
1

PharmaSUG 2023 - Paper DV-134

Life Table Analysis for Time to First Event Onset
Abhinav Srivastva, Exelixis Inc., Alameda, CA

ABSTRACT
Life Table Analysis is a useful way to study subject’s survival with respect to an event of interest over a
time period. It provides a good indicator of drug safety or toxicity over the course of a clinical trial due to the
occurrence of a related event. For example, life table can be used to study the relation between a drug
which is highly immunogenic in nature and the type of events it can trigger over a time period, such as
increased liver events indicating signs of liver disease. In this paper we take a graphical approach to
represent this information which is then enhanced to add exploratory and interactive features for the
reviewer. Data preprocessing is done in SAS®, while all the plots are created in Python using open-source
libraries such as matplotlib, seaborn, plotly and dash.

INTRODUCTION
Life table is a quick and information tool to understand the relation between a drug and associated events
over a period of time as it relates to subject’s survivability. The paper provides detailed instructions on data
preprocessing steps before creating estimates such as proportion and 95% confidence intervals (CI).
Confidence intervals are created using Clopper-Pearson exact method with FREQ procedure. Plots are
created using matplotlib and seaborn. An interactive plot is also demonstrated using plotly and dash
which lets an end user get additional insights about the data while hovering over a data point.

DATA PRE-PROCESSING
Consider an event “INCREASED ALT LEVEL” that we are tracking over the course of the clinical trial, and
our goal is to calculate proportions and 95% CI of this event onset at specified time intervals. The events
can be typically found in Adverse Events analysis dataset (ADAE) as below:

USUBJID AETERM AEDECOD AETOXGR ASTDTC AENDTC ASTDY

ABC-123 INCREASED
ALT LEVEL

ALT Increased 3 2022-03-01 2022-03-15 60

Table 1: ALT Onset at Day 60
We can note that the onset of this adverse event is on Day 60. The subject should be considered at risk at
all timepoints on/prior to Day 60, but after the event has occurred the subject is no longer at risk at
subsequent time points. For a better visualization, the time-points can be divided into intervals such as
Week 1-5, 6-10, 11-15, and so on. This decision to divide the intervals can be based on Protocol’s schedule
of assessments or medically motivated based on drug’s profile.

In our example, we will divide the intervals as 5 weeks apart for every subject in the safety population.
When an event is met, subject will get 1 = EVENT and 2 = NO EVENT for the time-interval where the onset
falls. For subject ABC-123, event onset of Day 60 corresponds to 60 / 7 = 8.6 week or interval “Week 5-10”
as demonstrated below (Table 2)

USUBJID ONSET DAY ONSET WEEK INTERVAL EVENT (1 = Event, 2 = No Event)

ABC-123 60 8.6 Week 1 – 5 2

ABC-123 60 8.6 Week 6 – 10 1

ABC-123 60 8.6 Week 11 – 15 2

ABC-123 60 8.6 Week 16+ 2

Table 2: Subject Event Intervals

2

For a life-table, when a subject has encountered an event, it should no longer be considered at risk for the
subsequent time intervals, hence the revised layout is as shown below.

USUBJID ONSET DAY ONSET WEEK INTERVAL EVENT (1 = Event, 2 = No Event)

ABC-123 60 8.6 Week 1 – 5 2

ABC-123 60 8.6 Week 6 – 10 1

Table 3: Revised Subject Event Intervals
We will create this structure for every subject in the population with the consideration that when an event
has occurred then it should not be considered at risk for subsequent time intervals. Another consideration
is for cases where a subject met other critical events such as Death, treatment discontinuation, withdrawn
consent which would disqualify as being at risk. This subject-level information can often be found in ADSL
dataset. Let’s reinforce this with a simple example where subject never encountered INCREASED ALT
LEVEL event that we are tracking, but had a death reported on Day 91 (Week 11-15), leading it to being
discarded for subsequent interval i.e. Week 16+.

ADSL:

USUBJID DTHDTC DTHDY

ABC-456 2022-04-01 91

Table 4: Subject with a reported Death

USUBJID ONSET DAY ONSET WEEK INTERVAL EVENT (1 = Event, 2 = No Event)

ABC-456 91 13 Week 1 – 5 2

ABC-456 91 13 Week 6 – 10 2

ABC-456 91 13 Week 11 – 15 2

Table 5: Subject with No ALT Event, but accounting for Death

CALCULATING ESTIMATES
The proportions in life table at each time interval can be calculated as:

