
1

PharmaSUG 2023 Paper DV-226
The Flexible Ways to Create Graphs for Clinical Trial

Lily Zhang, Merck & Co., Inc.;
Kaijun Zhang, Merck & Co., Inc.

ABSTRACT
Without a doubt, SAS® programming can create high-quality graphics. In SAS language, PROC TEMPLATE with
SGRENDER procedure is a powerful and commonly used tool to create a customized figure. PROC TEMPLATE
allows any figure type to overlay in one plotting space, lattice any figure type side by side, and control every visual
aspect of the graphical field. However, the R language's more flexible tools have gained popularity recently by
using the ggplot2 package, especially combined with the patchwork package. The combination of
patchwork and the ggplot2 package can provide you with a more powerful and effective tool to create all
kinds of graphs in clinical trial reports[1,2].

This paper will introduce the R package patchwork combined with the ggplot2 using typical graphs in the
clinical trial as examples. This paper will also include PROC TEMPLATE with SGRENDER procedure of SAS, as
the comparison. In summary, patchwork combined with the ggplot2 package in R opens a new window for
you to customize your graphs, especially combining different graphs or text content on one page or across the page.

KEYWORDS
Graphics, R language, Graph Template Language (GTL), ggplot2, patchwork, clinical trial, visualization

INTRODUCTION
When we work with a large and diverse amount of data for clinical trials, data visualization can help us to make
data more understandable. A well-designed, informative graph should be essential to analyze these complex data
better and have a concise visual presentation to show statistical results for reporting. High-quality graphs help us
analyze and understand the data from different clinical trial domains.

In this paper, the SAS data set named "adtl" is the example data set to generate graphs by SAS langue and the R
package. The data set contains made-up data with one patient record per test date, to simulate a clinical patient
study where the outcome of interest is the evaluation of target lesion tumor size in the solid tumor during a study.
The variable 'BASE' is the baseline of tumor size, 'AVAL' is the tumor size value at that test date, 'CHG' is the
difference between 'AVAL' and 'BASE', 'PCHG' is the percentage change, and the 'mean', 'std', 'median' is based on
the treatment. Below are the first 12 observations in the example data ADTL.

2

Graph Template Language (GTL) in SAS and ggplot2, together with the patchwork package in R, provides
many possible combinations of statements to create graphs. This paper will discuss the visual presentation of data
in clinical trials using two tools, especially for combining different plots into one page using ggplot2 together
with the patchwork package in R. We will take a couple of boxplot graphs as examples to describe how to
accomplish the goal. Through the illustrations, we will recommend a few valuable options that help the
customization. We will also demonstrate how to generate the same graphs using SAS language for comparison. The
three boxplots as examples for combination in one page include as following:

• Percent changes for tumor size (Sum of diameter, SOD) from baseline by treatment over time.
• The baseline value of tumor size (Sum of diameter, SOD).
• Percent changes for tumor size (Sum of diameter, SOD) from baseline by treatment.

CREATING GRAPHS BY USING GTL

Key Syntax of GTL

In the SAS application, we can define the graph template with the TEMPLATE procedure as follows:

proc template;
 define statgraph <template-name>;
 begingraph / <options>;
 <GTL statements>;
 endgraph;
 end;
run;

The TEMPLATE procedure defines and saves the Graph's structure as a template for later usage. This code alone
will not create the Graph. The BEGINGRAPH and ENDGRAPH statements define the outermost container for the
Graph and must contain all the GTL statements. Produce the Graph with the SGRENDER procedure:

proc sgrender data = <data> template = <template-name>;
run;

The SGRENDER procedure will associate data with the predefined template and create the Graph[2]. The same
template can be used with multiple, compatible data sets to create additional graphs if necessary.

Example of using GTL to create graphs

GTL is a useful tool for programmers to create graphs through SAS, however, it is difficult and even impossible for
you to remember all statements and options of SAS GTL. GTL is still an efficient way to enable the user to generate
complex, advanced, and customized figures. As figure 1 shows below, three boxplots are created on one page. The
SAS codes are also listed below. This approach shows that SAS GTL would require a significant programming
effort.

