

 / v2 %if &type. = char %then &format. ;

 ;

 %end ;

 %else

 %do ;

 length v1_byte

 %if &differences. = Y

 and &type. = char

 %then diff_byte ;

 v2_byte $ 1

 ;

 put %sysfunc(prxchange(s/([_a-z][_a-z0-9]{0,31})/$1=/i , -1 , &id.)) ;

 do _n_ = 1 to &length. ;

 if _n_ <= length(v1) then v1_byte = substr(v1 , _n_ , 1) ;

 else v1_byte = " " ;

 %if &differences. = Y

 and &type. = char

 %then

 %do ;

 diff_byte = substr(diff , _n_ , 1) ;

 if diff_byte = "|" then diff_byte = "-" ;

 %end ;

 if _n_ <= length(v2) then v2_byte = substr(v2 , _n_ , 1) ;

 else v2_byte = " " ;

 put _n_

 %if %sysfunc(prxmatch(/^hex/i , &byte_format.))

 and &both_formats. = Y

 %then @10 v1_byte $char1. +2 v1_byte &byte_format. ;

 %else @10 v1_byte &byte_format. ;

 %if %sysfunc(prxmatch(/^\$char1\./i , &byte_format.))

 and &differences. = N

 %then +1 ;

 %if &differences. = Y

 and &type. = char

 %then

 %do ;

 +1 diff_byte

18

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

 %end ;

 %if %sysfunc(prxmatch(/^hex/i , &byte_format.))

 and &both_formats. = Y

 %then v2_byte &byte_format. +2 v2_byte $char1. ;

 %else v2_byte &byte_format. ;

 ;

 end ;

 %end ;

 run ;

 %end ; /* END OF sqlobs > 0 */

 %else %put A%str(LERT:) No qualifying observations. ;

 %__END:

%mend mac_r_long_compare ;

Appendix 2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

%macro mac_r_lead_spaces

 (ds =

 , out = _null_

 , remove = N

 , list = Y

) ;

 data &out. ;

 set &ds. ;

 array __c(*) $ _character_ ;

 do _n_ = 1 to dim(__c) ;

 %if %sysfunc(prxmatch(/Y|YES/i , &list.)) > 0

 %then

 %do ;

 if __c(_n_) ne strip(__c(_n_))

 then

 do ;

 __t = translate(__c(_n_) , "_" , " ") ;

 __v = vname(__c(_n_)) ;

 put @1 __v

 @35 __t

 ;

 %if %sysfunc(prxmatch(/Y|YES/i , &remove.)) > 0 %then __c(_n_) = strip(__c(_n_)) %str(;) ;

 end ;

 %end ;

 %else %if %sysfunc(prxmatch(/Y|YES/i , &remove.)) > 0

 %then __c(_n_) = strip(__c(_n_)) %str(;) ;

 end ;

 run ;

%mend mac_r_lead_spaces ;

19

Appendix 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

data indent ;

 length row_1

 column_1 $ 200

 ;

 /********/

 row_order_1 = 1 ;

 row_1 = "Plain" ;

 column_1 = " " ;

 do _n_ = 1 to 9 ;

 column_1 = cats(column_1

 , "----+----"

 , put(_n_ , 1.)

) ;

 end ;

 output ;

 /********/

 row_order_1 + 1 ;

 row_1 = "Indent: style = { indent = 4% }" ;

 column_1 = " " ;

 do _n_ = 1 to 9 ;

 column_1 = cats(column_1

 , "----+----"

 , put(_n_ , 1.)

) ;

 end ;

 output ;

 /********/

 row_order_1 + 1 ;

 row_1 = "5 Leading spaces in value" ;

 /* The REPEAT function, though cumbersome, makes the number obvious:

 note that it creates one more replicate than the (non-negative

 integer) second argument.

 */

 column_1 = cat(repeat(" "

 , 4

)

 , "----+----1"

) ;

 do _n_ = 2 to 9 ;

 column_1 = cat(trim(column_1)

 , "----+----"

 , put(_n_ , 1.)

) ;

 end ;

 output ;

 /********/

 row_order_1 + 1 ;

 row_1 = "`{style [textdecoration = underline]Left Margin}: `{style [fontweight = medium color = black]style =

`{unicode 007B} leftmargin = 4% `{unicode 007D}}" ;

 column_1 = " " ;

 do _n_ = 1 to 9 ;

 column_1 = cats(column_1

 , "----+----"

 , put(_n_ , 1.)

) ;

 end ;

 output ;

run ;

%m_r_lead_spaces

 (ds = indent) ;

ods escapechar = "`" ;

/************************************/

ods pdf

 file = "%sysfunc(getoption(SASUSER))\%trim(%scan(%sysget(sas_execfilename) , 1 , .)).pdf"

 ;

ods listing close ;

ods noresults ;

title1 'Only row_1 = "5 Leading spaces in value" affects the value of ROW_1' ;

title2 'Left margin is preferable, if the text might wrap, since the wrapped text is "properly" aligned' ;

proc report

 data = indent ;

 column row_order_1

 row_1

 column_1

 ;

 define row_order_1

 / order

 noprint

 ;

20

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

 define row_1

 / order

 style (column) = { cellwidth = 45% }

 ;

 define column_1

 / order

 style (column) = { cellwidth = 50%

 asis = on

 }

 ;

 compute row_1 ;

 if row_order_1 = 4

 then call define (_col_

 , "style"

 , "style = { color = green

 fontweight = bold

 }"

) ;

 endcomp ;

 compute column_1 ;

 if row_order_1 = 2

 then call define (_col_

 , "style"

 , "style = { indent = 4% }"

) ;

 else if row_order_1 = 4

 then call define (_col_

 , "style"

 , "style = { leftmargin = 4% }"

) ;

 endcomp ;

run ;

ods pdf close ;

ods listing ;

ods results ;

