
1

PharmaSUG 2023 - Paper MM-040

Gear up the Metadata – Automating Patient Profile Generation, a Metadata
Driven Programming Approach

Tanmay Khole, Aman Sharma, Lili Li, PTC Therapeutics, Inc.
Durga Prasad Chinthapalli, TechObserver

ABSTRACT
Patient profiles are individual reports of subject’s clinical data and provide a great benefit to clinical or
medical teams when performing an on-going review in a clinical trial project. These reports are customized
per reviewer’s requests when safety, efficacy, and other key significant data points vary for each study
design. The programming challenges for generating patient profile reports include the accommodation of
variances in data source, structure, mapping, quality, and the customization in report outputs and formats.
The application featured in this paper is an MS Excel VBA based utility featuring a user-friendly interface
that uses SAS® macros in the backend with a robust design to analyze all clinical trials data in CDSIC
SDTM or ADaM format and generate patient profiles by GUI. The SAS® macros are designed by
implementing metadata-driven programming approach where the users only need to use the metadata
specification and the VBA based utility to generate patient profiles without the core programming
conventionally required.

INTRODUCTION
Patient profiles are individualized displays of key datapoints for each patient. They are sometimes equated
to case report form tabulations (Ritter, 2011). However, they are, and should be, more than case report
form tabulations. Patient profiles are more customizable to include safety, efficacy, and other key significant
data points of clinical interests. With this more focused scope, patient profiles usually include, but not limited
to, only key SDTM domains (i.e., LB, AE, VS, CM, MH) and critical ADaM data sets. Moreover, patient
profiles serve a wider range of purposes for different teams. For instance, data management team can use
the patient profile reports to monitor the data integrity; safety team can utilize the patient profile reports to
oversee the safety of ongoing treatments; medical writing team can refer to patient profile reports to
generate narratives; or, the clinical team or medical monitors can get a general overview of the ongoing
study from data points reported in the patient profiles (Conover, 2011; Fahmy, 2006). Last but not the least,
patient profiles can be more illustrative than simple case report form tabulations as patient profiles can
include graphs to visualize the patterns and trends.

While patient profiles are beneficial as discussed above, the generating of patient profile reports can be
challenging and time-consuming. The first challenge is that the statistical programmers need to take the
variances of data sources, structures, mapping, and data quality into account when they produce the
reports. For instance, some most commonly used data sets for patient profiles include DM, AE, CM, VS,
and LB domains from SDTM model. Among these domains, some of them are simple by-subject structure
(i.e., DM), while others are more complex per measurement per time point per visit per subject structure
(i.e., VS, LB). Moreover, when ADaM data sets or even EDC are requested into patient profile reports
(Desai & Collins, 2015), it introduces even more complexity into the programming logics and techniques.
This will require the production programming to be holistic yet flexible enough to preserve multidimensional

2

data from different data sources for each subject. The second challenge in patient profile programming is
to make reports more readable and effective in delivering the information in various output formats. For
instance, highlights of changes from the last data extraction are preferred. While various sorting orders is
another common request to make it more effective from different teams who want to check different patterns
of their interest.

This paper will introduce an easy-to-use application that can smoothly tackle the challenges mentioned
above, providing a one-click solution for patient profile production using metadata. By utilizing a GUI based
on MS Excel VBA, the SAS macros in the application will automatically run in the backend when the
corresponding patient profile specification is properly set up and the driver calls the macro to execute. In
another words, instead of requiring advanced SAS programming knowledge and techniques, this
application requires minimal knowledge of SAS programming and maintenance from the end-users and
can be adopted by a much broader team of users.

OVERVIEW OF THE APPLICATION
The production of patient profiles consists of multiple working blocks in the application. It starts with
specification file on the MS Excel Macro-Enabled Workbook file (XLSM file) where the VBA driver is also
located. The VBA driver serves to call the SAS macros in the program folder to be executed.

As the working block diagram shown in Display 1, the driver (GUI) is the central control that corelates the
mapping specification and the SAS macros where the specification file locates and annotates what data
points to be included from the source data set (i.e. SDTM data) into the final output that the SAS macro
need to produce. The SAS macro will generate the individual reports in PDF format for each subject. In
addition, an index file with hyperlink to each individual file and a zip file with combined reports will also be
generated automatically. In addition to reports & zip file generation, automatic notification emails to inform
the start and end of execution will also be sent to the user of this application.

