PharmaSUG 2023 — Paper QT-001

A SAS® Macro to Convert CSV files to SAS Datasets

Zemin Zeng and Bo Yuan
Sanofi, Bridgewater, NJ

ABSTRACT

Statistical programmer in the pharmaceutical industry often needs to convert Comma Separated Values
(CSV) files to SAS® datasets. This paper provides a short SAS macro to automatically convert CSV files
to SAS datasets. We shall share the techniques in the macro on how programmatically to identify the
column variables in a CSV file without any manual inputs. The macro has been widely used at work and
has been proven to increase programming efficiencies and provide time/cost savings.

INTRODUCTION

In the pharmaceutical industry, data management or statistical programming teams often receive a bunch
of CSV files from external data transfer and need to convert them into SAS datasets for downstream
statistical analysis. There are a few ways which can convert CVS file to SAS datasets: “PROC IMPORT
procedure, the SAS DATA Step in combination with the INFILE statement, and the Import Wizard”
(https://sasexamplecode.com/3-ways-to-import-a-csv-file-into-sas-examples/), but there are some short
comings for them. For instance, when using PROC IMPORT to convert CSV files, certain columns such
as SUBJID, SITEID and character date variables will be forcefully converted to numeric variable. If data
steps with INFILE statement used to import CSV files, it requires lots of manual work to specify column
variables for each CSV file. The Import Wizard is an easy method to import CSV files, but it isn’t flexible
and automated, if we have a lot of CSV files it is hard to use Import Wizard to import CSV file one by one.

This macro was developed to help programmers better convert CSV data files to SAS datasets
automatically. The macro is target to convert all CSV files under a given directory, we scan a large enough
amount of columns of each CSV file using INFILE statement, programmatically identify the number of
columns and column variable name in each CSV file, then resize variable lengths to their actual size. The
complete code of the SAS macro was included as an appendix, which can be modified to fit reader’'s
need.

SETTING

The macro was named %csv2sas. There are only two parameters need to be assigned, specifically: the
parameter for CSV file directory(&csvdir) and the parameter for output SAS datasets location(&dataout).
Users can put the program into any folder. To make program running faster and sufficient for all CSV
automatically converting, we assume all CSV files should have less than 300 columns and have a
maximum text of each column less than 2000 characters. Users can easily modify the maximum number
of columns and text length to better meet their needs.

KEY STEPS

This macro includes five steps. First, get all the CSV files names from given folder and prepare for a loop.
Second, read in CSV file to SAS dataset with all the variables having the same length, then divide the
dataset into two, with one dataset has only the first line for SAS dataset (i.e. variable name line), and the
other dataset contains data only. Third, identify the number of columns with data in a CSV file. Fourth,
identify variables and their actual lengths. The last step is to output SAS datasets. Below are the details of
each steps in the macro:

https://sasexamplecode.com/3-ways-to-import-a-csv-file-into-sas-examples/

Step 1: Use SAS DREAD function to return the file names of a given directory. Then we select all CSV file
names and combine them into a macro variable for a loop preparation. A macro variable cname will be
generated to help create a list of CSV file names. Another macro variable num will also be generated to
capture total number of CSV files, which will be used instep 2 to loop through all CSV files.

Figure 1: Codes used to get all the names of CSV files using FILENAME function.

data filename;

length fref $8 fname $200;

did=filename (fref, "&csvdir.");

did=dopen (fref) ;

do i=1 to dnum(did) ;
fname=dread (did, i); output;
end;

did=dclose (did); did=filename (fref);

run;

data filename2;

set filename; where index(fname, ".csv")>0;
cname=scan (fname,1,'."); num=_n ;
keep fname num i cname ;

run;

proc sgl noprint;

select strip(put (max(num),best.)) into : num from filename2;
select cname into :filenml - :filenm&num. from filename?2;
quit;

Step 2: Use FILENAME to assign file reference dsn for an individual CSV file in the loop. ARRAY in a data
step to set read in 300 columns with each column 2000 characters to get a _TEMP dataset for future use.
Users can increase the number of columns and column widths based on their needs. The _TEMP dataset
will include all the information of CSV files (Figure 2).

