

1

PharmaSUG 2023 - Paper QT-100

With a View to Make Your Metadata Function(al):

Exploring the FMTINFO() Function

Louise S. Hadden, Abt Associates Inc.

ABSTRACT

Many SAS® programmers are accustomed to using SAS metadata on SAS data stores and processes to

enhance their coding and promote data driven processing. SAS metadata is most frequently accessed

through SAS “V” functions, SAS View tables, and dictionary tables. Information can be gained regarding

SAS data stores and drilling down, attributes of columns in data files. However, few programmers are

aware of SAS’s similar resources and capabilities with respect to SAS formats. This quick tip will briefly

discuss how SAS metadata may be exploited in general, and will demonstrate how to use the FMTINFO()

function specifically.

INTRODUCTION

SAS practitioners are accustomed to using PROC FORMAT to transform variables into an enhanced or

aggregated version of the original schemas, via an assigned format used in a SAS procedure, through the

use of put statements, and other intriguing uses, but there is so much more to this venerable SAS

procedure.

• SAS formats may be created via text entry or from a data table via PROC FORMAT CNTLIN.

• SAS formats may be stored in specialized catalogs (work or permanent), exported to Excel

workbooks, or SAS datasets via PROC FORMAT CNTLOUT.

• SAS formats may be used for data cleaning, reporting, subsetting observations, and to match

data without merge/hash/SQL join.

• SAS format catalogs can be modified via PROC CATALOG.

• SAS format catalogs converted to SAS data sets may be compared using PROC COMPARE when

sorted by format name and start variables.

• Use PROC FORMAT FMTLIB, PROC CATALOG, SAS Dictionary files, SAS views, and the FMTINFO()

function to obtain information about SAS formats.

This paper and presentation will focus on reporting information available through SAS metadata and SAS

procedures regarding SAS formats, including the use of the relatively unknown FMTINFO() function. The

content is useful for all SAS users.

ANATOMY OF A FORMAT

According to the SAS documentation, a SAS format is a type of SAS language element that applies a

pattern to or executes instructions for a data value to be displayed or written as output. Types of formats

correspond to the type of data element: for example, numeric, character, date, time, etc. Users can also

define their own formats. The bare minimum of variables that define a format are: format name (up to

32 characters), start (start of a range or value), and varlabel (value label). Other variables include hlo

(high, low, other), sexcl (exclude the start of a range), eexcl (exclude the end of a range), decimal

information, length, etc.

2

HOW DO FORMATS WORK?

The best way to figure out how formats work is to create, and then analyze them. A small data set with

the special dates is created and explored to see how a more complex format looks in various forms. The

same technique can be used to look at ranges. What we are trying to achieve is an input data set which

looks like what SAS expects under all conditions. In the example below custom date formats are being

created.

data temp;

 d1='01jan1900'd; d2='01jan1960'd; d3=today(); d4='01jan1940'd;

run;

proc print data=temp;

run;

proc print data=temp;

format d1 d2 d3 d4 mmddyy10.;

run;

proc format fmtlib;

 value foo '01jan1900'd='Invalid'

 '01jan1940'd='Still in'

 '01jan1960'd='SAS zero'

 other=[mmddyy10.];

run;

proc print data=temp;

format d1 d2 d3 d4 foo.;

run;

proc format cntlout=foo2;

run;

proc print data=foo2;

run;

Below we see the number representation of the special dates, followed by their formatted version (SAS

data format), followed by our user-defined format.

Obs d1 d2 d3 d4

 1 -21914 0 22475 -7305

Obs d1 d2 d3 d4

 1 01/01/1900 01/01/1960 07/14/2021 01/01/1940

Obs d1 d2 d3 d4

 1 Invalid SAS zero 07/14/2021 Still in

Below follows the result of using the FMTLIB in the PROC FORMAT creation step, showing how SAS

represents the special date format in printed form. Note the other – this is a nested format indicating

that any “other” dates should appear in MMDDYY10. format. You can use any SAS-supplied or user-

created format as long as the program has access to where the format is stored.

3

--

| FORMAT NAME: FOO LENGTH: 10 NUMBER OF VALUES: 4 |

| MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH: 10 FUZZ: STD |

|--|

|START |END |LABEL (VER. V7|V8 14JUL2021:13:08:59)|

|----------------+----------------+--|

| -21914| -21914|Invalid |

| -7305| -7305|Still in |

| 0| 0|SAS zero |

|**OTHER** |**OTHER** |[MMDDYY10.] |

--

PROC FORMAT CNTLOUT produces a SAS data set from a format catalog file, which produces yet another

vision of the same format. It is this version that we need to reproduce in order to use metadata to create

format catalogs.

USING PROC FORMAT CNTLIN

A SAS data set is created from an Excel data dictionary import file, making adjustments to conform to

SAS’ requirements for CNTLIN data sets.

