
1

PharmaSUG 2023 - Paper QT-099

SAS® Macro Design Considerations to Generate Subgroup Table and
Forest Plot in Oncology Studies

Yizhuo Zhong, Christine Teng, Merck & Co., Inc., Rahway, NJ, USA

ABSTRACT
Subgroup analyses are essential when there is anticipated heterogeneity within a target population and
potential inconsistency of therapeutic response to the study treatment. Subgroup tables and forest plots
are commonly required for the efficacy analysis in oncology studies. It is important that the analysis
programs can handle additional subgroups which may be added for exploratory analyses or agency
requests. This paper will review some common scenarios using categorical variables. These subgroup
variables are generally provided through the subject level dataset such as ADSL and efficacy datasets
supporting the analysis of overall survival (OS), progression-free survival (PFS), and objective response
rate (ORR). The proposed design of a SAS macro would allow flexibility to add additional subgroups,
handle different sorting orders within a subgroup, and display text of the output without the need to
update the analysis programs. The design also considers the case when the subgroup size is too small
for comparison to eliminate unexpected statistical errors when generating the analysis reports in an
unblinded environment.

INTRODUCTION
Subgroup tables and forest plots are common deliverables in oncology studies. They are created to
analyze and demonstrate the differences in efficacy endpoints across subgroups of subjects. This paper
will provide a suggested approach to create subgroup tables and forest plots. Also, the following
scenarios when considering the macro design will be covered in this paper:

• Add additional subgroups to the outputs
• Adjust the sorting/display orders within a subgroup
• Adjust the text displayed for a subgroup
• Logic when the subgroup size is too small

The example outputs shown in the paper are created using mock data.

OVERVIEW OF PROGRAMMING FLOW
The proposed macro to create the subgroup tables and forest plots contains two parts. The first part is the
data macro to create the analysis result dataset used as the input for the corresponding tables and plots,
and the second part is table/plot macros to output subgroup tables and forest plots. Figure 1 below
shows the flow chart of the macro design:

Figure 1 Flow Chart of Macro Design to Create Subgroup Table and Forest Plot

Start Run data macro to
create input dataset

Run table macro to
create subgroup

Run plot macro to
create forest plot

End

2

Basically, the data macro includes the %SUMSTAT macro which can calculate the statistical results for
both HR and ORR, depending on the analysis or input dataset selected. The codes below show the
structure of the %SUMSTAT macro:

%if %index(&observation_from, &hr_dataset) %then %do;
 %macro sumstat(inds=, outds=, sortcd=, strata=, sortnm=);
 %* <Codes to calculate hazard ratio (HR)>;
 %mend;
%end;
%else %if %index(&observation_from, &orr_dataset) %then %do;
 %macro sumstat(inds=, outds=, sortcd=, strata=, sortnm=);
 %* <Codes to calculate ORR difference>;

%mend;
%end;

The subgroup variables come from subject level datasets such as ADSL, with the numeric and character
variables entered in pairs. The numeric variables control the display order within a subgroup. The
following parameters in the data macro will define the labels, variable names (character and numeric) and
strata for the subgroups.

%create_data(nonstd_section_labels = %str(Age (Years)|Age Group (Years)|
 PD-L1 Status|Gender|Race|ECOG Status|Smoking Status),
 nonstd_section_vars = %str(AGEGR1^AGEGR1N|AGEGR2^AGEGR2N|
 PDL1P10^PDL1P10N|SEX^SEXN|RACEGR1^RACEGR1N|
 ECOGFL1^ECOGFLN1|SMOKER^SMOKERN),
 nonstd_section_strata = %str(stratum|stratum|stratum|
 stratum|stratum|stratum|stratum)
 %* <More macro parameters>;
);

These parameters will be stored in intermediate datasets and parsed into series of macro variables. Then
the data macro will loop through each subgroup variable (e.g., SEX) and category (e.g., F/M) based on
the order specified in the call, and generate the dataset with statistics calculated from %SUMSTAT macro
for each subgroup:

%do _k=1 %to &_nonstd_count;

%let section=%eval(50 + (10 * &_k));