Figure 2: Codes of data step input CSV file to SAS dataset with same length for all column

$do j=1 %$to &num.; /*loop over CSV files*/
filename dsn "&csvdir./&&filenmé&j...csv" lrecl=32767;

data temp;
array column (300) $ 2000 coll-col300;
infile dsn truncover dsd dlm='2c0d'x;
input %do i=1 %to 300; column (&i) %end; ;
run;

After that, we divide the _TEMP dataset into two sub-datasets: TEMP1 and _TEMP2. Sub-dataset
_TEMP1 include variable names only, and _TEMP2 has all other data up-to 2000 characters in each
column to avoid truncation.

Figure 3: separate _TEMP into two datasets
data templ temp2;
set temp;
if n =1 then output templ; else output temp2;
run;

Step 3: Identify the actual number of columns of each CSV file, and then keep only variables in _ TEMP1
and _TEMP?2 that have data in the CSV file(Figure 4). The rule we use to evaluate if having data is to
check variable names in TEMPL1 if they are not missing.

Figure 4: Code to identify the actual number of columns.

proc transpose data=_ templ out= cntl;
var col:;
run;

*to decide the number of columns in the CSV file;
data cnt2;
set cntl;
if coll ne '' then CALL SYMPUT (" numvar", n);
if coll ne '';
run;
%put columns

& numvar;
data templ; set templ;
%do i=1 %to & numvar; keep colé&i.; %end;

run;

data temp2; set temp2;

%do i=1 %to & numvar; keep colé&i.; %end;
run;

Step 4: Identify variables and their actual length. Resize all variables to maximum length of each column.
First, use PROC CONTENTS to get all the names of variables from _TEMP2, and then use data step to
create a new variable includes MAX and LENGTH functions for each observation. A macro variable is
generated to calculate the maximum length from _TEMP2 and keep the maximum length for each
observation in _LEN. Set _TEMP1 and _LEN to create lengths for each variable (Figure 5).

Figure 5: Code to get maximum length from _TEMP2 for every column

proc contents data= temp2 out= var (keep=name) noprint; run;

data varl;
set wvar;
col="strip (put (max (length (strip(" || strip(name) ||
"))), best.)) as " || strip(name);
run;

proc sgl noprint;

select col into: list var separated by ', ' from varl;
create table len as select distinct &list var from temp2;
quit;

data temp len;
set templ len;
run;

Using _TEMP_LEN dataset to create the macro attribute variable _LENGTH to keep the length and order
information. The values of this macro variable look like: STUDYID $8 DOMAIN $2 USUBJID $21.... A
_KEEP macro variable should be created to keep all the columns of CSV (Figure 6).

Figure 6: Get the variable names and their actual lengths

proc transpose data= temp len out=t templ;

%do i=1 %to & numvar; var colé&i.; %end;
run;

data t templ;

set t templ;

ord=input (substr(strip(NAME),4), best.);
run;

proc sql noprint;

select strip(coll) ||" $"||strip(col2) into: length separated by ' '
from t templ order by ord;
select strip(coll) into: keep separated by ' '
from t templ ;

quit;

sput Variables in %upcase (&&&filenm&j.) dataset: & keep;

sput and theri length: & length;

Step 5: Output SAS dataset. We use variable values in TEMP1 to name each column. The final SAS
dataset is output to the location specified in the macro parameter dataout (Figure 7).

Figure 7: Output SAS dataset

data dataout.&&filenmé&j. (keep=& keep.);

length & length;

set temp2;

$do i=1 %to & numvar; && var&i=strip(colé&i); %end;
run;

CONCLUSION

The SAS macro %csv2sas can be used to convert all CSV files in a given directory into SAS datasets. It
is easy to use and powerful to deal with CSV files with different columns and variable lengths without any
manual work in the conversion process. With only 5 steps, the macro is very simple, but dramatically
improves programming efficiencies. It also generates an output that helps the programming team do
further data analysis and check for potential data issues. As the macro only presents what we see in the
CSV files into SAS dataset format with all variables in Character version, some follow-up programming
activities maybe needed to convert some variables into numeric.