3

Display 1. Software Used in Development

Display 2 provides information for data processing flow through various modules in this application. In the
initiating stage at the Driver, output specification, data extraction date, population filter, and the working
folder location are read in and passed along to the preparation module where primary check of the dataset
location and folder creation/confirmation is performed. When the primary information is ready, the spec
reader macro module parses and identifies panel information and data points to produce the subject
datasets and PDF outputs before the last stage where those outputs are combined into the final reports
package with an index file in a zipped file.

Display 2. Process Flow

SPECIFICATION FILE
The specification file is embedded in an MS Excel Macro-Enabled Workbook file (XLSM file). The end-
users, including users without extensive knowledge of SAS, can select their desired data points and set up
the panels directly in the XLSM file, which later can be readily imported by the programmers into SAS to be
processed without any special transcription or editing. In this process, both end-user side and programmer
side can track and maintain the project in one place, thus having better traceability.

For the specification file component, there are two separate sheets for different purposes: the panel
specifications, and the header/footnotes specifications.

4

To set up the panel specifications it follows a simple formatting rule. Take the example below as an
illustration. The first column is the panel information column – Panel 1 for subject stratification information.
In this panel, five data points will be reported, in green font. The first row is the output panel label row. The
second row is the input source data row. In this example, panel 1 source data is from SDTM DM domain,
while the prior therapy lines data point is referring to PRIORLIN variable in the DM domain. Similarly, the
rest of the data points are mapped from DM domain with the respective variables. The output of panel 1
can be seen in display 3.

Panel 1 –
Stratification
Information

Number of Prior
Therapy Lines

Diagnosis
Cancer Type

Number of
Prior Systemic
Therapies

ECOG PS
Score

Histological
Tumor Type

 SDTM.DM DM.PRIORLIN DM.CANTYP DM.STRAT1 DM.STRAT2 DM.STRAT3
Table 1. Sample Panel Specification

Display 3. Sample Panel Output

While for the header specifications, it follows a fixed template where the requesters only need to enter what
labels and corresponding variable names are needed. For example, to produce the following header format
(Display 4), the specifications following the sample are displayed in Table 2.

Display 4. Sample Report Header

In the header specification template, there are configuration columns for left, center, and right sections
respectively. For each section, there are three rows of content can be configured. Take the sample below
as an illustration: The Subject ID will be displayed in the upper right corner, with the displayed label “Subject
ID:” and the corresponding SDTM variable “DM.SUBJID”. Similarly in the middle row (title_num = 3), left,
center, and right sections will respectively display this subject’s country and site ID information, the study
protocol information, and the basic demographic information as chosen by the request (in this case, age,
sex, and race). Of course, if you want to include more information in the header section, you can utilize the
lower row (title_num = 4) for additional reference data points.

Company
Logo

5

Title_Num Text_Left Value_Left Text_Center Value_Center Text_Right Value_Right

2 Subject ID: SDTM.DM.

SUBJID

3 Country/Site
ID:

SDTM.DM.CO
UNTRY/SDT
M.DM.SITEID

Study ID: SDTM.DM.

STUDYID

Age/Sex/Race: SDTM.DM.AGE|
/|SDTM.DM.SE
X|/|SDTM.DM.R

ACE

4

Table 2. Sample Header Specification

STANDARDIZED DATA MAPPING RULES
The example above is the most basic type where the data points are from a source data set with no filter
or merging needed. When it comes to more customization, the mapping rules for the patient profile
specification are also simple and straightforward. There are only four mapping key words needed in the
specification that can be identified and executed by the SAS macros later:

KEY WORD PURPOSE
~where Filter out information needed
~mergevar Denote variables to be used as merging keys
~sortvar Customize sorting order (can have more than one sorting variable in one panel)

| Concatenate multiple data points in one cell

Table 3. Mapping rules in Specification

With these four customization key words, more complex data manipulation can be accommodated. Below
is an implementation example where an occurrence data set is converted from vertical structure into
horizontal data structure while keeping only the reported data points in the output and sorted by the exam
visit date as requester desired.