 %* Obtain the numeric and character values of subgroup variables;
 proc freq data=all_merged_2 noprint;
 where &&nonstd_var&_k^='';
 tables &&nonstd_var&_k.*&&nonstd_sort&_k./list missing out=count;

run;

 %* Create macro variables for the values of subgroups;
 data _null_;
 set count end=last;
 call symput("cat"||strip(put(_n_,best.)), strip(&&nonstd_var&_k));
 call symput("sortcat"||strip(put(_n_,best.)),
 strip(put(&&nonstd_sort&_k,best.)));
 if last then call symput("ncat",strip(put(_n_,best.)));

run;

 %* Loop through each subgroup category;
 %do j = 1 %to &ncat;

3

 data _&&nonstd_var&_k;
 set all_merged;
 where &&nonstd_var&_k="&&cat&j";
 section=§ion;

run;

%sumstat(inds=_&&nonstd_var&_k,
 outds=_out_&&nonstd_var&_k.&&sortcat&j,
 sortcd=%eval(§ion+&&sortcat&j),
 strata=%str(&&nonstd_strata&_k),
 sortnm="&&cat&j");
%end;

%end;

The second step is to output the subgroup tables or forest plots. There are two macros to create the
subgroup tables and forest plots respectively, and the analysis result dataset created by the data macro
can be used as the input for both table and plot.

Codes in the table macro to generate second the header of subgroup tables:

%if %index(&observation_from, &hr_dataset) %then %do;

%let header2 =| |N !Number of Events (%)|N !Number of Events (%)|
 Hazard Ratio&dagger_.(95% CI)&dagger_.|;

%end;
%if %index(&observation_from, &orr_dataset) %then %do;

%let header2 =| |N !Number of Responses (ORR%)|
N !Number of Responses (ORR%)|Rate Difference&dagger_.(95% CI)&dagger_.|;

%end;

Codes in the plot macro to generate the header of forest plots:

%if %index(&observation_from, &hr_dataset) %then %do;
 %let plot_header1 = N/#Events|HR|95% CI;
 %let plot_var = n_trt|est|ci!;
%end;
%else %if %index(&observation_from, &orr_dataset) %then %do;
 %let plot_header1 = N/#Responses|ORR Diff|95% CI;
 %let plot_var = n_trt|est|ci!);
%end;

Figure 2 and Figure 3 below show the sample outputs of subgroup tables and forest plots.

Figure 2 Sample Output of Subgroup Table

4

Figure 3 Sample Output of Forest Plots

SAS MACRO DESIGN CONSIDERATIONS
In this section we will propose some design considerations to add flexibilities to the macro logic, which will
also enable us to handle different kind of requests for deliverables.

1. ADD ADDITIONAL SUBGROUPS

Sometimes additional subgroups may be requested for analysis purpose. Also, some subgroup variables
may come from a different analysis dataset. Suppose that we would like to add “Geographic Region 1”
section (EU or non-EU) into our outputs, and the corresponding variables GEOGR1 and GEOGR1N
come from ADBASE subject-level dataset. In this case the macro parameters can be adjusted as below:

%create_data(nonstd_section_labels = %str(Age (Years)|Age Group (Years)|
 PD-L1 Status|Gender|Race|ECOG Status|
 Geographic Region 1|Smoking Status),

 nonstd_section_vars = %str(AGEGR1^AGEGR1N|AGEGR2^AGEGR2N|
 PDL1P10^PDL1P10N|SEX^SEXN|RACEGR1^RACEGR1N|

 ECOGFL1^ECOGFLN1|GEOGR1^GEOGR1N|SMOKER^SMOKERN)
 population_where = %str(adbase, adsl);
%* <More macro parameters>;
);

After calling the macro, the updated outputs will show the new subgroup added with the corresponding
statistics (see Figure 4 and Figure 5).

Figure 4 Updated Subgroup Table with New Subgroup Added

5

Figure 5 Updated Forest Plot with New Subgroup Added

2. PRE-PROCESS THE INPUT DATASET

Sometimes, the input dataset may need to be pre-processed to obtain the desired results for agency
requests, without updating the original ADaM datasets.

