
1

PharmaSUG 2023 - Paper MM-205

Automating SDTM: A Metadata-Driven Journey
Keith Hibbetts, Eli Lilly and Company;

ABSTRACT

SDTM is one of the deliverables in every clinical trial. Efficient creation of SDTM can save hundreds of
hours of effort, yet automation of SDTM has proven to be a very difficult proposition. This paper details
the journey Eli Lilly has been on pursuing SDTM automation. To use a car analogy, you need four wheels
and an engine to drive. On this particular journey, the four wheels are: a robust set of standards, a
metadata repository to store and maintain those standards, a set of generic macros for data set creation,
and a programming process to utilize those macros. The engine is metadata. By defining a metadata
model that not only defines the source and target but also the logic to convert the source to the target, we
can build out the rest of the components to make this vision a reality. A proof-of-concept project based on
this idea achieved 96% automation of SDTM variables in a test study. Now we're on the road to making
this concept a production-ready reality.

INTRODUCTION

Here at Eli Lilly, we recently found ourselves with a big opportunity. The metadata repository (MDR as a
generic acronym) that we had implemented several years ago was reaching the end of its technology
lifecycle and needed to be replaced. The previous MDR only maintained our data collection standards. It
had no study-level component. All downstream standards, such as the Study Data Tabulation Model
(SDTM) and the Analysis Data Model (ADaM) were maintained in spreadsheets. No significant
automation gains had been made in SDTM or ADaM creation at the study level. We wanted to take this
opportunity to realize significant gains in efficiency in SDTM and ADaM creation, with specific focus on
SDTM since the potential gains were greater in that space.

This paper will focus on the SDTM automation journey. In the abstract, I used the car analogy of 4 wheels
and an engine. Those elements were:

 Wheel 1: a robust set of standards. This wheel was already in place. Lilly has placed a great deal
of focus on standards creation and maintenance for many years. Data collection standards were
in place for more than 700 data collection forms (internally referred to as Data Element Definitions
or DEDs). SDTM standards were also in place for every SDTM domain relevant to those data
collection standards.

 Wheel 2: a metadata repository to store and maintain these standards. We did not have this
wheel: our previous MDR could not support SDTM standards, and that MDR was reaching the
end of its lifecycle. We needed to implement a new MDR system with a broader scope of
standards that it could support, as well as having a study-level component to create and maintain
study-level specifications.

 Wheel 3: a set of generic macros for data set creation. We did not have this wheel. Generic, in
this context, refers to macros that can be re-used across compounds, studies, and domains.

 Wheel 4: a programming process to utilize those macros. Without the macros themselves in
place, we of course did not have this wheel.

 The Engine: Metadata. This wheel was partially in place. Our data collection standards were in
place, our SDTM domain standards were in place, and the SDTM standards contained
instructions on how to create the SDTM. But the transformation metadata (description of how the
raw data would be processed into SDTM) needed to be much more granular to enable efficiency
gains through automation.

GUIDING PRINCIPLES

2

With the key components identified, we also needed some guiding principles in what we wanted to
accomplish. As relates to SDTM automation, those principles were:

 Produce submission ready SDTM domains. The end-result needed to be SDTM data sets and
transport files that were ready to be submitted, and to be used as input to ADaM data sets. We
did not want to produce “SDTM-Like” data that would need to be further refined to be submission
ready.

 Save time in SDTM specification writing. While there are always parts of SDTM specifications that
are highly protocol-specific, we want to minimize the amount of time needed to complete these
SDTM specifications.

 Save time in SDTM programming. Similar to the specifications, there will always be a need to
customize certain part of the code that produces the SDTM, we want to automate as much as
possible to reduce the time spent by the study team writing code. In addition, when some custom
code is necessary, it should easily be inserted into the process.

 Error checking should be built in “behind the scenes”. Each step of the way, error checking
should be occurring without requiring additional steps. Simply by taking the steps to
create/refresh SDTM, the study team should get the benefit of being alerted to any potential
issues.

 The overall process must be flexible enough to adapt to upstream changes. Rather than being
built on the assumption that all systems that collect and deliver raw data will always be exactly as
they are today, the overall system should easily be able to adapt to any such changes.

o Related to this principle, we made the conscious choice to not try to integrate the MDR
with our EDC system directly, nor change our study build/edata processes any more than
absolutely necessary. This had 2 major advantages. First, it ensured our SDTM
automation solution would not be tied to any specific EDC system. Second, we would be
able to achieve the SDTM automation faster by not having to take the time to integrate
those 2 systems together.