Panel 1 -
ECG

Visit ECG Date Overall Interpretation PR Interval (msec)

SDTM.EG EG.VISIT
~mergevar

EG.EGDTC
~sortvar1~mergev
ar

EG.EGSTRESC
~where EGTESTCD="INTP"

EG.EGSTRESC
~where
EGTESTCD="EGPR
"

Table 4. Mapping Customization Example

6

PATIENT PROFILE DRIVER
The Patient Profile Driver is a GUI based on the MS Excel VBA for the end-users. As shown in the
screenshot below, the Driver includes a form format designed to capture necessary input from users to
generate the patient profile reports, and the click-button section to execute and operate the utility.

Display 5. VBA Interface as the Patient Profile Driver

Details of the form component and the functions of button options are presented in Table 5:

Type/Category Description Required
Reporting Event Field to point the location of study programming area for a

deliverable, example CSR or IA.
Yes

Create Panel Listings Option to create panel data in excel format for all subjects. The
excel file will contain

No

Data Extract Date Data extraction date of EDC or Cutoff date Yes
Previous Data Extract
Date

Prior data extraction date use for comparison purpose to highlight
data changes/updates

No

Population Filter Filter to apply conditions to select subject population No
Create CSR Listings Converts panels into subject listings per CSR format No

Table 5. Driver Form Details

Button Description
Generate Patient Profile Button to start utility
Patient Profile SharePoint Button to open the SharePoint webpage consisting of information

regarding patient profile utility, user documentation, FAQs, etc.
Contact Support Button to open a message box listing out contact details of SME group

Table 6. Driver Button Details

Company
Logo

7

With this information, the output is automatically saved in designated sub-folders by default. The “Data
Extraction Date” is required not only for annotation purpose in the report outputs, but also for the application
to automatically detect any immediate recent data set in this same report folder and generate a
comprehensive comparison in the output where any changes or newly added data values are highlighted,
thus, making it easier for the reviewers to detect changes if they need to compare from previous report.

The other four menu items on the driver are all optional. For the “Create Panel Listings” and “Create (CSR)
Listings” options, there are drop-down list of Yes/No to choose from. The panel listings are individual listings
for each designated panel for each subject. They are SAS data set format, and mostly for QC or
programmer review purpose. The CSR Listings, on the other hand, are combined listings of all the subjects
per each panel in the rtf format that can readily be used as CSR appendix items. The “Previous Data Extract
Date” is for the comparison not with most immediate recent data cut. For instance, one might want to
compare the current data cut to a milestone data cut in the further past instead of the most immediate
recent data cut. Lastly, the option of “Population Filter” is to provide the flexibility of including only desired
sub-set of the study population. For instance, as shown above, the screen failure subjects will be excluded
from the report.

Once the configuration is completed, by clicking the “Generate Patient Profiles” button on the driver as
shown above, a well-organized patient profiles report is generated.

VBA Code for GUI
VBA coding syntax is different from SAS programming language, but the code below is easy to follow. For
instance, there are five major functions to achieve at the VBA module here. First task is to properly identify
the deliverable folders:

RE_FolderName = Worksheets("Driver").Range("D8").Value
PP_FolderName = RE_FolderName & "\" & "patient_profile"
PP_FolderExists = Dir(PP_FolderName, vbDirectory)

Once the deliverable folders are identified, key working folder locations and reporting structure is
configured:

 Sub MakeMyFolder(orgFld As String)

 Dim fdObj As Object
 Application.ScreenUpdating = False
 Set fdObj = CreateObject("Scripting.FileSystemObject")

 If fdObj.FolderExists(orgFld) Then
 'MsgBox "Found it.", vbInformation
 Else
 fdObj.CreateFolder (orgFld)
 'MsgBox "It has been created.", vbInformation
 End If

 Application.ScreenUpdating = True

 End Sub

 MakeMyFolder (PP_FolderName)
 MakeMyFolder (PP_FolderName & "\data")
 MakeMyFolder (PP_FolderName & "\data\adam")
 MakeMyFolder (PP_FolderName & "\data\sdtm")

8

 MakeMyFolder (PP_FolderName & "\data\sdtmplus")
 MakeMyFolder (PP_FolderName & "\output")
 MakeMyFolder (PP_FolderName & "\pgm")
 MakeMyFolder (PP_FolderName & "\spec")

When the infrastructure configuration is set up as shown above, the SAS macro modules to execute the
actual production of profile reports are called, and the final batch-run is performed: Below is the VBA code
to call subroutines to create SAS programs and execute them in batch mode.