**Define the graph’s structure as a template;
proc template;
 define statgraph sgdesignb;
 dynamic _AVISIT _PCHG _TRT01A _TRT01A2 _BASE _TRT01A3 _MEAN;
 begingraph/border=true;
 layout lattice/rows=2 rowweights=(0.6 0.4);
 **First row;
 layout lattice/rowdatarange=data columndatarange=data rowgutter=10
 columngutter=10;
 layout overlay/xaxisopts=(label=('Analysis Visit')

3

 linearopts=(viewmin=1.0 viewmax=19.0 minorticks=OFF
 tickvaluesequence=(start=1.0
 end=19.0 increment=1.0))
 discreteopts=(tickvaluefitpolicy=splitrotate))
 yaxisopts=(label=("Percent Change(*ESC*){unicode '000a'x} from
 Baseline(*ESC*){unicode '000a'x}(SOD)"));
 boxplot x=_AVISIT y=_PCHG/group=_TRT01A name='box1'

boxwidth=0.75 intervalboxwidth=1.0
 display=(CAPS CONNECT FILL OUTLIERS MEAN MEDIAN)
 groupdisplay=Cluster;
 endlayout;

 sidebar / align=top spacefill=false;
 discretelegend 'box1' / opaque=true border=true

halign=center valign=top
 displayclipped=true
 down=1 order=columnmajor
 titleattrs=(style=NORMAL weight=BOLD);
 endsidebar;
 endlayout;

 *****Second row;
 layout lattice/columns=2 columnweights=(0.52 0.48);
 *left column;
 layout lattice /rowdatarange=data columndatarange=data rowgutter=10
 columngutter=10;
 layout overlay /xaxisopts=(display=(TICKS TICKVALUES LINE)
 discreteopts=(tickvaluefitpolicy=splitrotate))
 yaxisopts=(label=("Baseline Value(*ESC*){unicode '000a'x}(SOD)")
 offsetmin=0.05 offsetmax=0.05 linearopts=(viewmin=0.0
 viewmax=350.0 tickvaluesequence=(start=0.0 end=350.0
 increment=50.0)));
 boxplot x=_TRT01A2 y=_BASE /name='box' boxwidth=0.3
 groupdisplay=Cluster;
 endlayout;
 endlayout;
 *right column;
 layout lattice/rowdatarange=data columndatarange=data rowgutter=10
 columngutter=10;
 layout overlay/xaxisopts=(display=(TICKS TICKVALUES LINE)
 discreteopts=(tickvaluefitpolicy=splitrotate))
 yaxisopts=(offsetmin=0.05 offsetmax=0.05
 label=("Percent Change(*ESC*){unicode '000a'x}from
 Baseline(*ESC*){unicode '000a'x}(SOD)")
 linearopts=(viewmin=-100.0 viewmax=100.0 tickvaluesequence=(
 start=-100.0 end=100.0 increment=25.0)));
 boxplot x=_TRT01A3 y=_PCHG / name='box' groupdisplay=Cluster;
 Referenceline y=-30/lineattrs=(thickness=1px pattern=34 color=cx000000);
 Referenceline y=20/lineattrs=(thickness=1px pattern=34 color=cx000000);
 endlayout;
 endlayout;
 endlayout;
 endlayout;
 endgraph;
end;
run;

4

**Generate graphs;
proc sgrender data=adtl template=sgdesignb;
 dynamic _PCHG="PCHG" _AVISIT="AVISIT" _TRT01A="TRT01A"
 _TRT01A2="TRT01A" _BASE="BASE"
 _TRT01A3="TRT01A" _MEAN="MEANVAL"
 ;
run;

If we want to change the above figure’s structure or add some new features, we have to write the complicated
TEMPLATE procedure again to define a new Graph's structure template. However, we can add new features and
re-arrange the graph’s structure by using R functions straightforwardly.

CREATING GRAPHS BY USING GGPLOT2 AND PATCHWORK PACKAGE

Key Syntax of R packages ggplot2 and patchwork

The basic grammar of ggplot2 package is as the following:

Figure 1. Plots for Sum of Diameters of Tumor (SOD) for Baseline Value and Percent Changes from Baseline

Figure 1: Generated by SAS GLT, combined from three boxplots.

5

The patchwork package is a great "composer" of plots, with primary functions listed in table 1 below. The
reference document is available online[3].

Table 1. Functions in patchwork package

Function name Usage
area Specify a single area in a rectangular grid that should contain a plot. Objects

constructed with the area() can be concatenated together with c() to specify
multiple areas.

guide_area Add an area to hold collected guides.
inset_element Create an inset to be added on top of the previous plot.
multipage_align Align plots across multiple pages.
plot_annotation Annotate the final patchwork.
plot_arithmetic Plot arithmetic. In addition to the + operator known in ggplot2, patchwork

defines logic for some of the other operators, such as "/" or "|", which aids in
building up your plot composition and reducing code reuse.

plot_layout Define the grid to compose plots in. In order to control how different plots are
laid out, you need to add a layout specification. If you are nesting grids, the
layout is scoped to the current nesting level.

plot_spacer Add a completely blank area.
wrap_elements Wrap arbitrary graphics in a patchwork-compliant patch.
wrap_ggplot_grob Make a gtable created from a ggplot object patchwork compliant. This function

converts a gtable, as produced by ggplot2::ggplotGrob(), and makes it ready to
be added to a patchwork. In contrast to passing the gtable to wrap_elements(),
wrap_ggplot_grob()
ensures proper alignment as expected. On the other hand, major restructuring
of the gtable will result in an object that doesn't work properly with
wrap_ggplot_grob().

wrap_plots Wrap plots into a patchwork. While the use of + is a natural way to add plots
together, it can be difficult to string together multiple plots programmatically if
the number of plots is not known beforehand. wrap_plots makes it easy to take
a list of plots and add them into one composition, along with layout
specifications.