 Make the right thing to do also the fastest thing to do. Timelines pressures are real, which can
leave people in a position to choose between the fastest solution and the highest quality solution.
The best way to mitigate is to ensure that the fastest solution is also the highest quality solution.

 The system must be flexible enough to allow study teams to react to the reality of their study. It’s
impossible to foresee every scenario that every study team will ever face. There must be enough
flexibility to allow the study team to react, even when that situation dictates that non-standard
logic must be used.

o Related to this principle, this meant the macros in the process must be 100% metadata-
data driven. This means, when determining how a variable would be created, the macros
never make assumptions about the logic, but instead use the transformation metadata to
determine what logic to execute.

PROOF OF CONCEPT

Now that we had established what we wanted to accomplish, we needed to prove that it was feasible. We
knew that we were going to need a vendor partner, as the MDR component would require the kind of
software development expertise that is not prevalent within a sponsor company. There are several MDR
products on the market, but we knew none would meet our exact needs out of the box. So we conducted
parallel proof of concept projects with the following parameters:

 We would choose one Lilly study, and de-identify the raw, SDTM and ADaM data from that study.

 Select 3 ADaM data sets from the study (ADSL, plus one BDS class and one OCCDS class data
set).

3

 Identify all SDTM domains needed to support those ADaM data sets selected. There were 11
domains needed.

 Identify all raw data sets needed to support those 11 SDTM domains. There were 17.

 Design a metadata model to hold the transformation metadata needed to enable automation. This
design was done internally

 Build generic macros and a programming process to utilize the metadata to create the SDTM and
ADaM data sets. These were built internally

 Select 2 vendor partners to build the MDR component: one vendor which would be developing a
new system from scratch, and one vendor with an on-the-market MDR product that would be
customized for our needs.

 Provide the same metadata model to both vendors.

 Set a 3 month window to complete the project.

The outcomes that we were looking to analyze were:

 Could the MDR product hold all of the metadata needed for the global standards for those in-
scope items, including the transformation metadata for building SDTM from the raw data and to
build ADaM from the SDTM data?

 Could the MDR hold the study-level metadata separate from the global standards?

 Could linkages between the standards (DED->SDTM, SDTM->ADaM) be demonstrated?

 Could the metadata be extracted in both machine-readable and human-readable formats (note,
this could either be one format readable by both machines and humans, or two separate
formats)?

 Could we use the macros developed and the programming process to recreate the selected
SDTM and ADaM data sets? If so, what percentage of variables were we able to automate? The
percentage was calculated by finding the total number of variables across all of the SDTM
domains (counting a QNAM in a supplemental data set as a variable), then measure how many of
those variables were created by the generic macros without need for custom code related to that
variable. A similar calculation was done for ADaM.

Ultimately both parallel projects were successful. Both MDR solutions were able to demonstrate all of the
points above, and the same level of automation was achieved with each solution. Those levels were 96%
of the SDTM variables, and 81% of the ADaM variables. While we do believe that the level of SDTM
automation will stay at or near that level once expanded out to our entire portfolio, we do anticipate that
the level of ADaM automation will drop when expanded out.

Either product could have potentially been part of our solution. We chose to implement the on-the-market
MDR product, which was the TCS ADD Metadata Repository offering from Tata Consulting Services
(TCS).

With the concept proven, and the vendor partner chosen, we could begin the real journey to SDTM
automation gains. Internally, we branded this effort as STAMP, which stands for STandards Automation
Metadata Process. The STAMP branding encompasses the MDR, the macros, and the entire process
built around them.

THE METADATA

Serving as the engine, the transformation metadata is the catalyst for the rest of the system. While this
paper will not exhaustively explore all the metadata concepts in STAMP, it will highlight the most critical
concepts.