Call Createcallpp(batflnm:=PP_FolderName & "\pgm\call_pp.sas",
folderLoc:=PP_FolderName & "\pgm")
Call Createcallmchklog(batflnm:=PP_FolderName & "\pgm\call_mchklog.sas",
folderLoc:=PP_FolderName & "\pgm")
Call CreateAfile(batflnm:=PP_FolderName & "\pgm_runall.bat",
folderLoc:=PP_FolderName & "\pgm")

 execBat (PP_FolderName & "\pgm")

In the following section, the key SAS macro modules that execute the actual production of profile reports
will be discussed in more detail.

PRIMARY PROGRAMMATIC CHECKS
As shown in Display 2, primary check is the first step in preparation stage. These are the checks which
prevent the running of entire code if an error occurred because of the user entries in the specifications.
Such checks save time and inform the user of the correction(s) needed for successful execution of the
macro.

The code section below checks that the library and the dataset specified exist for code processing. We use
two functions to realize the purpose here: The LIBREF function checks for the library and the EXIST function
checks for the dataset.

 %macro chk_lib(Lib=,DSN=);
 %let LIBEXISTS=0;
 %IF %SYSFUNC(LIBREF(&LIB)) = 0 %THEN %Let LIBEXISTS=1; ;

 %Let DSNEXISTS=0;
 %IF %SYSFUNC(EXIST(&DSN)) > 0 %THEN %Let DSNEXISTS=1;
 %Put 1=YES, 0=NO;
 %Put &LIB. EXISTS? &libexists;
 %Put &DSN. EXISTS? &dsnexists;
 %mend chk_lib;

The next check is the panel numbering. Every panel should have a unique number for it and is a positive
integer in sequential order beginning from 1. Below is the code section to check for the duplicate panel
numbering and aborts the run if the same panel number is repeated more than once: The data set pp_spec
is the imported data set based off the specification spreadsheet introduced above. The SCAN function
extracts the panel number from the panel header and the FREQ procedure finds the count of each panel
number. The count > 1 indicates a repetition of panel number and triggers an error message to log and
abort the program execution.

9

data pp_spec1;
 set pp_spec(rename=(&_rnm_vars.));
 where &col1_name. ne '';
 &col1_name. = strip(&col1_name.);
 if index(upcase(&col1_name.), "PANEL") > 0 then
 grpnum = scan(&col1_name.,2);
run;

proc freq data=pp_spec1 noprint ;
table grpnum / out=chk_panel(where=(count>1));
 where grpnum ne '';
run;

proc sql noprint;
 select max(grpnum) into: grpnum_chk
 from chk_panel
 ;
quit;

Below section of code checks for the sequence of the panel number that must start from 1. A loop is run
starting from 1 to the maximum of the panel number. As the loop runs, it checks for the panel number
corresponding to the index variable value and assigns a macro variable gnum_err. If the index variable
value does not match with the current panel number, it means the numbers are not in sequence and the
macro variable gnum_err is set to missing which is a trigger to abort the macro.

%do j =1 %to &max_gnum. ;
%put J iteration = &j. ;
data panel&j.;
set pp_spec2;
 where gnum = &j.;
 rownum=_n_;
 if rownum=2 then
 lib = substr(&col1_name., 1, index(&col1_name., ".")-1);
run;

proc sql noprint; select max(gnum) into: gnum_err from panel&j.; quit;

%if &gnum_err < 1 %then %do;
 %put ERROR: User has not specified the panel numbers in sequential order
from 1.;
 %put User Note: Update spec to sequential panel number from 1.;
 %put User Note: Macro will now EXIT.;
 %goto exit;
%end;
%end;

10

AUTOMATED FOLDER CREATION
This module of the tool focuses on creation of the multiple folders when the tool is initiated. When the user
clicks on “Generate Patient Profiles” button and “Reporting Event” path is specified in the Patient Profile
Driver GUI, the module works by detecting the path from the working folder to determine if a “Patient Profile”
folder exists, VBA code snippet and subroutine are provided in VBA Code for GUI and appendix section
respectively. If the folder does not exist, the application will create one with proper sub-folders included. If
the “Patient Profile” folder is detected, but no dated output sub-folder exists under the deliverable folder
path, this application will also automatically create a sub-folder using the data extraction date. Towards the
end when the tool is ready to output the Individual subject profile data, individual folders for each subject
will also be created under the dated output sub-folder.