REFERENCES

SAS Example Code. 2021. “3 Ways to Import a CSV File into SAS.” https://sasexamplecode.com/3-ways-to-import-
a-csv-file-into-sas-examples/

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Zemin Zeng, Team Lead for I&l and Neuro, Statistical Programming, Sanofi, Bridgewater, NJ

https://sasexamplecode.com/3-ways-to-import-a-csv-file-into-sas-examples/
https://sasexamplecode.com/3-ways-to-import-a-csv-file-into-sas-examples/

Email: Zemin.Zeng@sanofi.com

Bo Yuan, Statistical programmer contractor, Sanofi, Bridgewater, NJ
Email: Bo.Yuan@sanofi.com

TRADEMARK INFORMATION

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

APPENDIX: THE CODE OF THE MACRO

/********************k*************************

* Program Name : csv2Z2sas.sas

* Program Purpose : Convert CSV files to SAS datasets

* Program Author : Zemin Zeng/Bo Yuan

* Program creation date : 2021-12-15

* Input data files : CSV files

* Output data files : SAS Data Set (.sas7bdat)

* System : SAS version 9.4 - WISE environment

* Macro call Sample : %csv2sas (csvdir=, dataout=)

R I b b 2 b b b S b b 2 Sh b b SR Sh b S ah b b Sh b b 2 Ah b b Sh Sh b S dh b b Sh Sb b 2 Sh Sb b Sh Sb b S Sh b b SE Ib b S dh b b Sh Sb b S dh b b Sh Sb b 2b \eh Y

/* Beginning of Code */
$macro csv2sas (csvdir=, dataout=);

libname dataout "&dataout.";
*

* Step 1: get all the CSV files form given folder;
*

data filename;
length fref $8 fname $200;
did=filename (fref, "&csvdir.");
did=dopen (fref) ;
do i=1 to dnum(did) ;
fname=dread(did, 1i); output;
end;
did=dclose (did); did=filename (fref);
run;

data filename2;

set filename; where index (fname, ".csv")>0;
cname=scan (fname,1,'."); num= n ;
keep fname num i cname ;

runy,

proc sgl noprint;

select strip(put (max(num),best.)) into : num from filename2;
select cname into :filenml - :filenmé&num. from filename2;
quit;

Step 2: read in csv file and output sas dataset;

do j=1 %to &num.; /*loop over CSV files*/
filename dsn "&csvdir./&&filenmé&j...csv" lrecl=32767;

o0 ¥ ¥ oF

data temp;
array column (300) $ 2000 coll-col300;

mailto:Zemin.Zeng@sanofi.com
mailto:Bo.Yuan@sanofi.com

infile dsn truncover dsd dlm='2c0d'x;
input %do i=1 %$to 300; column (&i) %end; ;
run;

data templ temp2;

set temp;

if n =1 then output templ; else output temp2;
run;

Step 3: identify the number of columns;

proc transpose data=_ templ out= cntl;
var col:;
run;

*to decide the number of columns in the CSV file;
data _cnt2;
set cntl;

if coll ne '' then CALL SYMPUT (" numvar", n);
if coll ne '';

run;
sput columns = : & numvar;

data templ; set templ;
%do i=1 %to & numvar; keep col&i.; %end;
run;

data tempZ; set temp2;
%do i=1 %to & numvar; keep col&i.; %end;
run;

Step 4: identify variables and their actual lengths;

data null ;
set templ;
%do i=1 %to & numvar;
CALL SYMPUT (" var" || compress(put(&i, best.)), colé&i);
%end;
run;

proc contents data= temp2 out= var (keep=name) noprint; run;

data varl;
set wvar;
col="strip (put (max (length (strip ("™ || strip(name) ||
"))), best.)) as " || strip(name);
run;

proc sgl noprint;

select col into: list var separated by ', ' from varl;
create table len as select distinct &list var from temp2;
quit;

data temp len;
set templ len;
run;

proc transpose data= temp len out=t templ;
$do i=1 %to & numvar; var colé&i.; %end;

run;

data t_ templ;
set t templ;
ord=input (substr(strip(NAME),4), best.);

run;

proc sgl noprint;
select strip(coll) ||" $"||strip(col2) into: length separated by ' '
from t templ order by ord;
select strip(coll) into: keep separated by ' '
from t templ ;
quit;
%put Variables in %upcase (&&&filenmé&j.)
$put and theri length: & length;

dataset: & keep;

Step 5: output SAS dataset

data dataout.&&filenmé&j. (keep=& keep.);
length & length;
set temp2;

$do i=1 %to & numvar; && var&i=strip(colé&i); %end;

run;
%end; /*loop over CSV files—--end*/

$mend csv2sas;

*Macro call;
$csvZsas (csvdir=%sysfunc (pathname (EXTERI)),
dataout=%sysfunc (pathname (EXTERI)) /dataout) ;