DOMAIN LEVEL METADATA

4

Metadata is stored about each SDTM domain. Some of the key domain level metadata elements are:

 The name of the domain

 The domain label

 The name and label of the supplemental data set (if any) for the domain

VARIABLE LEVEL METADATA

Attributes are also defined for each variable within a domain. Note that STAMP treats QNAM values
intended for the supplemental data set as a domain variable. Thus, the variables listed in a domain
contain both the variables in the parent data set (i.e. AE) and the possible QNAM values in the
supplemental data set (i.e. SUPPAE). Some of the key variable level metadata elements are:

 Variable name

 Variable label

 Type (character or numeric)

 Length

 Order that the variable should appear in the domain

 Whether the variable is required (Y/N)

o Note that this slightly different than the CDISC CORE attribute definition. While any
variables with a CORE attribute of REQUIRED or EXPECTED will have a Y value for this
attribute, we may also consider some variables with a CORE attribute of PERMISSIBLE
or suppqual variables as required.

 Is the variable a suppqual variable (Y/N)

o When Y, this indicates the variable will be output as a QNAM in the supplemental data
set instead of in the parent data set of the domain.

 Acceptable Null Percentage (0-100)

o This attribute defines a maximum percentage of records that should realistically have a
null value, assuming this variable is being populated in the domain. This is used in a
check during the macro execution. A message is generated anytime the percentage of
records with a null value exceeds the acceptable null percentage, as that could indicate
an issue with either the specifications or the programming.

 Sequence Variable

o This attribute is used to identify which variables should be used in the sort step when
creating the xxSEQ variable for the domain.

 Drop From XPT (Y/N)

o This attribute highlights one of the innovations within STAMP. A variable can be defined
as part of the SDTM domain that is in the output data set but not included in the .xpt file.
This allows us to make the SDTM creation process more efficient in the following ways:

 Record level traceability is enabled. This is a concept that we are borrowing from
ADaM and applying to SDTM. Additional variables are added to identify where in
the raw data a particular record comes from. When data issues manifest and are
first caught in SDTM, this can help you more quickly identify the source in the
raw data.

 Creation of the RELREC domain is more efficient by not treating it as a silo. For
example, a form that collects concomitant medication data (which thus maps into
the CM domain) might collect the group id of the adverse event the medication

5

was given in response to. That should result in a pair of records being created in
RELREC to link a record in CM (the concomitant medication) to a record in AE
(the adverse event the medication was given in response to). In STAMP, the
information about the adverse event is included in the CM domain. After all other
SDTM domains have been created, a RELREC-related macro runs which checks
all other SDTM domains for such relationship-type variables, and uses them to
create paired records in RELREC. This is much more efficient than RELREC
processing going back to the raw data to find such relationships, and then
reverse-engineering the location of those records in SDTM.

 Similar to RELREC, when a comment is collected on a form that comment is
included in the domain. For example, if a comment was collected on a lab record,
that comment is included in the LB domain. After all other SDTM domains are
created, a comments macro runs to harvest all of these comments and create
records in the comments domain (CO).

o Because the .xpt files are the files included in a regulatory submission, and also used for
running validation in Pinnacle21 Enterprise, dropping the variables from the .xpt files
creates no validation or submission issues.

o To ensure these variables are not inadvertently used during ADaM creation, the variable
name themselves include the characters NO_USE_IN_ADAM. Note that because the
variables are not included in the .xpt file, they are also not subject to a variable name
length limitation of 8.

TRANSFORMATION METADATA

The transformation metadata is stored at a level of one record per SDTM variable per TAGGED_FORM.
A TAGGED_FORM in STAMP is an input data set that is contributing records to the SDTM domain. By
storing the transformation metadata in this manner, it allows the metadata to be both extremely granular
and allows for easy import from global standards to study level specifications. Note as well, every SDTM
variable has transformation metadata populated for every TAGGED_FORM, even if that particular source
does not collect anything that populates that particular variable. This ensures there is never any question
about whether the variable was overlooked in the transformation metadata mapping process.

Some of the key elements of the transformation metadata are:

 Transformation type.

o This is the most important element of the transformation metadata, as it is what drives
what type of logic is used to populate that SDTM variable for records coming from that
TAGGED_FORM source.

 Approximately 100 transformation types were created as part of the STAMP
system.

 Some are highly reusable across many variables in many domains.
Examples of this include:

o DIRECT – used when an input variable has the exact value
needed in the output SDTM variable

o CONSTANT – used when all output records should have the
same constant value

o NULL – used when all output records should have a null value.

o CONCAT – used when multiple input variables should have their
values concatenated.

