
1

PharmaSUG 2023 - Paper DV-024

Methods of a Fully Automated CONSORT Diagram Macro %CONSORT

Jeffrey Meyers, Regeneron Pharmaceuticals, Basking Ridge NJ

ABSTRACT

The CONSORT diagram is commonly used in clinical trials to visually display the patient flow

through the different phases of the trial and to describe the reasons patients dropped out of

the protocol schedule. They are very tedious to make and update as they typically require

using different software, such as Microsoft Visio or Microsoft PowerPoint, to manually create,

align, and enter the values for each textbox. There have been several previous papers that

explained methods of creating a CONSORT diagram through SAS®1, but these methods still

required a great deal of manual adjustments to align all of the components. The

%CONSORT macro removes these manual adjustments and creates a fully automated yet

flexible CONSORT diagram completely from data. This presentation is a description of the

methods used to create this macro.

INTRODUCTION

The CONSORT diagram is often used in clinical trials to display the schema of treatment

phases and, at the same time, display how well the patients completed the protocol

therapy. They are typically read from top to bottom starting with the number of registered

patients and each row or “node” depicting another protocol event such as randomization,

starting treatment, moving from one phase to another, or completing all treatment.

Between nodes are additional boxes that contain the counts and reasons that patients were

not able to continue from one node to the next. The concept of the CONSORT diagram is

simple, but automating one programmatically becomes complicated once paths start to

branch for study decisions, such as different treatment regimens. The calculation of the

necessary nodes, vertical and horizontal spacing, parent-child relationships for connecting

lines, and aligning the text boxes are all necessary to fully automate the CONSORT diagram.

The %CONSORT macro was written to do each of these calculations in order to automate

the creation of a CONSORT from start to finish. The largest complication to automating

CONSORT diagrams is that different journals, investigators, and statisticians prefer different

styles of CONSORT making it difficult to fulfill the needs of every user. Therefore, this paper

focuses on the methods behind the macro to help users to customize and to design their

own CONSORT diagrams.

EXAMPLE DATA SET

The data set that is input into the %CONSORT macro follows a very specific format and

requires the user to set up the data in such a way that the macro determines both the

content of the nodes in the CONSORT and the order they must follow. The required data

structure was chosen based on ease of programming and construction and requires the

following:

• One row per patient or equivalent observation along with a unique identifier variable

• One variable for each node of the CONSORT where the value of each node is used to

determine two pieces of information simultaneously:

1. The value’s missingness is a Boolean indicator of whether a patient reached the

current node

2. The value of the variable is used to complete that node’s text box

2

• A variable to represent each branching path in the CONSORT. The values of these

variables determine the following two things:

1. The number of non-missing values determines the number of branches there are

2. The values are used within text boxes a row below the current node as headers to

the following branches

• One or more variables containing the reasons a patient went off-treatment or off-study

at different points in the trial. The variable(s) are used in the following ways:

1. The label of the variable is used as the header for the “off-treatment” text box

2. The values of the variable are used to create a bulleted list of “off-treatment”

reasons within the text box

• Other optional parameters will be mentioned later in the paper.

The code below will create a data set for a mock study that will be used in the examples in

this paper:

 proc format;

value off1f

1='Ineligible'

2='Insurance Denied';

value off2f

1='Withdrawal'

2='Progression'

3='Adverse Event'

4='Death'

5='Alternate Therapy';

 run;

 data example;

call streaminit(1);

array u {1500};

do j = 1 to dim(u);*Variables;

u(j)=rand("Uniform");

end;

length id 8. arm $25. gender smoke_stat $10. offtrt 8.

reg rand treated neo rt surg adj comp $50.;

do i = 1 to 1500;*Patients;

id=i;

call missing(reg,rand,treated,neo,surg,rt,adj,comp);

arm=catx(' ','Arm',1+round(rand("Uniform"),1));

sex=ifc(rand("Uniform")>0.50,'Male','Female');

smoke_chance=rand("Uniform");