Proportion =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑤𝑤𝑤𝑤𝑆𝑆ℎ 𝑆𝑆𝑒𝑒𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑎𝑎𝑆𝑆 𝑅𝑅𝑤𝑤𝑆𝑆𝑅𝑅

and 95% Confidence interval is calculated using Clopper-Pearson Exact Method [1]. Once the data is
prepared, we can calculate these metrics using FREQ procedure as below:
ods output binomial = stats; * stats will contain estimates;
proc freq data = prepped_data ;
 by treatment_id risk_week;
 tables event / binomial;
 exact binomial;
run;

where,
 prepped_data = input dataset

treatment_id = 0 (Active) or 1 (Placebo)
risk_week = Intervals ‘W 1-5’, ‘W 6-10’, ‘W 11-15’, ‘W 16+’
event = 1 (Event) or 2 (No event)

3

Caution should be taken if any interval has ‘0’ events (i.e. no record with EVENT=1). In that case,
proportions and CI will be misleading as they get computed from non-event perspective. A workaround is
to create a dummy record with EVENT=1 in the missing category, and assign a weight = 0, keeping the
weights for the rest as “1”.

INTERVAL EVENT COUNTS WGT Notes

Week 1-5 1 0 0 This is a dummy record created with EVENT=1
and WEIGHT set to 0

Week 1-5 2 xx 1

Table 6: A case of missing events in a given Interval (eg. Week 1-5)
Updated FREQ procedure will be:
ods output binomial = stats;
proc freq data = prepped_data ;
 by treatment_id risk_week;
 tables event / binomial;
 weight wgt / zeros; * to account for missing events;
 exact binomial;
run;

Here is a summary table created out of fictitious data that will be used for plotting in the next section.

Interval Interval_Desc Treatment Treatment_Desc At_Risk Events Prop
(%)

LCL
(%)

UCL
(%)

1 Week 1 - 5 0 Active 100 4 4.0 1.1 9.9
1 Week 1 - 5 1 Placebo 100 2 2.0 0.2 7.0
2 Week 6 - 10 0 Active 96 5 5.2 1.7 11.7
2 Week 6 - 10 1 Placebo 98 3 3.1 0.6 8.7
3 Week 11 - 15 0 Active 91 8 8.8 3.9 16.6
3 Week 11 - 15 1 Placebo 95 9 9.5 4.4 17.2
4 Week 16 + 0 Active 83 11 13.3 6.8 22.5
4 Week 16 + 1 Placebo 86 15 17.4 10.1 27.1

Table 7: Summary Table

LIFE TABLE PLOT
For plotting Table 7 we will convert this into a Pandas DataFrame named “alt_df” (using Python) as
below to be used for plotting with matplotlib and seaborn as covered in this section.

4

Let’s separate this dataframe by treatment which will come handy for plotting treatment sequence
individually with matplotlib.
create sequences by Treatment into separate dataframes

active = alt_df[alt_df['Treatment'] == 0]
pbo = alt_df[alt_df['Treatment'] == 1]

The plot is made-up of 2 parts – Line plot showing proportion and 95% CI, and a supporting table at the
bottom showing subjects at risk and with events. The final plot is displayed below.

Figure 1: Life Table Plot
Let’s set-up some parameters which will be used for plotting.
line plot parameters

xlabels = ['W 1-5', 'W 6-10', 'W 11-15', 'W 16+']
offset = 0.05 # show an offset for Placebo so it doesn’t overlap with Active

Number of subjects at risk and with events from the dataframe has to be transposed into a specific format
for using as a bottom table in the plot as shown below.
Bottom table parameters and structure

rowLabel = ['At Risk', 'Events']

table_text = np.concatenate((alt_df.T.loc['At_risk'].values[np.newaxis],
 alt_df.T.loc['Events'].values[np.newaxis]),
 axis=0)
print(table_text)

[Output]>[[100 100 96 98 91 95 83 86]
 [4 2 5 3 8 9 11 15]]

5

The line plot can be done with matplotlib’s plot method, and the table below the plot can be plotted with
table method. Below is the complete code for plotting Figure 1, and notes are added to provide more details.

import matplotlib.pyplot as plt # import library

PART 1: Plot proportion and 95% CI using plot() method
plt.figure(figsize = (10, 5))

plt.plot(active['Interval'], active['Prop (%)'], 'r.-', label = 'Active')
plt.plot([active['Interval'], active['Interval']],
 [active['LCL (%)'], active['UCL (%)']], 'r')
plt.plot(pbo['Interval']+offset, pbo['Prop (%)'], 'b.-', label='Pbo')
plt.plot([pbo['Interval']+offset, pbo['Interval']+offset],
 [pbo['LCL (%)'], pbo['UCL (%)']], 'b')