Display 6. Automated Folder Structure Generated by the Application

%macro your_macro(dir);
 %let rc = %sysfunc(filename(fileref, &dir.));
 %if %sysfunc(fexist(&fileref)) %then %do;
 options dlcreatedir;
 libname crtdir "&projloc.\output\&currexdt._Data Extract\&fdate";
 %end;
 %else %do;
 options dlcreatedir;
 libname mandir "&projloc.\output\&currexdt._Data Extract";
 libname crtdir "&projloc.\output\&currexdt._Data Extract\&fdate";
 %end;
 %put syserr = &syserr.;
%mend your_macro;

11

EMAIL FUNCTIONALITY
Patient profile application has a feature to send out emails to user when the utility starts and ends. This
helps to avoid the need of continuous monitoring while the application is processing the data, automatic
email notifications will be sent to the users and identified key stakeholders: one at the initiating timepoint to
notify the users with beginning of patient profiles production, while the other at the end of the execution to
report possible errors that came up during the process or to notify successful production of a patient profiles
report for a request. Sample codes for producing automatic email notification with log error identified as
attachment are shared below:

proc options group=email; run;
 options
 emailsys=smtp

 emailhost=mail.domain.com;
 filename msg email
 to="&sysuserid@domain.com"

 from="&sysuserid@xyz.com"
 subject = "&projfold - Patient Profile Run Started";
 data _null_;
 file msg;
 put "Waiting on Program execution completion.”
 Put “Notification email of completion will follow.";
 put "Data Extract Date is: &currexdt";
 %if %length(&prevexdt) > 0 %then %do;
 put "Previous Data Extract Date is: &prevexdt";
 %end;
run;

Display 7. Sample Email Notification of Successful Run

12

RETRIEVE AND PRE-PROCESS DATA
Though non-standardized data gives more flexibility, it comes with a cost of additional data processing as
they vary from study to study and sometimes even the EDC system changes the process. Due to these
limitations, standardized data format i.e., SDTM and ADaM are preferred. Using standardized datasets, the
same application can be employed at different studies or even in different therapeutics areas. Therefore,
this approach significantly cuts the time and resources needed to produce the set of patient profile reports
for any request if the standardized data sets are available.

This module accesses the SDTM and ADaM datasets stored in the project folders and copy them into the
deliverable folder where a series of steps are performed for datasets to be ready for later use in the process.
Moreover, the utility combines all the SDTM supplemental domains with the parent domain and converts
all numeric values across SDTM and ADaM datasets into Character variables to ease data formatting and
creation of the outputs.

%macro Convert_SDTM_Num_2_Char;
%let i=1;
%do %while(%scan(&_ds,&i) ne);
 data _null_;
 set sashelp.vcolumn(keep=libname memname name type where=(libname='SDTM'
and memname="%upcase(%scan(&_ds,&i))")) end=last;
 if _n_ eq 1 then call execute("proc sql; create table
sdtm_w."||strip(memname)||" as select ");
 if type='char' then call execute(name);
 else call execute('put('||strip(name)||',best32. -l) as '||strip(name));
 if not last then call execute(',');
 else call execute("from SDTM."||strip(memname)||";quit;");
run;
%let i=%eval(&i+1);
%end;
%mend;

SPEC READER MACRO
Spec reader macro is designed to read in the mapping specifications from an excel file. The specification
follows standardized mapping rules, mentioned in table 3., and to identify and parse the specifications per
each panel, the spec reader macro categorizes all panels into four types based on the panel contents and
mapping keywords. Some of these mapping keywords include special words such as “Merge/Sort/Where”
which are read from the specifications and stored into the SAS macro variables. These 3 macro variables
and the rules surrounding these 3 variables help us identify the Panels and process/display the data
accordingly. There are also features like concatenation of fields (identified using special reserved
characters for concatenation), multiple where statements, sorting of a variable using numeric equivalent
and sort by ascending/descending features that have also been implemented for display needs. Below
sections describe in detail how each type of Panel is processed along with screenshots on how the data
for each is mapped and displayed by the tool. The table below shows the keywords and conditions that are
checked for each panel before the data is processed.