 Some are used for a specific type of variable across multiple domains.
Examples of this include:

6

o EPOCH – used for our default logic for deriving EPOCH

o STUDYDAY – used for variables that are expressing the amount
of time between the subject’s reference start date and the data
point.

o SEQ – used to create the xxSEQ variable

 Some are very specific to particular SDTM variables and/or
TAGGED_FORMS.

o The transformation type determines whether the variable will be created automatically by
one of the STAMP macros, or whether it will be created by custom code from the study
team.

o It will determines (along with additional metadata mentioned below in some cases) when
the variable will be created during the programming flow.

 Input Library

o Only relevant for certain transformation types, this identifies the library the input data is
located in. Typically the values will be either:

 RAW – indicating the data is in the raw library

 SDTM – indicating the data comes from another SDTM domain, or is dependent
on another variable within the same domain

 Input Data set

o Also only relevant for certain transformation types, this identifies the name of the data set
containing the input data

 Input Variable

o Also only relevant for certain transformation types, this identifies the name of the input
variable.

 Additional parameters

o Some transformation types require additional parameters to be populated in order to give
the macros all of the information needed to create the variable. These parameters vary
depending on what the transformation type is. For example, the CONCAT transformation
type contains the following parameters:

 CONCAT_VARS – the names of the variables to be concatenated, listed in the
order they should be concatenated

 PREFIX – the prefix to put on the output value, if any

 SUFFIX – the suffix to put on the output value, if any

 DELIM – the delimiter used to separate the values in the output, if any

MISCELLANEOUS METADATA TABLES

Additional tables are needed to store metadata for other special cases. A few of these tables include:

 TRANSPOSE

o In situations where a single input record can create multiple output records, some
variables in the SDTM domain may require different logic across those output records.

 For example, a questionnaire with 10 questions will create 10 output records.
The logic to populate variables such as QSTESTCD, QSTEST, QSORRES, and
potentially other variables will differ across those 10 records.

7

o The transpose table identifies the key variable that triggers the creation of the output
record, and then contains the transformation metadata for each of the impacted SDTM
variables.

 Using the same example as above, TRANSPOSE would have a row for each of
the 10 questions. Within that row it would define how QSTESTCD, QSTEST,
and QSORRES should be populated on each of those output records.

 CT_CONVERT

o In situations where an input variable does not contain the values needed in the output
variable, but each value in the input variable can be mapped to a specific output
variable, CT_CONVERT holds that input value-output value mapping.

 UNIT_CONVERSION

o Holds the formulas for converting from one input unit of measure to another.

ROBUST STANDARDS

For a system like STAMP to be possible, you need a robust library of standards to driver your data
collection. This provides the sources for the transformation mapping. It is also critical that those data
collection standards are followed at the study level, thus they must be a built with an appropriate level of
flexibility. Lilly has maintained data collection standards for many years, so this wheel was available when
the STAMP project began.

METADATA REPOSITORY

As mentioned earlier in the paper, Lilly partnered with TCS for the metadata repository element of the
project. This partnership included significant customization of the MDR to allow it to store the specific
metadata model designed for this SDTM automation solution.

The metadata repository is a key component because trying to maintain metadata with this volume and
level of granularity would be extremely difficult to do using spreadsheets or other similar technology. The
metadata repository not only provides a robust database to store all of this metadata, it provides a user
interface that includes built-in functionality that improves the quality of the metadata being maintained.
For example, when populating transformation metadata, the transformation type column is populated via
a drop down, meaning the user does not need to memorize the exact name of each transformation type.
When the transformation type is selected, if any additional parameters are defined for the transformation
type they appear in a dialog box which includes a description of each parameter. Another example is that
any input variable being selected is done through a dialog box that connects to the standard for that
source (whether that source is a DED or an SDTM domain), so the user is selecting from a list of
variables instead of typing in the variable name.

But perhaps the biggest advantage of using a metadata repository is that the metadata itself can be
linked. This provides two major advantages. The first is that it makes assessing the impact of changes to
standards feasible with little effort. For example, if a change is being considered to a variable on a DED,
you can very quickly find what SDTM variables are using that variable. The other advantage is that the
metadata repository contains a study-level module for SDTM specifications. Because the metadata is
linked, and the transformation metadata is so granular, SDTM specifications become a much less time-
consuming task. Simply selecting and importing the data collection standards being used for the study
and executing a function within the metadata repository (which takes approximately fifteen minutes to
complete) will import in all needed SDTM domain metadata and transformation metadata from the global
standards. At that point the SDTM specifications are 90-95% complete, as the only parts that require
updates are things that are very protocol specific, such as applying the correct arm codes in
demographics, defining how elements start and stop in the Subject Elements (SE) domain, timepoint
information from protocol schedules, and defining constant dosing intervals in the Exposure (EX) domain.