The ggplot2 and patchwork package in the R library use a layered approach. The programmer can view the
work in progress without completing the final Graph. The code can be developed and executed one layer at a time
and adjusted as needed. On the other hand, the patchwork package makes it extremely simple to combine

ggplot2 package:
ggplot(data = <DATA>) +
<GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))

A layer combines data, aesthetic mapping, a geom (geometric object), a stat (statistical transformation),
and a position adjustment. An aesthetic is a visual property of the objects which include items such as
the size, the shape, or the color. A geom is the geometrical object that a plot uses to represent data such
as line, point or boxplot. The operator (“+”) adds layers together to create graphs you expect. The
functions for ggplot2 package include aesthetic mapping, geometric objects, coordinates of x and y
axis, facet, labels, and theme.

6

separate plots from ggplot2 into the same graphic. As such, it does the same job as
gridExtra::grid.arrange() and cowplot::plot_grid. It helps you easily assemble plots, define
layout, add an annotation on one page and align graphs across pages.

Here are the examples of the basic syntax of the ggplot2 and patchwork packages:

patchwork package:
The basic operators to assembly graphs or text content includes “+”, “- “, “|” and (). The basic functions
are used including plot_layout, plot_annotation, plot_spacer, inset_element, and theme. It can combine
different pieces of ggplot or/with text content together in one page or across page.

The basic syntax as listed below:

Example 1:
library(ggplot2)
library(patchwork)

p11 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p22 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))

Figure 2.1: p11 + p22

Example 2:
p33 <- ggplot(mtcars) + geom_smooth(aes(disp, qsec))
p44 <- ggplot(mtcars) + geom_bar(aes(carb))

Figure 2.2: (p11 | p22 | p33) / p44

7

Example of using ggplot2 and patchwork to create graphs

Below are the R libraries and functions used in this paper.
library(tidyverse)
library(haven)
library(ggplot2)
library(gridExtra)
library(devtools)
library(patchwork)

We will use dummy SAS data sets adtl as an input data frame in ggplot2 for the following examples.

First, we need to read SAS data into RStudio.

 adtl <- read_sas("adtl.sas7bdat")

Second, we will create the single box plot one by one using the ggplot2 package:

p1 <- adtl %>%
 mutate(AVISIT=factor(AVISIT, levels=c("Cycle 2", "Cycle 3", "Cycle 4",
 "Cycle 5", "Cycle 6", "Cycle 7", "Cycle 8", "Cycle 9", "Cycle 10",
 "Cycle 11", "Cycle 12", "Cycle 14", "Cycle 15", "Cycle 18", "Cycle 19",
 "Cycle 23", "Discon Visit", "Follow-Up"))) %>%

 ggplot(aes(x=AVISIT, y=PCHG, fill=TRT01A)) +
 geom_boxplot(shape=3, outlier.size=3, outlier.shape=18,
 outlier.color="red") +
 stat_summary(fun = mean, geom = "point", col = "green") +
 labs(#x ="Analysis Visit" x="Analysis Visit \n (Red points indicate
 outliers, Green points indicate means)" ,
 y ="Percent Change From Baseline", axis.text.x = element_text(angle =
 45, hjust = 1)) +
 theme(legend.position ="top", legend.title=element_blank(), axis.text.x =
 element_text(angle = 45, hjust = 1)) +
 ylim(-100, 100)

p2 <- ggplot(adtl, aes(TRT01A, BASE)) + geom_boxplot() +
 labs(x = " ", y = "Baseline Value \n (SOD)") +
 coord_cartesian(ylim=c(0, 400))

p3 <- ggplot(adtl, aes(TRT01A, PCHG)) + geom_boxplot() +
 labs(x = " ", y = "Percent Change from Baseline \n (SOD)") +
 coord_cartesian(ylim=c(-100, 100))

Finally, we can use the patchwork R package to combine three separate plots into one page. The patchwork
package combines plots by:

• Using a ggplot2 syntax for the grammar of plot-layout operations.
• Extending the amazing ggplot2 package.

Patchwork has a straightforward syntax where we can create layouts super easily. Here is the general syntax
that combines:

• Two-Column layout using the Plus Sign `+`
• Parenthesis `()` to create a subplot group.
• Two-Row layout using the Division Sign `\`

8

The code is listed below, which patchwork through an operator such as "/" and "|" does the same as the
grid.arrange and grid.grob do. Now we use the very simple code to create the same effect output (figure
3) as the above plot (figure 1) which is created by GTL:

p1/(p2|p3)

The composer of ggplot2 and patchwork can combine separate plots into the same graphic and re-arrange
plots into a grid and add figures, labels, and annotations very simply.