3

 if smoke_chance>0.66 then smoke_stat='Former';

 else if smoke_chance>0.33 then smoke_stat='Current';

 else smoke_stat='Never';

 reg='Registered';

 if u(i)>=0.1 then do;

 rand='Randomized';

 if u(i)>=0.15 then do;

 treated='Started Treatment';

 if u(i)>=0.3 then do;

 neo='Completed Neoadjuvant~Chemotherapy';

 if u(i)>=0.35 and arm='Arm 2' then

rt='Completed Neoadjuvant RT';

 if (arm='Arm 1' or ^missing(rt)) and u(i)>=0.4 then do;

 surg='Completed Surgery';

 if u(i)>=0.5 then do;

 adj='Started Adjuvant Therapy';

 if u(i)>=0.6 then do;

 comp='Completed All Therapy';

 end;

 end;

 end;

 end;

 if missing(comp) then offtrt2=floor(rand("Uniform")*5+1);

 end;

 else offtrt2=floor(rand("Uniform")*3+1);

 end;

 else offtrt=floor(rand("Uniform")*2+1);

 output;

 end;

 drop u: i j;

 format offtrt off1f. offtrt2 off2f.;

 label arm='Treatment Arm' offtrt='Screen Failure' offtrt2='Off-Treatment'

 sex='Sex' smoke_stat='Smoking Status';

run;

4

Figure 1 is a snapshot of the data set EXAMPLE created by the previous code.

Figure 1. The variables REG, RAND, TREATED, RT, SURG, ADJ and COMP represent

the nodes of the consort. The variables SEX, SMOKE_STAT, and ARM are used for

branching paths. OFFTRT and OFFTRT2 contain reasons for going off-treatment.

The detailed patient paths through the trial are revealed by the following frequency table:

Figure 2 is a frequency table of the various paths patients take through the trial.

Figure 2. The frequency table makes it clear that there are patients that end the

study treatment at each node of the CONSORT.

There are several observations that can be inferred from the EXAMPLE data set:

• Arm 2 has an additional node (RT) than Arm 1

• Patients go from registration->randomization->starting treatment-> neoadjuvant

chemotherapy->radiation therapy (Arm 2 only)->surgery-> adjuvant chemotherapy

->completion of treatment

• Patient 3 goes off-treatment prior to completing all therapy because the COMP

variable is missing a value and offtrt2 has a value of Withdrawal.

5

EXAMPLE MACRO RUNS

The %CONSORT macro has the following required parameters:

• DATA: designates the input data set containing the variables to plot

• ID: variable containing the unique identifier for each patient

• NODE: Space delimited list of variables to designate the nodes of the CONSORT

The following is a basic macro call with only the required parameters:

 %CONSORT(DATA=EXAMPLE, ID=ID, NODE=REG RAND TREATED NEO)

This example only shows the first four nodes because after that point there is a split with

multiple paths that requires an additional parameter in the next example. This basic macro

call produces the following graph:

Figure 3 is the basic graph created by only the required parameters

Figure 3. The simple CONSORT diagram nodes and counts are automatically

created and spaced by the macro program.

There are two other key optional parameters:

• OFFREASON: Specifies one or more variables that contain the off-treatment reasons

• SPLIT: Specifies a variable to use to split the CONSORT into branching paths.

The following example adds these options to the previous macro call:

 %CONSORT(DATA=EXAMPLE, ID=ID, NODE=REG RAND TREATED NEO,

 SPLIT=|ARM,OFFREASON=OFFTRT|OFFTRT2)

The SPLIT variable is assigned to a specific NODE using the | symbol as a delimiter. In the

above example the CONSORT is split by ARM at Randomization instead of Registration due

to the first | assigning no SPLIT variable to REG. The same can be done with OFFREASON

and one or more unique variables can be entered for each NODE. In the case of both SPLIT

and OFFREASON the last value is carried forward and does not need to be repeated. If

additional SPLIT variables are listed after the first then the paths will continue to branch.

Registered (N=1500)

Randomized (N=1356)

Started Treatment (N=1268)

Chemotherapy (N=1059)

Completed Neoadjuvant

6

Figure 4 is the basic graph created by adding the SPLIT and OFFREASON parameters

Figure 4. The SPLIT variable ARM corresponds to the RAND variable in the NODES

list, so the split happens immediately after the RAND row in the diagram. The

OFFREASON boxes are added after each step. One OFFREASON variable is used

between REG and RAND and another between RAND and beyond.