13

Panel Types Conditions to Identify
Panel 1 WHERE and MERGE clauses in the specification for this Panel type should not

exist
Panel 2 Where Clause can exist and there should be no MERGE Clause in the

specification for this Panel type. All the variables declared for this Panel should
have a WHERE clause

Panel 3 Where Clause can exist and there should be no MERGE Clause in the
specification for this Panel type. Not all the variables declared for this Panel
should have a WHERE clause

Panel 4 Both MERGE and WHERE should be present in the specification for this Panel
Type

Table 7 – Conditions to Identify Panel Types

Panel Type 1: The data displayed in panel type 1 is a one record panel and has exact structure as source
SDTM or ADaM data. The data points displayed in the panel do not have any keywords specified for
merging or any conditions. Below is an example of data for Panel 1 example Demographics; where the
information in source data is presented as One Record per Subject and will not need any Merge/Sort
conditions. When the panel type is identified the module works with storing the Display label for the whole
panel and its variables and then retrieves the source data from the specified SDTM/ADaM.

SDTM Data Panel Specification Profile Report
Display 8. Panel Type 1

Panel Type 2: The data displayed in panel type 2 is a single record panel; but the source data structure is
vertical and converted to horizontal layout to display the data points required for the panel. Each data point
has a specific condition to select the required value. The data points are selected per specified conditions
and USUBJID is used as a default variable to merge all the data points together to form a panel dataset.
Example: Disposition Status, where SDTM.DS has a vertical structure per standard SDTM rules and panel
layout designed for this application has a horizontal layout. The identification for this panel occurs when the
specification is processed and WHERE identified for all columns required for the respective panel. When
the panel type is identified the module works with storing the Display label for the whole panel and its
variables and then retrieves the source data from the specified SDTM/ADaM

SDTM Data Panel Specification Profile Report

Display 9. Panel Type 2

14

Panel Type 3: The data displayed in panel type 3 is a multiple record panel and has exact structure as the
source SDTM or ADaM data. The difference between panel 1 and panel 3 is the number of records
displayed in the panel and the sorting feature which can be implemented in panel type 3 to sort the panel
by data points specified in the panel. Similar to Panel 2 and Panel 1 the Module first works with identifying
the Panel type which is identified by source data containing more than one record per subject and by
identifying the specification file for a Sort variable. A restriction placed on this module like Panel Type 1 is
that there cannot be any merge variables assigned to this Panel Type.

SDTM Data Panel Specification Profile Report

Display 10. Panel Type 3

Panel Type 4: Panel Type 4 requires Merge variables besides USUBJID to be included in panel. Each
subsequent columns/variables (with or without conditions) will be merged by the specified variables.
USUBJID is considered as a default MERGE variable. The spec reader macro starts with identifying the
merge variables to enter the processing for this Panel Type and creates independent interim datasets for
each column consisting of merge variables and column contents with any condition specified, if any. These
interim independent datasets are merged to form panel 4 datasets which get processed by the reporting
macro. The example below shows how a multiple record per subject Vitals dataset is mapped and how the
final output is displayed.

SDTM Data Panel Specification Profile Report

Display 11. Panel Type 4

SUBJECT DATASETS
After the Spec Reader Macro is executed, this module outputs individual subject datasets for each panel
and stores them in a sub- folder created for each individual subject with the subject ID number as the sub-
folder name. The data stored in these sub-folders is imported for the creation of the final outputs; in the
meantime, they also serve as future reference purposes for comparison or review, if needed. The codes
below are executed when the user entered Previous Data Extract Date; the module searches for a folder
under the output directory with the previous extract date and checks if datasets exist. If the datasets exist
under the folder user mentioned in the Driver, the tool prepares those datasets for comparison with the
datasets created using Spec Reader Macro. The code below shows how to read contents of all the files
and folders within a directory.

 %macro getds();
data dirs_found files_found (compress=no);
 rc = filename(fref, path);
 if rc = 0 then do;
 did = dopen(fref);

15

 rc = filename(fref);
 end;
 else do;
 length msg $200.;
 msg = sysmsg();
 putlog msg=;
 did =.;
 end;
 if did <= 0 then do;
 putlog 'ERR' 'OR: Unable to open ' Path=;
 return;
 end;
 dnum = dnum(did);
 do i = 1 to dnum;
 filename = dread(did, i);
 fid = mopen(did, filename);

 FileType = prxchange('s/.*\.{1,1}(.*)/$1/', 1, filename);
 if filename = filetype then filetype = ' ';
 output files_found;
 end;
 else do;
 root = catt(path, "\", filename);

 output dirs_found;
 end;
 end;
 rc = dclose(did);
run;
%mend;
%getds;