Format objects such as title, axis and legend
plt.title("Life Table for Time to First Event Onset", fontsize=20)
plt.xticks([1, 2, 3, 4], xlabels, fontsize=12)
plt.yticks(fontsize=12)
plt.xlabel("Interval (Weeks)", fontsize=12)
plt.ylabel('Proportion of Subjects With Event Onset (%)', rotation=90,
fontsize=12)
plt.legend(fontsize=12);

PART 2: Plotting Bottom Table
mp_table = plt.table(cellText=table_text,
 colWidths=[0.04, 0.04, 0.2, 0.02, 0.2, 0.02, 0.2, 0.02],
 rowLabels=rowLabel,
 loc='bottom',
 bbox=[0, -0.35, 0.97, 0.15]
)

Table formatting options, such as fontsize, cell text color and alignment

mp_table.auto_set_font_size(False)
mp_table.set_fontsize(12)

for k, cell in mp_table._cells.items():
 cell.set_edgecolor('w')
 if k[1] < 0:
 cell.set_text_props(color='k', fontsize=12)
 elif k[1]%2 ==0:
 cell.set_text_props(color='r', fontsize=12, ha='right') # red text
 elif k[1]%2 !=0:
 cell.set_text_props(color='b', fontsize=12, ha='center') # blue text

Another visualization that can give more insight about the data is the distribution of events along the
timepoints. Here we use seaborn library to create a strip plot to show this distribution which has a basic
syntax as:
stripplot (x = , y = , data = , options = <>)

6

Figure 2: Strip plot of event distribution
The complete code to create Figure 2 is shown below:
import seaborn as sns # import seaborn library

category_order = ['Week 1 - 5', 'Week 6 - 10', 'Week 11 - 15', 'Week 16 +']
plt.figure(figsize = (8,4))

Strip plot. “alt_details” is a another dataframe which has detailed by-
 week data
g = sns.stripplot(x='Onset_week', y='Interval', data = alt_details,
 hue='Treatment_desc', palette= ['red', 'blue'],
 order = category_order)

Formatting title, axis and legend

plt.title("Distribution of Event Onsets", fontsize=15)
plt.xticks(fontsize=12)
plt.yticks([])
plt.xlabel("Onset Week", fontsize=12)
plt.ylabel(" ")
plt.legend(fontsize=12)
plt.grid(axis='x');

USER INTERACTION USING PLOTLY AND DASH
We can show strip plot (Figure 2) on-demand at the tooltip of the data points of Figure 1: Life Table Plot,
using interactive plot libraries - plotly and dash.

First, Line plot can be created with scatter() function in plotly. 95% CI can be displayed by calculating
high and low error values using precomputed Mean and 95% CI limits (UCL, LCL) as shown below.
Active Arm Errors: Upper Error = (UCL–Mean), Lower Error = (Mean–LCL)

a_err_ucl = active['UCL (%)'] - active['Prop (%)']
a_err_lcl = active['Prop (%)'] - active['LCL (%)']

7

Placebo Arm Errors: Upper Error = (UCL-Mean), Lower Error = (Mean – LCL)

p_err_ucl = pbo['UCL (%)'] - pbo['Prop (%)']
p_err_lcl = pbo['Prop (%)'] - pbo['LCL (%)']

Basic syntax of scatter() is:

scatter(x = , y = ,
 error_y=dict(
 type = ’data’,
 symmetric = False,
 array = , # show high error values
 arrayminus =) # show low error values
)

Complete code for creating Line plot using plotly is shown below:
import plotly.graph_objects as go
fig = go.Figure()

show proportion and 95% CI for Active arm
trace1 = go.Scatter(x= active['Interval'], y= active['Prop (%)'],
 marker = dict(color='red'),
 error_y=dict(
 type='data',
 symmetric=False,
 array=a_err_ucl,
 arrayminus=a_err_lcl),
 name = 'Active'
)

show proportion and 95% CI for Placebo arm
trace2 = go.Scatter(x= pbo['Interval']+offset, y= pbo['Prop (%)'],
 marker = dict(color='blue'),
 error_y=dict(
 type='data',
 symmetric=False,
 array=p_err_ucl,
 arrayminus=p_err_lcl),
 name = 'Placebo'
)

fig.add_trace(trace1)
fig.add_trace(trace2)

Format other objects such as title, axis and legend
fig.update_layout(
 title = dict(
 text="Life Table for Time to First Event Onset",
 x = 0.5,
 font = dict(size=20)
),
 yaxis_title="Proportion of Subjects With Event Onset (%)",
 legend_title="Treatment",
 xaxis = dict(
 title = "Interval (Weeks)",
 tickvals = [1, 2, 3, 4],
 ticktext = xlabels
)
)

8

Remove all hover content as it will be updated with dash later
fig.update_traces(
 hoverinfo="none",
 hovertemplate=None)

Figure 3: Line Plot using Plotly
Next, we can show a strip plot (Figure 2: Strip plot of event distribution) at the tooltip of the above plot when
a user hovers over a data point. For example, as the user hovers over “Week 16+” category data point for
Placebo arm, the underlying data will get filtered to include only Placebo “Week 16+” records, and a strip
plot will be shown for that particular interval (Figure 4). This interactivity can be built using dash library.