In some cases, we may want to adjust the sorting order for the items within a subgroup. For example, in
ADSL dataset there are sex values with “M” (Male) decoded as 1 and “F” (Female) decoded as 2. In this
way, the outputs will show “M” before “F”. Suppose that the order of the sex values needs to be switched.
This can be implemented by pre-processing the ADSL dataset as below. Here a numeric variable
(SEXN2) with new sets of values is created for reordering purpose, to avoid overwriting the existing SEXN
variable:

data adsl;
 set adam.adsl;

if sex='F' then sexn2=1;
else if sex='M' then sexn2=2;

run;

The macro parameter can also be updated to use the new set of numeric values for SEX:

%create_data(nonstd_section_vars = %str(AGEGR1^AGEGR1N|AGEGR2^AGEGR2N|
 PDL1P10^PDL1P10N|SEX^SEXN2|RACEGR1^RACEGR1N|
 ECOGFL1^ECOGFLN1|SMOKER^SMOKERN)

 %* <More macro parameters>;
);

After calling the macro, the updated outputs will show that the order within the “Gender” section are
switched (see Figure 6 and Figure 7). Note that “Male/Female” values, instead of “M/F”, are displayed
here. We will discuss about applying format for SEX variable in the following section.

Figure 6 Subgroup Table and Forest Plot Before Switching the Display Order

6

Figure 7 Subgroup Table and Forest Plot After Switching the Display Order

Another example is about handling the “Missing” category within a subgroup. Suppose that we would like
to exclude the “Missing” categories in “Race” and “Smoking Status” sections. In this case, the input data
can be pre-processed as below by creating new sets of variables:

data adsl;
 length racegr2 smoker2 $200;
 set adam.adsl;
 if racegr1='Missing' then do;
 racegr2='';
 racegr2n=.;

end;
 else do;
 racegr2=racegr1;
 racegr2n=racegr1n;
 end;
 if smoker='Missing' then do;
 smoker2='';
 smoker2n=.;

end;
 else do;
 smoker2=smoker;
 smoker2n=smokern;
 end;
run;

In this way, the original RACEGR1 and SMOKER variables will not be overwritten. The parameter in the
data macro can be updated accordingly to use the new set of variables for the corresponding sections:

%create_data(nonstd_section_vars = %str(AGEGR1^AGEGR1N|AGEGR2^AGEGR2N|
 PDL1P10^PDL1P10N|SEX^SEXN2|RACEGR2^RACEGR2N|
 ECOGFL1^ECOGFLN1|SMOKER2^SMOKER2N)
 %* <More macro parameters>;
);

As a result, since the macro does not count the missing values when reading the counts and calculating
the statistics for each subgroup, the “Missing” category is not displayed for both subgroups. Figure 8 and
Figure 9 show the forest plot outputs before and after the input dataset is pre-processed.

7

Figure 8 Forest Plot Before Pre-processing of Input dataset

Figure 9 Forest Plot Before Pre-processing of Input dataset

3. ADJUST THE TEXT DISPLAYED FOR A SUBGROUP

Sometimes we may want to adjust the text displayed for a subgroup in our outputs. This can be done by
adding pre-specified formats to our categorical variables. Suppose that we would like to change the label
for SEX and ECOGFL1 variables in our existing outputs. We first specify the formats for these 2 variables
below and load them into SAS libraries:

proc format;
 value $sexf
 'F'='Female'
 'M'='Male'
 ;
 value $ecogfl1f
 '[0] Normal Activity or [1] Symptoms, but ambulatory'='0'
 '[2] Ambulatory but unable to work'='1'
 'Missing'='9'
 ;
run;

proc format library=work cntlout=formats;
run;

In the data macro, the parameter VAR_FORMAT can specify the variables that need to apply formats.
Multiple variables can be separated by comma (,).

%create_data(var_format= %str(SEX,ECOGFL1)
 %* <More macro parameters>;
);

8

Then the macro will read in the FORMATS dataset and merge it with the intermediate datasets, so that
the format can be applied to the corresponding variables SEX and ECOGFL1.