Once the combined and individual datasets are stored in the output folders, this SAS module proceeds to
check the configuration set at the driver if the user has entered the previous data extract date. If an input is
made at the driver, it scans for a folder under the name of previous data extract date, and, if found, combine
the datasets from the previous data folder for each panel. It would then identify the sort order of the current
datasets created for the creation of Patient Profile, and search if those sorting variables exist in the reports
of the designated previous data cut. If similar sorting variables are found from both reports, automatic
comparison and highlight in the current patient profiles reports dataset will be annotated for any identified
changes or addition of new data points.

PROFILE REPORTS
This SAS module is to output the final reports in PDF format for individual subjects. There are two key steps
in the process. One, proper header information is read from the annotations sheet in the XLSM file that
stores all the patient profile specification and related information. See more details about the header spec
as in Table 2 above and the sample output for header section as in Display 4. Step two, patient profiles in
PDF output are produced for each subject. To achieve this step, the PDF production macro reads panel
datasets in a loop for each subject. The macro checks whether the reports are being generated for the first
time. If the reports are available for previous run, the macro checks for the difference with previous extract
which are generated during the preparation of subject datasets and highlights the value-level changes, see
Display 13 for the value-level changes identified. Sample code how the value level changes are color codes
is shared in the appendix.

16

Display 12. Sample Patient Profile Output for first run

Display 13. Sample Patient Profile Output with value level changes

Company
Logo

Company
Logo

17

INDEX FILE
An automatic index file in HTML format is created at the end of the output production stage. This HTML file
serves quick reference with clickable hyperlink directing to each corresponding patient profiles PDF output
for each subject (see display as demonstration below).

Display 14. Sample Index HTML File

To create this index file, a simple PROC REPORT will serve the purpose with a proper ODS HTML output
set (use ODS HTML PATH to set up the output file path and name).

ZIP FILE CREATION
Once all the reports outputs and final output dataset are produced. The log checker macro is executed to
review log for errors. With no errors during the tool run, all the reports in PDF format, index file in HTML
format and mapping spec in XLSX format available in the current folder are compressed into zip file for
ease of delivery to reviewers/stakeholders. The code below gives an overview of how the portion of the
module works when the path of the files and the name is provided to the zip file creation.

%macro createZIP(path, archive_name, archive_path);
 %put *** Creating an archive (&archive_path\&archive_name) ***;
 ods package(newzip) open nopf;
 %readCatalog(&path)
 ods package(newzip) publish archive properties
 (archive_name="&archive_name"
 archive_path="&archive_path");
 ods package(newzip) close;
%mend createZIP;

Company
Logo

18

CONCLUSION
Utilizing this application reduces the time & resource for programming efforts and provides the
clinical/medical team the reports containing critical data points to facilitate data anomalies identification that
are related to safety of the patient.

As automation is becoming critically important and the focus on removing redundancy from everyday tasks,
this paper introduces a very user-friendly tool for patient profile generation that can save significant amounts
of time and resources for such frequent request in any clinical trial. The tool leverages a user’s experience
in writing specifications and removes the need for the user to write different programs for such frequent
requirements for different Clinical Trials. By innovatively utilizing the MS Excel VBA interface, robust SAS
macros, mapping keywords, along with leveraging clinical trials data available in standardized format,
minimal SAS programming knowledge and skill are required from the users, thus, making it a truly easy-to-
use and one-click-away application for all parties who want to generate patient profile reports for various
purposes and focuses of their interest.

REFERENCES
Conover, W. (2011). “Creating Hyperlinked PDF Graphical Patient Profiles with PROC REPORT”,
PharmaSUG 2011, Paper TU01. Nashville, TN; SAS Users Group. Available at
www.lexjansen.com/pharmasug/2011/TU/PharmaSUG-2011-TU01.pdf

Desai, P. and Collins, R. (2015). “Patient Profile: A Menu-Driven System”, PharmaSUG 2015, Paper
AD13. Orlando, FL; SAS Users Group. Available at
https://www.lexjansen.com/pharmasug/2015/AD/PharmaSUG-2015-AD13-SAS.pdf