The macro can use as many SPLIT variables as the user provides. The following example

adds in a second SPLIT variable:

 %CONSORT(DATA=EXAMPLE, ID=ID, NODE=REG RAND TREATED NEO,

 SPLIT=|ARM|SEX,OFFREASON=OFFTRT|OFFTRT2)

Figure 5 is the graph created by adding a second SPLIT variable

Figure 5. The second SPLIT variable, SEX, corresponds to the TREAT variable

causing the paths to split the row after TREAT. There is no limit to the number of

SPLIT variables, but space does become an issue.

Registered (N=1500)

Randomized (N=1356)

Arm 2 (N=702)Arm 1 (N=654)

Started Treatment (N=617) Started Treatment (N=651)

Chemotherapy (N=542)

Completed Neoadjuvant

Chemotherapy (N=517)

Completed Neoadjuvant

 -Insurance Denied (N=78)

 -Ineligible (N=66)

Screen Failure (N=144)

 -Adverse Event (N=16)

 -Progression (N=15)

 -Withdrawal (N=20)

Off-Treatment (N=51)

 -Alternate Therapy (N=26)

 -Death (N=14)

 -Adverse Event (N=17)

 -Progression (N=25)

 -Withdrawal (N=27)

Off-Treatment (N=109)

 -Adverse Event (N=14)

 -Progression (N=13)

 -Withdrawal (N=10)

Off-Treatment (N=37)

 -Alternate Therapy (N=19)

 -Death (N=18)

 -Adverse Event (N=25)

 -Progression (N=16)

 -Withdrawal (N=22)

Off-Treatment (N=100)

Registered (N=1500)

Randomized (N=1356)

Arm 1 (N=654) Arm 2 (N=702)

Started Treatment (N=651)Started Treatment (N=617)

Male (N=305) Female (N=328) Male (N=323)Female (N=312)

Chemotherapy (N=267)

Completed Neoadjuvant

Chemotherapy (N=258)

Completed Neoadjuvant

Chemotherapy (N=275)

Completed Neoadjuvant

Chemotherapy (N=259)

Completed Neoadjuvant

 -Insurance Denied (N=78)

 -Ineligible (N=66)

Screen Failure (N=144)

 -Adverse Event (N=16)

 -Progression (N=15)

 -Withdrawal (N=20)

Off-Treatment (N=51)

 -Alternate Therapy (N=14)

 -Death (N=7)

 -Adverse Event (N=7)

 -Progression (N=14)

 -Withdrawal (N=14)

Off-Treatment (N=56)

 -Alternate Therapy (N=12)

 -Death (N=7)

 -Adverse Event (N=10)

 -Progression (N=11)

 -Withdrawal (N=13)

Off-Treatment (N=53)

 -Adverse Event (N=14)

 -Progression (N=13)

 -Withdrawal (N=10)

Off-Treatment (N=37)

 -Alternate Therapy (N=11)

 -Death (N=6)

 -Adverse Event (N=14)

 -Progression (N=12)

 -Withdrawal (N=11)

Off-Treatment (N=54)

 -Alternate Therapy (N=8)

 -Death (N=12)

 -Adverse Event (N=11)

 -Progression (N=4)

 -Withdrawal (N=11)

Off-Treatment (N=46)

7

GRAPHICAL COMPONENTS

The actual creation of the CONSORT diagram is straightforward once the data preparation is

complete. There are only two components of the graph:

1. The textboxes containing the values and counts

2. The lines connecting the text boxes to show the flow of the CONSORT

The CONSORT macro uses the SGPLOT procedure to generate the graph.

DESIGNING THE TEXTBOXES

The textboxes are created using the TEXT statement which has three required inputs: X (x-

coordinate), Y (y-coordinate), and TEXT (text value to be printed at x, y). There are a few

key options used to transform the text plot into a textbox:

• OUTLINE: turns the outline on around the text

• SPLITCHAR: determines one or more text characters to create a new line when

encountered. The CONSORT macro uses the ~ character since it is not commonly

used in text strings

• SPLITPOLICY: determines how often the text is split into new lines when

encountering the SPLITCHAR characters. The CONSORT macro sets this to

SPLITALWAYS so that it will always create a new line break

• SPLITJUSTIFY: determines if the text will be left, center or right aligned in the

textbox. This is necessary for aligning the off-treatment reasons correctly

• BACKFILL: sets the background of the textboxes to be opaque. This prevents any

connecting lines running behind the text box from being seen. Setting

TRANSPARENCY=0 will make the background fully opaque.