In Figure 2, we used seaborn’s stripplot()function, but here we will use plotly’s strip() function to
re-create the same plot. The basic syntax is shown below:
import plotly.express as px

px.strip(data = , x = , y = , <options>)

The code to build the complete dashboard with tooltip user-interaction is provided in the APPENDIX section
of the paper for reference.

Figure 4: Line plot with event distribution (strip plot) at the Tooltip

9

CONCLUSION
Life table provides a useful representation for quantifying subjects who encountered an event of interest
during the course of a clinical trial. We learned about data pre-processing steps before computing metrics
such as proportions and 95% CI. Lastly, we explored Python’s open-source libraries which can be used for
visualizing results in only a few lines of code.

REFERENCES
[1] SAS Documentation on Binomial Proportions:
https://documentation.sas.com/doc/en/statcdc/14.2/statug/statug_freq_details37.htm

ACKNOWLEDGMENTS
I would like to acknowledge Yu-Lin Chang (Director, Biostatistics at Exelixis) for guidance on Life table
analysis.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Abhinav Srivastva
Exelixis Inc
asrivastva@exelixis.com

TRADEMARK CITATION
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.

https://documentation.sas.com/doc/en/statcdc/14.2/statug/statug_freq_details37.htm

10

APPENDIX
Create a copy of the dataframe “alt_details” which has detailed by-week
data

alt_details_updt = alt_details.copy()

Create a numeric interval variable with an offset of 0.05 to align with
placebo group

import numpy as np

def get_intervals(interval, trt, offset = 0.05):
 if interval == 'Week 1 - 5':
 group = 1.0
 elif interval == 'Week 6 - 10':
 group = 2.0
 elif interval == 'Week 11 - 15':
 group = 3.0
 elif interval == 'Week 16 +':
 group = 4.0

 if trt == 1:
 group += offset

 return group

apply the above function

alt_details_updt['Interval_id'] = np.vectorize(get_intervals)
 (alt_details_updt['Interval'],
 alt_details_updt['Treatment'])

Build the Dashboard

import dash
import plotly.express as px
from dash import Dash, dcc, html, Input, Output, no_update

app = Dash(__name__)

app.layout = html.Div(
 children=[
 dcc.Graph(id="graph-5", figure=fig, clear_on_unhover=True),
 dcc.Tooltip(id="graph-tooltip-5", direction="top"),
],
 style={"height": 800, "padding": 50},
)

Define inputs and outputs

@app.callback(
 Output("graph-tooltip-5", "show"),
 Output("graph-tooltip-5", "bbox"),
 Output("graph-tooltip-5", "children"),
 Input("graph-5", "hoverData"),
)

11

def update_tooltip_content(hoverData):
 if hoverData is None:
 return no_update

 pt = hoverData["points"][0]
 bbox = pt["bbox"]
 num = pt["pointNumber"]

 # subset the data for strip plot and plot it
 dff = alt_details_updt[alt_details_updt.Interval_id == pt["x"]]
 fig_s = px.strip(dff, y="Interval_id", x="Onset_week",
 color_discrete_sequence = ["black"])

 # other cosmetic updates
 fig_s.update_layout(
 title = dict(
 text="Event Onset Distribution",
 x = 0.5,
 font = dict(size=12)
),
 xaxis = dict(
 showgrid = True,
 title = "Onset Week",
 titlefont = dict(size=12)
),
 yaxis = dict(
 title = ' ',
 tickvals = [],
 ticktext = []
),
 margin=dict(l=0, r=0, t=30, b=0)
)
 children = [dcc.Graph(figure=fig_s, style={"height": 200, 'width' :
 300})]

 return True, bbox, children

if __name__ == "__main__":
 app.run_server(debug=True, use_reloader=False)

	Abstract
	Introduction
	DATA PRE-PROCESSING
	CALCULATING ESTIMATES
	LIFE TABLE PLOT
	USER INTERACTION using plotly and dash

	Conclusion
	References
	Acknowledgments
	Contact Information
	Trademark citation
	APPENDIX