8

While only a small percentage of the specifications will need to be updated on a typical study, the study
team has complete access to update any of the metadata at the study level. This allows the study team to
have the flexibility to react to any scenario faced by the study.

Once SDTM specifications are completed, they are exported from the MDR and saved in our statistical
computing environment, where they serve as the metadata driving the SDTM creation. Any changes to
the specifications needed after initial completion are made in the MDR and then re-exported.

AUTOMATION MACROS AND THE PROGRAMMING PROCESS

These two concepts will be discussed together, as they are highly intertwined.

Each study follows the same programming process. The programs used in the study consist of a driver
program that calls programs for individual domains (in some cases, inter-related domains may be
processed within the same program).

DRIVER PROGRAM

The driver program sets all of the paths needed, sets all options needed (ex. Version of the MedDRA
dictionary), and calls the first STAMP macro in the process, SDTM_SPEC_IMPORT.

SDTM_SPEC_IMPORT reads in the specifications file (which was exported from the MDR) and prepares
that metadata for use by the rest of the process. Below are a few examples of the types of functionality
included in this macro:

 Checks all specifications metadata for completeness, and generates messages for any potential
issues:

o Example: if a particular row of transformation metadata is using the CONCAT
transformation type, but the CONCAT_VARS parameter is not populated, generates a
message.

 Compares the transformation metadata against the data in the raw library, and makes
adjustments on the fly based on what it finds:

o Example: one of our AE DEDs includes a variable that collects the related imaging agent
of the adverse event. The SDTM AE variable AERLIMA stores this information, and the
transformation type to populate AERLIMA is DIRECT (meaning the input variable
contains the exact value needed in the output variable). However, this item on the DED is
not mandatory. If a particular study uses this AE DED but did not include this variable, the
transformation metadata for AERLIMA for this form will get changed on the fly to a NULL
transformation type.

o Another example: many DEDs have both a date and time variable, but the time is often
not mandatory and is frequently not collected on the study. xxDTC variables in SDTM
should contain both date and time if both are collected, and typically the transformation
metadata for xxDTC variables will use the DATE transformation type. DATE has a
parameter that lists either a single variable (if only date is collected) or two variables (if
date and time are collected). If SDTM_SPEC_IMPORT finds that the time variable is not
present in the raw data, it will remove it from the parameter so only the date variable
remains.

o This saves tremendous time in the specification definition process. Instead of manually
spending time to adjust the specifications based on whether optional variables were
included in the data collection, the SDTM specifications can assume all variables are
included and let SDTM_SPEC_IMPORT adjust the specifications based on what is
actually contained in the raw data.

o This also means SDTM specifications do not have to be adjusted if a post-production
change in data collection adds a variable into a form.

9

 After all such adjustments are made, drops any SDTM variables that contain only NULL
transformation types in the transformation metadata.

o SDTM variables do not have to be manually from the specifications if none of the input
sources used in the study are populating that variable.

 Compares all variables contained in the raw data library to a complete list of variables used in the
transformation mappings, and generates a list of any variables not used. These could represent
an oversight in the SDTM specifications.

 Determines which macro will create the variable (based on the transformation metadata).

DOMAIN PROGRAMS

The driver program calls programs for each of the domains required for the study. At the end of the
program execution, the full SDTM domain is available, data sets and .xpt files for both the parent data set
and (if applicable) the supplemental data set.

While a few domains have specialized processing, most follow the same basic logic flow. That logic flow
involves consistent use of a small number of STAMP macros, with opportunities to insert custom code in
between those macro calls. This logic flow is what enables such a high degree of flexibility. And because
the macros themselves are 100% metadata driven, most changes to SDTM specifications will not result in
a need to update the programs themselves. The macros are using the metadata to drive the creation and
execution of code to produce the output data sets every time they are executed. So while a specification
change will typically result in a macro producing and executing different code, it rarely results in the need
for a human to update the domain program itself.