• STRIP: removes trailing and leading blanks from the text values

The POSITION option determines which anchor point around the textbox sits on top of the

x/y coordinate. For example, if POSITION=TOP then the top center point of the textbox

matches the x/y coordinates and the text is drawn below it. The CONSORT macro uses

different positions depending on which type of textbox is being drawn. If the textbox is one

of the nodes then POSITION=BOTTOM, and if the textbox is one of the off-treatment reason

boxes then POSITION will either be LEFT or RIGHT depending on the direction the textbox

pops out from the CONSORT. There are a couple of odd behaviors that occur with

POSITION to be aware of:

• There is an option for POSITION to be set to a character variable instead of a

keyword. There is currently an odd reaction between this and SPLITJUSTIFY such

that the SPLITJUSTIFY value is potentially ignored and BOTTOMLEFT is selected

instead if SPLITJUSTIFY has a value.

• The POSITION value will always match up to the same point of the textbox

regardless of the value of PAD. This complicates lining up the connecting arrow to

the top of the box as the padding must be accounted for so that the arrow is not

blocked by the textbox. Adding an option to anchor on the edge of the box instead

would be a great addition by SAS.

8

Figure 6 is an example showing how the textboxes are anchored around padding

Figure 6. The scatter plot points show the actual anchor point and the text stay in

the same location regardless of the value of PAD.

The following is an example of the TEXT plot statement within the CONSORT macro

including macro variables defined by the macro call:

 text x=x_b y=y text=start / outline pad=2px position=bottom transparency=0

 splitchar='~' splitpolicy=splitalways backfill nomissinggroup

group=label fillattrs=(color=&textbox_background_color)

textattrs=(color=&font_color size=&font_size. pt family="&font")

strip outlineattrs=(thickness=2pt color=&textbox_outline_color)

SPLITJUSTIFY=center;

DESIGNING THE CONNECTING LINES

The connecting lines are created with the SERIES statement which requires an x-coordinate

and a y-coordinate. The CONSORT macro uses two different SERIES statements where one

has arrowhead caps and the other does not. The macro ensures two lines do not overlap.

Each line segment in the CONSORT has a starting point, ending point, and unique identifier

code. This identifier code is used in the GROUP option for the SERIES statement to

separate them.

When connecting textboxes are in the same column the coordinates are simply the current

textbox anchor point and the previous textbox anchor point. When the connecting boxes

are in different columns, such as when a SPLIT variable is listed, then the macro creates

multiple separate lines:

• A line starting at the previous textbox anchor point that goes straight down to the

vertical halfway point between the textboxes with no arrowhead

• A line starting at the vertical midpoint between textboxes vertically aligned with

current textbox that continues down to the current textbox with an arrowhead

• A line at the vertical midpoint between the textboxes that runs horizontally from the

x-coordinate of the previous textbox to the x-coordinate of the current textbox with

no arrowhead

These three lines combine to create the branching path shown in the CONSORT diagram.

PAD=0

Position=LEFT

PAD=6

POSITION=LEFT

PAD=0

POSITION=TOP

PAD=6

POSITION=TOP

1 2

x

1

2

y

9

SETTING UP THE GRAPH SPACE

The graph space is designed in a simple way such that the rows and columns of the

CONSORT can be calculated as a percentage of 100. The x and y axes both range from 0 to

100 and both axes have all display turned off in the final image.

The vertical space allocated to each row of textboxes is 100/Number of total rows by

default. There is another option in the macro to make the space allocated to each row

proportionate to the maximum number of rows of text within that row compared to the rows

of text across all rows. This option causes off-treatment reason boxes fit better when many

rows are present.

The horizontal space is allocated equally across all columns. A column is defined as having

the same x-coordinate across the textboxes. The off-treatment text boxes are not included

as columns in this definition and are instead placed at the midpoint between text boxes with

optional adjustment available in the macro parameters.

MANUALLY DESIGNING THE CONSORT

Manually setting up the simple components of the CONSORT is straightforward but requires

many attempts to get the spacing correct. The challenge is creating a way to automate the

process to remove the tedium of trial and error as much as possible.

MACRO AUTOMATION METHODS

There are 4 major items that must be determined by the macro in order to automate the

CONSORT:

1. The number of unique paths the patients follow through the trial

2. The parent-child relationship between textboxes in each path

3. The counts and values within each textbox

4. The x/y coordinates of the text boxes and connecting lines

Once these four items are computed by the macro the data set needed to plot the CONSORT

can be created. The CONSORT macro relies heavily on the SQL procedure for merging data

and aggregating counts. The DATA step array functionality is also used.