More examples of flexible features for ggplot2 and patchwork packages

You can change the position for the Graph on the top in figure 3 to the bottom and assign a tag to it as "Fig c", and
put the two figures on the bottom in figure 3 to the top and place the tag "Fig a and Fig b" to them respectively.
Also, patchwork can add space among graphs on the top and bottom. It has the options such as plot_spacer,
plot_layout, and plot_annotation. The code listed below generates the output of figure 4.

p01 <- ((p2|plot_spacer () |p3) + plot_layout(widths = c(4.5, 0.2 ,4.5)))/
 (p1 + plot_spacer()+ plot_layout(heights = unit(c(3, 0.2), c('cm',
 'cm'))))

Figure 3: Generated by R packages, combined from three boxplots

Figure 3. Plots for Sum of Diameters of Tumor (SOD) for Baseline Value and Percent Changes from Baseline

9

Pb <- p01 + plot_annotation(tag_levels = list(c('Fig a', 'Fig b', "Fig c")))

We can also add the non-plot content by combining the ggplot2 and the patchwork package. Below is the
example code, and figure 5 is the output.

adtla <- adtl %>% select(TRT01A, mean, median, std) %>% distinct()
colnames(adtla) <- c("Treatment", "Mean", 'Median', 'Standard Deviation')

pc <- gridExtra::tableGrob(adtla)
p03 <- ((p2|plot_spacer()|p3) + plot_layout(widths = c(4.5, 0.2 ,4.5)))/pc/p1
+
plot_annotation(tag_levels = list(c('Fig a', 'Fig b', " ", "Fig c")))

Figure 4. Plots for Sum of Diameters of Tumor (SOD) for Baseline Value and Percent Changes from Baseline

Figure 4: Based on Fig 3, changed position, added space individual graphs, and added tags

10

CONCLUSION
SAS is a powerful statistical analysis software and has made many significant improvements to match industry
needs. Still, the programming for graphs is complicated, hard to learn, and difficult to debug, especially since SAS
GTL requires a significant amount of programming effort. On the other hand, R is an open-source software
environment, and the latest functionality is updated more frequently. R also provides a wide variety of statistical
and graphical techniques to create complex graphs with less programming effort, such as ggplot2 and
patchwork package. The syntax of R is simple and easy to debug. Since R has already built many statistics
and output programming packages for your use, the amount of R coding skills you need to learn is fairly minimal.
The return on this investment of effort can be great - access to thousands of additional analytical and graphical
methods.

In conclusion, SAS GTL provides data visualization features and awesome technical support, however, R offers tons
of packages to create graphs more efficiently and straightforwardly. Both technologies can improve data analysis
and visualization capabilities in clinical trials. It is the winning solution to start combining both technics of SAS
and R and get maximum benefits.

Figure 5. Plots for Sum of Diameters of Tumor (SOD) for Baseline Value and Percent Changes

Figure 5: Based on figure4, the non-plot content is added

11

REFERENCES

1. Wickham, Hadley and Garret Grolemund. (2017). R for Data Science. Sepastopol, CA: O’Reilly Media.
2. MATANGE, S. (2019). GETTING STARTED WITH THE GRAPH TEMPLATE LANGUAGE IN SAS:

Examples, tips, and techniques for creating custom graphs. SAS Institute.
3. Patckwork. Thomas Lin Pedersen. (2022). Available at

https://cran.r-project.org/web/packages/patchwork/patchwork.pdf.

ACKNOWLEDGMENTS
The authors would like to thank the management team of Merck & Co., Inc., Kenilworth, NJ, USA, for their advice
on this paper/presentation.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Lily Zhang
Merck & Co., Inc., Kenilworth, NJ, USA
e-mail: lily_zhang2@merck.com

Kaijun Zhang
Merck & Co., Inc., Kenilworth, NJ, USA
e-mail: kaijun.zhang@merck.com

TRADEMARK
SAS and all other SAS Institute Inc. products or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

https://cran.r-project.org/web/packages/patchwork/patchwork.pdf

	Abstract
	KEYWORDS
	Introduction
	CREATING GRAPHS BY USING GTL
	Key Syntax of GTL
	The SGRENDER procedure will associate data with the predefined template and create the Graph[2]. The same template can be used with multiple, compatible data sets to create additional graphs if necessary.
	Example of using GTL to create graphs
	Creating graphs by using ggplot2 AND patchwork package
	Key Syntax of R packages ggplot2 and patchwork
	Example of using ggplot2 and patchwork to create graphs
	More examples of flexible features for ggplot2 and patchwork packages
	Conclusion