The following codes can be included when the macro loops through each category. The logic will apply
the formats for the variables specified:

%* Apply the formats for subgroups with formats defined;
data all_merged_2;
 set all_merged;
 %if &&nonstd_fmt&_k^=%str() %then %do;
 &&nonstd_var&_k.._o=strip(put(&&nonstd_var&_k,$&&nonstd_fmt&_k...));
 drop &&nonstd_var&_k;
 rename &&nonstd_var&_k.._o=&&nonstd_var&_k;
 %end;
run;

Figure 10 and Figure 11 below show the labeling changes for “Gender” and “ECOG Status” sections
compared with the previous outputs, after applying formats for SEX and ECOGBL1 variables.

Figure 10 Subgroup Table Before Applying Format

Figure 11 Subgroup Table After Applying Format

4. WHEN THE SUBGROUP SIZE IS TOO SMALL

During the analysis, sometimes the size for some subgroups may be too small, which leads to the fact
that the results calculated by the statistical procedure may not be meaningful. Therefore, the threshold
value for the size of the subgroups to be excluded can be specified. This specific number or percentage
for a subgroup to be excluded should be determined per statisticians’ guidance, depending on protocol
and analysis assumptions.

9

Suppose that the threshold value is set to 30. That means, any category under a subgroup with less than
30 subjects will not be counted in the analysis. The parameter EXCLUDE in the data macro can be used
to specify the value as below:

%create_data(exclude=%str(<30)
 %* <More macro parameters>;
);

The macro logic to exclude the subgroups with small group size is specified inside the %SUMSTAT
macro. The macro will read the counts for each subgroup and parse the EXCLUDE parameter entered
above. In this case, when the size for a category under a subgroup is less than 30, the macro will skip the
statistics calculation, so the results for this category will not be shown in the outputs:

proc sql noprint;
 select count(*) into :nobs1 from &inds;
quit;

%let cond = %cmpres(&exclude);
%let exc = %substr(&cond, 2);
%let sign = %substr(&cond, 1, 1);

%if &nobs1. &sign. &exc. %then %goto sumexit;

Figure 12 and Figure 13 below shows the outputs before and after this exclusion threshold is applied. In
the original outputs, there are only 16 subjects in the >=85 age group. This triggers the exclusion criteria,
and the “>=85” category under “Age Group (Years)” is excluded in the updated output.

Figure 12 Forest Plot Before Applying Exclusion Threshold

Figure 13 Updated Forest Plot with >=85 Age Group Excluded

CONCLUSION
For related efficacy analyses, it is important to communicate with study statistician regarding the
requirements (including mockup shells) of the outputs before any programming activities. Depending on
study design and requests, the macro may be adjusted accordingly to fit in the analysis settings. The
proposed design combined the derivations of HR and ORR in a single macro, and users may consider
separate statistical analysis into two macros for easy maintenance and allowing us to incorporate
additional analysis. Although the macro design proposed in this paper may not cover all the scenarios for
different kind of analysis, utilizing SAS macro programming with careful design to maintain reusability

10

without constant updates for additional subgroup requirements can streamline the process to create the
desired deliverables. Therefore, the proposed macro will help us handle different programming activities
based on our analysis needs and will improve our efficiency in the analysis and reporting process.

REFERENCES
Europeans Medicines Agency (EMA). Guideline on the Investigation of Subgroups in Confirmatory
Clinical Trials. 2019.

https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-subgroups-
confirmatory-clinical-trials_en.pdf

ACKNOWLEDGEMENTS
The authors would like to give special thanks to the management for their review and inputs on the paper.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

 Yizhuo Zhong
 Senior Scientist, Statistical Programming
 Merck & Co., Inc.
 yizhuo.zhong@merck.com

 Christine Teng
 Principal Scientist, Statistical Programming
 Merck & Co., Inc.
 christine_teng@merck.com

Any brand and product names are trademarks of their respective companies.

https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-subgroups-confirmatory-clinical-trials_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-subgroups-confirmatory-clinical-trials_en.pdf
mailto:yizhuo.zhong@merck.com
mailto:christine_teng@merck.com

	Abstract
	Introduction
	Overview of programming flow
	SAS macro design considerations
	Conclusion