FINDING THE NUMBER OF UNIQUE PATHS

The primary purpose of requiring the input data set to have NODEs as multiple variables is

that it is more straightforward to find the correct sequence order. Having nodes

represented by multiple rows would require a separate variable or option to determine the

correct order. The first thing the CONSORT macro does is to “transpose” a copy of the input

data set into a format that is conducive both for summarizing with the SQL procedure and

for painting a picture of each patient’s individual path through the study.

“Transposing” the data set

The data input into the macro is initially one row-per-patient with multiple variables for each

node of the CONSORT. The macro will cycle through each of the NODE variables, utilize the

patients that have non-missing values, and output the values a new step for that patient.

There are two occurrences that would also add another step for each patient:

1. There is a SPLIT variable added at the current node. This tells the macro to output

the value of the node as a header for the split, and then to output another row for

the SPLIT variable’s value.

10

2. The patient does not have the current node but has the previous node. An additional

row is added with the current off-treatment reason and label.

a. NOTE: it is possible for paths to have nodes that other paths do not such as in

the EXAMPLE data set.

Figure 7 shows patient 19’s data in the input data set and the “transposed” version

Figure 7. The NODE variable represents the current node of the CONSORT and is

used for sorting. Each node row has its own potential set of variables such as

LABEL and OFFRSN. These variables are later combined into one variable.

Figure 7 has a simplified version of the transposed data set focusing on one patient. With

more patients there are potentially more nodes due to patients going off-treatment at

different points. The data is initially setup this way for two reasons:

1. The different NODE, SPLIT, and OFFRSN variables potentially being different data

types and the transposing is being done in PROC SQL. They could be combined with

more front-end effort, but it is easier to combine later with COALESCEC and VVALUE

functions within a DATA step

2. The variables potentially have different formats which are preserved for ordering

The next data step collapses the multiple variables into one. The NODE variable essentially

represents the current row of the CONSORT counting top to bottom. The PHASE variable

increasing in value indicates that a new SPLIT variable has been added to the CONSORT,

and the OFF_TRT variable is a flag indicator variable to mark the row as an off-treatment

section.

The next steps create an ORDER variable based off the sorted values of all the SPLIT

variables across the nodes. This ORDER variable is combined with the NODE variable to

create a unique NODE value for each potential textbox.

ID Arm Reg Rand Treated Neo Offrsn

19 Arm 2 Registered Randomized Started Treatment Withdrawal

ID Node Phase Label1 Label2 Split1 Label3 Label4 Label5 Offrsn5 Off_trt

19 1 1 Registered 0

19 2 1 Randomized 0

19 3 2 Arm 2 Started
Treatment

0

19 4 2 Arm 2 Arm 2 0

19 5 2 Arm 2 Off-Treatment Withdrawal 1

11

Figure 8 shows patient 19’s data after ordering and collapsing the variables

Figure 8. The ORDER variable is the order of all SPLIT variable levels including

missing values. This value divided by 100 is added to the NODE variable value to

create a distinct value for each textbox.

Now that each textbox now has a unique NODE value and unique LABEL (text) value the

next step is to find evert unique patient path through the study. This will be done for two

different types of paths:

1. Patients that either completed treatment or have not yet come off active treatment

2. Patients that have gone off-treatment prior to completing the protocol

Figure 9 shows the unique paths through the CONSORT in Figure 4

Figure 9. The two tables show the unique paths through the study and going off-

treatment. Each textbox is represented by its unique NODE number

All the unique paths are now contained within these data sets. The next step is to

determine the parent-child relationships between each node.