PROC FORMAT CNTLIN is then used to create a SAS format catalog from a SAS data set.

proc format library=library.personformats cntlin=personformats_&procmo

fmtlib ;

run;

4

The FMTLIB option prints out the resulting SAS data set. Note that the start values are SAS date values,

except for the **OTHER** row, which nests an existing SAS date format. The HLO variable flags this with

OF – Other Format.

MODIFYING FORMATS

The code snippet show below demonstrates how to modify a format by adding a description, and then

lists the contents of the format catalog. Note that PROC CATALOG is the only way to add a description to

a format, as PROC FORMAT (one of the earliest SAS procedures written) does not have a LABEL or

DESCRIPTION option. This functionality was added to the PROC CATALOG procedures.

PROC CATALOG

CATALOG = LIBRARY.Compendium2011Res ET=FORMAT ;

MODIFY ANTIPSYCHF

(DESCRIPTION = "Legend labels for map [Antipsych]") ;

CONTENTS;

5

RUN ;

QUIT;

The PROC CATALOG listing shows the entry name, type, dates, and description of the format.

SAS DICTIONARY FILES, VIEWS, AND “V” FUNCTIONS

SAS has several sets of internal metadata files which are available to SAS practitioners behind the scenes

when a SAS session is initiated. These files are present in the form of dictionary tables, SAS views, and

through selected SAS functions and call routines which build off of the dictionary tables.

SAS DICTIONARY FILES

Dictionary tables are generally accessed through PROC SQL, while SAS views and functions are generally

utilized through the data step. Many programmers are familiar with the ubiquitous DICTIONARY.TABLES,

which provides information on what SAS data sets are present in what SAS libraries. However, there are a

number of additional dictionary tables that have great utility for the SAS programmer. The code snippet

and screen shot below show how to determine which dictionary tables are available to you during a

given session.

PROC SQL ;

 SELECT UNIQUE MEMNAME

 FROM DICTIONARY.DICTIONARIES

QUIT ;

6

Running the same procedure specifying MEMNAME and LABEL and using a WHERE statement to select

the FORMATS table, we get a listing of what is contained in the DICTIONARY.FORMATS table.

The DICTIONARY.FORMATS table can be used to retrieve information about a specific format, or to create

a report that lists all of the formats in your SAS environment. Here is an example of using

DICTIONARY.FORMATS to retrieve information about a specific format:

PROC FORMAT LIBRARY=WORK;

 VALUE YNDKF 1 = 'Yes'

 2 = 'No'

 8 = 'DK'

 ;

RUN;

28 PROC FORMAT LIBRARY=DD;

29 VALUE YNDKF 1 = 'Yes'

30 2 = 'No'

31 8 = 'DK'

32 ;

NOTE: Format YNDKF has been written to WORK.FORMATS.

33 RUN;

PROC SQL;

 SELECT *

 FROM DICTIONARY.FORMATS

 WHERE libname='WORK' and memname='FORMATS' and fmtname='YNDKF';

QUIT;

PROC SQL ;

 SELECT MEMNAME LABEL

 FROM DICTIONARY.DICTIONARIES

 WHERE MEMNAME IN("FORMATS") ;

QUIT ;

7

This example retrieves format information for the format named YNDKF in the FORMATS catalog in the

WORK library.

SAS VIEWS

Views of a dictionary table perform in a similar manner. This example retrieves format information for

the format named YNDKF in the VFORMAT view in the SASHELP library.

data subset_vformat;

 set sashelp.vformat;

 where libname='WORK' and memname='FORMATS' and fmtname='YNDKF';

run;

proc print data=subset_vformat (obs=5) noobs;

run;

Note that while the data is identical to the dictionary table information retrieved via PROC SQL, the

default for SQL is to use variable labels as column headers, while the default for the view read into a data

set and printed is to use variable names as column headers.

“VIEW” FUNCTIONS

SAS has variable information functions whose name starts with “V”. These handy functions provide

programmers with direct access to information within their code which would otherwise be retrieved from

PROC CONTENTS, PROC DATASET, DICTIONARY tables, SAS views, or review of a data dictionary.

The VFORMAT function is one of a number of similar functions which return information about a format

that has been applied to a variable in a data set (VFORMATN, VFORMATC, VFORMATX, etc.) Note that

behind the scenes, SAS is doing some calculations as to the maximum length of the returned value from

the function – we all know that formats cannot end in a number, and SAS has added that information to

the returned value of the VFORMAT function.

data vfunc;

 length q1format $8;

 format q1 yndkf.;

 q1=1; output; put q1;

 q1=2; output; put q1;

 q1=8; output; put q1;

 q1format=vformat(q1);

 put q1format;

run;

28 data vfunc;

29 length q1format $8;

30 format q1 yndkf.;

31 q1=1; output; put q1;

32 q1=2; output; put q1;

33 q1=8; output; put q1;

34 q1format=vformat(q1);

35 put q1format;

36 run;

Yes

No

DK

YNDKF3.