Fahmy, A. (2006). “Patient Profile: A Menu-Driven System”, PharmaSUG 2006, Paper PO19. Bonita
Spring, FL; SAS Users Group. Available at
https://www.lexjansen.com/pharmasug/2006/Posters/PO19.pdf

Ritter, A. (2011). “Creating Customized Patient Profiles using SAS ODS RTF and PROC TEMPLATE”,
PharmaSUG 2011, Paper TT03. Nashville, TN; SAS Users Group. Available at
https://www.lexjansen.com/pharmasug/2011/TT/PharmaSUG-2011-TT03.pdf

Harrington (2013) “Beep, Beep, Beep, Back It Up! A Fool Proof Approach to Archiving with no Copying”:
PharmaSUG 2013 – CC02
https://www.pharmasug.org/proceedings/2013/CC/PharmaSUG-2013-CC02.pdf

ACKNOWLEDGMENTS
The authors on this paper would like to thank our manager Steven Huang of PTC Statistical Programming
team for his constant support and helpful advice throughout this project and beyond.

https://www.lexjansen.com/pharmasug/2015/AD/PharmaSUG-2015-AD13-SAS.pdf
https://www.lexjansen.com/pharmasug/2006/Posters/PO19.pdf
https://www.lexjansen.com/pharmasug/2011/TT/PharmaSUG-2011-TT03.pdf

19

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Tanmay Khole
PTC Therapeutics

 tkhole@ptcbio.com

Aman Sharma
PTC Therapeutics

 amansharma@ptcbio.com

Durga Prasad
PTC Therapeutics

 durga.prasad@ptcbio.com

Lili Li
PTC Therapeutics

 lli@ptcbio.com

APPENDIX
APPENDIX A: VBA Subroutine to Create New Folders.

Sub MakeMyFolder(orgFld As String)
 Dim fdObj As Object
 Application.ScreenUpdating = False
 Set fdObj = CreateObject("Scripting.FileSystemObject")

 If fdObj.FolderExists(orgFld) Then
 'MsgBox "Found it.", vbInformation
 Else
 fdObj.CreateFolder (orgFld)
 'MsgBox "It has been created.", vbInformation
 End If

 Application.ScreenUpdating = True
End Sub

APPENDIX B: Code to show the color for value level changes in data compared to previous data extract.
The keywords ‘update’ and ‘new’ are added to the panel data during the comparison with previous data
extract.

%do l=1 %to &varcount.;

%let vark = %scan(&varlist.,&l,%str());

compute &vark.;

 if _&vark._ eq 'update' then do;

call define("&vark.", "style", "style=[background=red]");

end;

 if lowcase(_chg_) eq 'new’ then do;

call define(_row_, "style", "style=[background=lightgrey]");

end;

endcomp;

%end;

mailto:tkhole@ptcbio.com
mailto:amansharma@ptcbio.com
mailto:durga.prasad@ptcbio.com
mailto:lli@ptcbio.com

20

APPENDIX C: Report code to create HTML index file with hyperlinks.

ods html path = "<file location>" file = "<file name>.html" style = custom;

proc report data = subj_data nowd

style(report)={frame=void rules = none just=center}

style(header) = {backgroundcolor = &table_header_color.};

column pg lnum _chg_ _subjid_var desc;

define _subjid_var. /order flow 'Subject ID' style(column) = {just = c}
style(header) = {just = c};

define lnum /order 'S.No' style(column) = {just = c} style(header) = {just =
c};

define desc /order 'Subject Details' flow style(column) = {just = c}
style(header) = {just = c};

define _chg_ / display noprint;

define pg / order noprint;

*** The compute block below turns the value of subjid into a HTML link.;

compute &_subjid_var.;

href="./"||trim(_subjid_var.)||".pdf";

call define(_col_, "URL", href);

 if lowcase(_chg_) = 'update' then do;

call define(_row_, "style", "style=[background=red]");

end;

else if _chg_ = 'new' then do;

call define(_row_, "style", "style=[background=lightgrey]");

end;

endcomp;

run;

	Abstract
	Introduction
	Overview of the Application
	Specification file
	Standardized Data Mapping Rules
	Patient Profile Driver
	Primary Programmatic Checks
	Automated Folder Creation
	Email Functionality
	Retrieve And Pre-Process Data
	Spec Reader Macro
	Subject Datasets
	Profile Reports
	Index File
	Zip File Creation
	Conclusion
	References
	Acknowledgments
	Contact Information
	Appendix

