
1

PharmaSUG 2023 - Paper PO-143

Real Time Analytical Reporting Using OpenFDA
Shubhranshu Dutta, University of Rochester

ABSTRACT

One of the main challenges during the drug development process is knowing how a drug in a clinical trial
interacts/might interact with other concomitant medications taken by a patient. The FDA has enabled access to real-
world data via OpenFDA. With the use of OpenFDA APIs - specifically by creating daily refreshed data reports - we
can track the emergence/development of common adverse reactions or drug interactions along with the severity and
seriousness of such adverse events across various patients. I will be pulling data from OpenFDA APIs and creating
reports that reflect real time data from the OpenFDA database for the purpose of analysis. I will also be exploring the
metadata and discussing the interactive charts provided by OpenFDA to help with the right query selection from the
database. Utilizing tools such as R libraries, Excel pivot charts and pivot tables, and converting JSON files into data
for creating customized reports, I will also be discussing a way of automating reports and notifications to enable a
faster alert system for clinical investigators, ensuring greater patient safety.

INTRODUCTION

OpenFDA has provided many references on how to run a query within their database, few examples are listed
below:

Figure 1.0: Some of the example API Query calls: from OpenFDA where searchable field is receivedate, in the
above query a date range is provided.

Reference: “Example-Api-Queries.” open.fda.gov, https://open.fda.gov/apis/drug/event/example-api-queries/.

2

Figure 1.1: Some of the example API Query calls: from OpenFDA where searchable field is serious, in the above
query a date range is provided

Reference: “Example-Api-Queries.” Open.fda.gov, https://open.fda.gov/apis/drug/event/example-api-queries/.

UNDERSTANDING API CALLS

Figure 2.0: API calls are based on a set of commands where the client receives a response from the server or
backend database based on HTTP methods – GET, POST, PUT, DELETE

Reference: Jecrespom, Por, and Jecrespom. “Arquitectura API.” Aprendiendo Arduino,
https://aprendiendoarduino.wordpress.com/tag/arquitectura-api/.

3

UNDERSTANDING DATA STRUCTUES USING POSTMAN

Postman is an API platform for building and using APIs. Postman simplifies each step of the API lifecycle and
streamlines collaboration so you can create better APIs faster.

Figure 3.0: The Postman API Platform

Reference: “What Is Postman? Postman Api Platform.” Postman API Platform,
https://www.postman.com/product/what-is-postman/.

SAMPLE API RESPONSE

Figure 4.0: Sample API response in Postman

The above response displays the metadata and all values in a single record in Postman.

4

REPORTING FROM API RESPONSES

The following programming approach was adopted with R as the main programming language.

DEFINE PACKAGES AND LIBRARIES

Install the following packages in R and define libraries:

library(jsonlite)

library(tidyr)

library(dplyr)

 library(openxlsx)

library(lubridate)

DEFINE API DESTINATION

Url <- “https://api.fda.gov/drug/event.json?search=receivedate:[20040101+TO+20231231]&limit=100"

response <-
fromJSON("https://api.fda.gov/drug/event.json?search=receivedate:[20040101+TO+20231231]&limit=100")

df <- as.data.frame(response)

#Create a sequence number column to add as placeholder:

df <- df %>% mutate(seq_num = row_number())

DATA WRANGLING - NORMALIZE/READ NESTED COLUMNS

In the OpenFDA API call, the Result column has nested columns for Patient level reaction and drug name. We
would now unnest these columns. This will create two separate datasets which we will merge to get the complete
unnested data.

df_normalized_reaction <- df %>% unnest(result.patient)

colnames(df_normalized_reaction)

df_reaction <- df_normalized_reaction %>% unnest(reaction)

colnames(df_reaction)

Figure 5.0: Unnested columns in Results.Patient.reaction

5

head(df_reaction,1)

#Write columns into external file to validate/check nested columns

df_r <- data.frame(df_reaction)

#write.xlsx(df_r, file="test.xlsx")

head(df_r,1)

colnames(df_r)

df_drug<- df_normalized_reaction %>% unnest(drug)

df_drug <- data.frame(df_drug)

colnames(df_drug)

Figure 6.0: Unnested columns in Results.Patient.Drug

Merge all Data sets having unnested columns:

merged_df <- merge(df_drug,df_reaction, by = "seq_num")

colnames(merged_df)

my_df <- data.frame(merged_df)

head(my_df, 3)

6

REPORT CREATION

We will filter data based on all serious drug related adverse events to generate report:

filtered_df <- my_df[my_df$result.serious.x == 1,]

Install packages and create a placeholder for today’s date:

today <- Sys.Month()

install.packages("lubridate")

library(lubridate)

start_of_month <- as.Date(paste0(format(Sys.Date(), "%Y-%m"), "-01"))

end_of_month <- as.Date(paste0(format(Sys.Date(), "%Y-%m"), "-31"))

monthly_report <- filter_df %>% filter(meta.last_updated.x >= start_of_month, meta.last_updated.x <=
end_of_month)

Report generated as HTML using the

title: "Monthly Report"

author: "Organization Name"

date: "`r format(Sys.Date(), '%B %d, %Y')`"

output:

html_document:

keep_md: true

Generate monthly report based on

monthly_report$medicinalproduct

monthly_report$FIGURE.company.number.x

monthly_report

OPENFDA DATA IN EXCEL SPREADSHEET

OpenFDA data can also be downloaded and opened in Excel spreadsheets along with the nested
columns and analytical charts/tables may be prepared.

Figure 7.0: Normalized columns in *.xlsx format

7

Figure 7.2: Pivot Chart of serious adverse
events by drug name and manufacturer name

Figure 7.1: List of column names Figure 7.3: Record counts

CONCLUSION

Reporting with public APIs first requires an understanding of the API structure, followed by data manipulation to
unnest any hidden columns. This may be done easily with R and other tools such as Python that have custom
functions to read JSON API’s. POSTMAN is a valuable tool that may serve as a guide in this process. Daily
reporting with R may be done programmatically within R and also using CRON jobs too. This would ensure data
parameter/filtered reporting.

8

REFERENCES

1. Jecrespom, Por, and Jecrespom. “Arquitectura API.” Aprendiendo Arduino,
https://aprendiendoarduino.wordpress.com/tag/arquitectura-api/.

2. “Example-Api-Queries.” Open.fda.gov, https://open.fda.gov/apis/drug/event/example-api-queries/.

3. What Is Postman? Postman Api Platform.” Postman API Platform,
https://www.postman.com/product/what-is-postman/.

RECOMMENDED READING

• Kass-Hout, Taha A, et al. “OpenFDA: An Innovative Platform Providing Access to a Wealth of FDA's Publicly
Available Data.” Journal of the American Medical Informatics Association: JAMIA, U.S. National Library of
Medicine, May 2016, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4901374/.

• Lee, Jaemin. “Creating Reports with R Markdown.” Medium, Towards Data Science, 22 June 2020,
https://towardsdatascience.com/creating-reports-with-r-markdown-c6031ecdd65c.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Shubhranshu Dutta
University of Rochester
Email: shudutt@gmail.com

Any brand and product names are trademarks of their respective companies.