NOTE: The data set WORK.VFUNC has 3 observations and 2 variables.

8

THE FMTINFO() FUNCTION

As we have seen above, the DICTIONARY.FORMATS table contains information about the formats defined

in your SAS environment. This table contains one observation for each format that has been defined.

The DICTIONARY.FORMATS table includes the following columns:

• LIBRARY: The name of the SAS library that contains the format – only for formats in catalogs.

• MEMNAME: The name of the format catalog – only for formats in catalogs.

• PATH: If the format is not in a catalog, SAS-provided formats are stored in an executable DLL. The

path is the path to the DLL.

• OBJNAME: The name of the format, exclusive of preceding $, etc – can be identical to

FMTNAME.

• FMTNAME: The name of the format.

• FMTTYPE: The type of format. Note this is NOT character or numeric, but FORMAT and

INFORMAT.

• SOURCE: C = Catalog.

• MINW: The minimum width of the format.

• MIND: The minimum decimal width.

• MAXW: The maximum width of the format.

• MAXD: The maximum decimal width.

• DEFW: The default width of the format.

• DEFD: The default decimal width of the format.

Along with PROC FORMAT and PROC CATALOG procedural output, SAS Views, and SAS Dictionary tables,

SAS also offers us the FMTINFO() function, as of SAS 9.4 M3. There’s no such thing as too much

information, but where does the FMTINFO() function get format related information, and how does the

function fit into our toolbox?

WHERE DOES FMTINFO() FIT IN THE SAS METADATA TOOLBOX?

The syntax for the FMTINFO() function is:
FMTINFO(fmtname,info);

Note that both arguments are required. The fmtname argument specifies the format or informat name,

while the info argument specifies the category (cat), type, OR description of the format and informat.

Only one “info” argument may be specified in a single function call.

• CAT specifies the categories of the function: BIDI Text Handling, Character, Currency Conversion,

Date and Time, DBCS, Hebrew Text Handling, ISO 8601, Numeric.

• TYPE specifies the type of language element: informat, format, both.

• DESC specifies a short description of the format or informat.

• MIND specifies the minimum decimal value of the format or informat.

We can see that a few pieces of “info”rmation are available from the dictionary.formats table and SAS

view, but others are available from SAS catalog(s) and/or SAS’s format DLL naming conventions.

EXAMPLES OF FMTINFO() USE

A small data set which contains several SAS provided formats and calculates various pieces of

information regarding those formats is created below.

9

data fmtinfo411;

length Name $9. Type $8. Category $4. Desc $40.

 DefW $5. MinW $5. MaxW $5. DefD $2. MinD $2. MaxD $2.;

input Name @@;

Category = fmtinfo(Name, "Cat"); /* numeric, character, date, ... */

Type = fmtinfo(Name, "Type"); /* format, informat, or both */

Desc = fmtinfo(Name, "Desc"); /* short description of the format */

DefW = fmtinfo(Name, "DefW"); /* default width if you omit w. Example: BEST., Z */

MinW = fmtinfo(Name, "MinW"); /* minimum width */

MaxW = fmtinfo(Name, "MaxW"); /* maximum width */

DefD = fmtinfo(Name, "DefD"); /* default decimal digits */

MinD = fmtinfo(Name, "MinD"); /* minimum decimal digits */

MaxD = fmtinfo(Name, "MaxD"); /* maximum decimal digits */

datalines;

ANYDTDTE BEST

DATETIME DOLLAR

Z PERCENT

$ $UPCASE;

Printing the FMTINFO411 data set provides us with a reference sheet on the functions we analyzed using

the FMTINFO() function.

proc print data=FmtInfo411 noobs;

 var Name Type Category Desc DefW MinW MaxW DefD MinD MaxD;

run;

A description was added to the YNDKF format in the work catalog. Adding a description via PROC

CATALOG to our test format allows us to accomplish two goals: first, the description is added, and

second, we see the contents of the format catalog. Note that you can modify descriptions for other

catalog types such as function stores and macro stores using the same syntax, changing the entry type.

PROC CATALOG CATALOG = WORK.FORMATS ET=FORMAT ;

 MODIFY YNDKF

 (DESC = "1=Yes, 2=No, 8=DK, Other missing") ;

 CONTENTS;

RUN ;

QUIT;

10

Unfortunately, FMTINFO() currently only works for SAS provided formats, so an attempt to get
information on this format yielded incomplete information.