Below is an example of a typical domain program. This is the actual program used to create the medical
history domain (MH) in the proof of concept. For context, the MH program in the original study used in the
proof of concept project consisted of approximately 240 lines of code:

%mh;

%sdtm_raw_data_process(domain=mh, prid=mhpresp1001);
%combine_sdtm(domain=mh, prid=mhpresp1001,
input_dataset=mh_mhpresp1001_mac1output);

%sdtm_raw_data_process(domain=mh, prid=mh7001);
%combine_sdtm(domain=mh, prid=mh7001, input_dataset=mh_mh7001_mac1output);

%seq(domain=mh, input_datasets=mh_mhpresp1001_mac2output
mh_mh7001_mac2output);

%sdtm_output(domain=mh, input_dataset=mh_seq_output);

%mend mh;

As you can see, the amount of code needed is greatly reduced. In this example, the domain was 100%
automated, as no custom code was needed to create any of the SDTM variables. If custom code had
been needed to derive any variables, it simply would have been inserted in between two of the macro
calls. Below is a summary of each of the macros appearing in the code above:

 SDTM_RAW_DATA_PROCESS

o Is run for a specific input data set

o If more than one input data set is contributing records to the domain, this macro will be
called separately for each of these input data sets.

o Will create any SDTM variable that only depends on information available in the raw data.

10

 Which variables those are is determined by SDTM_SPEC_IMPORT based on
the transformation metadata.

 In most instances, the majority of SDTM variables are created by this macro.

 COMBINE_SDTM

o Is run for a specific input data set

o If more than one input data set is contributing records to the domain, this macro will be
called separately for each of these input data sets.

o Takes a data set in the work library as input

 If no custom code is needed, this will be the data set output by
SDTM_RAW_DATA_PROCESS.

 If custom code is needed, this will be the data set in the work library which
contains both the variables created by SDTM_RAW_DATA_PROCESS and the
variables derived in the custom code.

o Will create variables that depend on information contain in other SDTM domains, or that
depend on another variable within this domain.

o Which variables those are is determined by SDTM_SPEC_IMPORT

 SEQ

o Is run only once for the domain

o The input is one or more data sets in the work library containing all SDTM variables for all
input sources. If more than one data set is input, appends into a single data set.

o Creates the xxSEQ variable for the domain

 SDTM_OUTPUT

o Is run only once for the domain

o The input is a data set that contains all SDTM variables for the domain.

o Applies all attributes (labels, lengths, variable order, etc.)

o Conditionally drops variables with only null values.

o Outputs both the parent (i.e. MH) and supplemental (i.e. SUPPMH) data sets and .xpt
files.

OTHER BENEFITS

Besides the high degree of automation, this process also provides additional benefits to the study team.
This include:

 Issue checking

o Each macro used in the process is checking for potential issues, and generates
messages around those issues. At the end of the driver program, those messages are
output in an excel file. The excel file is nicely organized into three tabs, one which
contains issues that must be resolved, one which contains issues that must be reviewed
(and may need to be resolved), and one is just informational and thus not require review.

 Define.xml metadata

o Because all of the specifications and output data are available, each time SDTM is
created or refreshed, the define.xml metadata is output automatically without any
additional steps needed by the study team.

11

GETTING STARTED

Because the entire process is driven by the metadata in the SDTM specifications, once those
specifications are completed the creation of the programs needed is largely automated. At the beginning
of a study, a macro called BUILD_FIRST_DRAFT_PROGRAMS is called which reads in the
specifications metadata and builds first drafts of the driver and domain programs. This includes
placeholders and/or initial values for all paths/options in the driver program, calls to the domain programs
in the driver program, all macro calls within the domain programs, and comments inserted for all variables
requiring custom code. With this single macro call, approximately 95% of the SDTM programming is
complete.

A NOTE ABOUT SDTM VALIDATION

Within the STAMP process, SDTM data is validated via independent replication. Two versions of each of
the STAMP macros were created, each written independently. One version is for use in the primary-side
programming for a study, and the other is for use in the independent-replication side programming. This
allows independent replication to occur, but with both sides getting the advantage and time savings of
automation.

CONCLUSION

In conclusion, this is an exciting time at Lilly. The work to build the SDTM automation portion of STAMP is
complete, and our first live studies using the STAMP process have just had first patient visit as of the time
this paper was written. The journey isn’t over, but it has reached an important milestone that will allow us
to start reaping the benefits of SDTM automation.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Keith Hibbetts
Eli Lilly and Company
Keith.hibbetts@lilly.com

Any brand and product names are trademarks of their respective companies.