Not all is lost, however. Obtaining the ODS output object from the PROC CATALOG step above allows us
to find the missing description, which can be merged by OBJNAME onto information collected from the
FMTINFO() function, dictionary.formats / dictionary.catalog tables or SAS views, and procedural output
from PROC FORMAT.

ODS TRACE ON;

ODS OUTPUT CATALOG_RANDOM=CR;

PROC CATALOG CATALOG = WORK.FORMATS ET=FORMAT ;

 MODIFY YNDKF

 (DESC = "1=Yes, 2=No, 8=DK, Other missing") ;

 CONTENTS;

RUN ;

QUIT;

ODS OUTPUT CLOSE;

ODS TRACE OFF;

PROC PRINT DATA=CR noobs;

RUN;

CONCLUSION

SAS® provides us with many tools to uncover information on the formats and informats we use. There is
no single source that provides all the useful information contained in dictionary.formats /
dictionary.catalog tables, SAS views, by using the FMTINFO() function, and via procedural output from
PROC FORMAT and PROC CATALOG, but these sources can be combined to produce a curated report with
all the desired information required. The FMTINFO() function is a valuable addition to the programmer’s
toolbox, and brings to light a number of different, useful resources.

REFERENCES

Borowiak, Kenneth W. “Additional Metadata for Common Catalog Entry Types.” Proceedings of
PharmaSUG 2014. April 2014. https://www.lexjansen.com/pharmasug/2014/CC/PharmaSUG-
2014-CC08.pdf

Hadden, Louise S. “Putting the Meta into the Data: Managing Data Processing for a Large Scale
CDC Surveillance Project with SAS®.” Proceedings of SAS Global Forum 2020.
https://www.lexjansen.com/wuss/2022/WUSS-2022-Paper-20.pdf

https://www.lexjansen.com/pharmasug/2014/CC/PharmaSUG-2014-CC08.pdf
https://www.lexjansen.com/pharmasug/2014/CC/PharmaSUG-2014-CC08.pdf
https://www.lexjansen.com/wuss/2022/WUSS-2022-Paper-20.pdf

11

Lafler, Kirk Paul. “A Hands-On Introduction to SAS® Metadata DICTIONARY Tables and SASHELP
Views.” Proceedings of MWSUG 2018. September 2017.
https://www.lexjansen.com/mwsug/2018/HW/MWSUG-2018-HW-9.pdf

Langston, Rick. “Finding Out About Formats and Their Attributes.” Proceedings of SAS Global
Forum 2017. April 2017. https://support.sas.com/resources/papers/proceedings17/SAS0209-
2017.pdf

Langston, Rick. “Using the New Features in PROC FORMAT.” Proceedings of SAS Global Forum
2012. April 2012. https://support.sas.com/resources/papers/proceedings12/245-2012.pdf

Watson, Richann and Hadden, Louise S. “Functions (and More) on CALL!” Proceedings of SESUG
2022. November 2022.
https://www.lexjansen.com/sesug/2022/SESUG2022_Paper_107_Final_PDF.pdf

Watson, Richann and Hadden, Louise S. “Quick, Call the “FUZZ”: Using Fuzzy Logic!” Proceedings
of SAS Global Forum 2021. March 2021. https://communities.sas.com/t5/SAS-Global-Forum-
Proceedings/Quick-Call-the-quot-FUZZ-quot-Using-Fuzzy-Logic/ta-p/726371

ACKNOWLEDGMENTS

SUPPORT.SAS.COM – the samples, FAQs and human beings behind the scene are the greatest!

Rick Langston, who wrote the FMTINFO() function, and many other SAS tools we take for granted
every day.

Rick Wicklin, whose “The DO Loop” SAS blog is a never-ending source of useful information and
inspiration.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:
Louise Hadden
Abt Associates Inc.
10 Fawcett St
Cambridge, MA 02138
Email: louise_hadden@abtassoc.com

Sample code is available from the author upon request.

Any brand and product names are trademarks of their respective companies.

https://www.lexjansen.com/mwsug/2018/HW/MWSUG-2018-HW-9.pdf
https://support.sas.com/resources/papers/proceedings17/SAS0209-2017.pdf
https://support.sas.com/resources/papers/proceedings17/SAS0209-2017.pdf
https://support.sas.com/resources/papers/proceedings12/245-2012.pdf
https://www.lexjansen.com/sesug/2022/SESUG2022_Paper_107_Final_PDF.pdf
https://communities.sas.com/t5/SAS-Global-Forum-Proceedings/Quick-Call-the-quot-FUZZ-quot-Using-Fuzzy-Logic/ta-p/726371
https://communities.sas.com/t5/SAS-Global-Forum-Proceedings/Quick-Call-the-quot-FUZZ-quot-Using-Fuzzy-Logic/ta-p/726371
http://support.sas.com/
mailto:louise_hadden@abtassoc.com