FINDING THE PARENT-CHILD RELATIONSHIPS BETWEEN NODES

Knowing which nodes connect to each other is key to lining them up into the correct

columns and determining which coordinates link when making the connecting lines. The

ID Node Phase Order Label Split1 Offrsn Off_order Off_trt

19 1.01 1 1 Registered 0

19 2.01 1 1 Randomized 0

19 3.02 2 2 Started Treatment Arm 2 0

19 4.02 2 2 Arm 2 Arm 2 0

19 5.02 2 2 Off-Treatment Arm 2 Withdrawal 1 1

Path Step1 Step2 Step3 Step4 Step5 Last_step Phase1 phase2 Phase3 Phase4 phase5

1 1.01 3.01 4.02 6.02 8.02 8.02 1 1 2 2 2

2 1.01 3.01 4.03 6.03 8.03 8.03 1 1 2 2 2

Step1 Step2 Step3 Step4 Step5 Last_step Connect_backwards

1.01 2.01 2.01 1.01

1.01 3.01 4.02 5.02 5.02 4.02

1.01 3.01 4.03 5.03 5.03 4.03

1.01 3.01 4.02 6.02 7.02 7.02 6.02

1.01 3.01 4.03 6.03 7.03 7.03 6.03

Unique paths through entire study

Unique paths through going off-treatment

12

first step the macro takes is to find the connections (forward and backward) each node

makes in order to link the y-coordinates between nodes. The columns and x-coordinates

have not been calculated yet to link. The following code uses the first data set from Figure

9:

 data _temp6;

 set _unique_paths end=last;

 array step {%sysevalf(&ngrps+1)};

 array phases {%sysevalf(&ngrps+1)};

 retain nsteps;

 nsteps=max(nsteps,dim(step)-nmiss(of step(*)));

 do i = 1 to dim(step);

 if ^missing(step(i)) then do;

 phase=phases(i);

 node=step(i);

 row=int(step(i));

 if i=1 then do;

 row_link=int(step(i));

 connect_forward=step(i+1);

 connect_backward=step(i);

 output;

 end;

 else do;

 row_link=int(step(i-1));

 connect_forward=step(i+1);

 connect_backward=step(i-1);

 output;

 end;

 end;

 end;

 if last then call symputx('nsteps',nsteps);

 keep phase path node row row_link connect_forward connect_backward;

 run;

The NGRPS macro variable is the maximum number of steps found in any of the unique

paths. The array functionality makes it simple to find the nodes that connect forward or

backward and to create a row_link variable that will be used in another data step’s array to

find the x/y coordinates of the connecting nodes. Running the code will create the

following data set:

13

Figure 10 shows the first step of linking rows and nodes

Figure 10. The CONNECT_FORWARD and CONNECT_BACKWARD columns are used

for merging information about other NODES. The ROW_LINK and ROW are used as

ARRAY indexes in a later data step.

CALCULATING THE COUNTS AND VALUES WITHIN THE TEXT BOXES

The initial steps of calculating the counts and forming the text for the textboxes is easily

performed with the SQL procedure and the transposed data set from earlier. The macro

makes use of the flag variables created earlier and calculates the counts separately between

the nodes and the off-treatment textboxes. The code for the nodes is:

 select phase,node,label,'BOTTOM' as position,count(distinct id) as n,

 case(missing(label))

 when 0 then strip(label)||' (N='||

 strip(put(calculated n,12.0))||')'

 else '' end as text length=1000

 from _temp4 where off_trt<1

 group by phase,node,label,position

The code counts the number of unique IDs at each node of the CONSORT and makes a new

variable (TEXT) that concatenates the textbox label already in the data set with the new

count in the (N=xx) format. The where clause uses the OFF_TRT flag variable to exclude

the off-treatment boxes from this query. The off-treatment textboxes are more complex in

that they need to have a label with the total count as well as a row for each off-treatment

reason with an individual count. This is done in three steps :

1. The first step utilizes the overall label and count for the textbox which is stored in

the LABEL variable.

2. The second query takes each off-treatment value which is stored in the OFFRSN

variable and then aggregates the counts for each specific value

Path Phase Node Row Row_link Connect_forward Connect_backward

1 1 1.01 1 1 3.01 1.01

1 1 3.01 3 1 4.02 1.01

1 2 4.02 4 3 6.02 3.01

1 2 6.02 6 4 8.02 4.02

1 2 8.02 8 6 8.02

2 1 1.01 1 1 3.01 1.01

2 1 3.01 3 1 4.03 1.01

2 2 4.03 4 3 6.03 3.01

2 2 6.03 6 4 8.03 4.03

2 2 8.03 8 6 6.03

14

3. The third query summarizes the counts for any patients that did not continue to the

next node but did not have an off-treatment reason. These patients could be

missing a reason or they could still be on active treatment. The default value for this

macro variable is “Active Treatment” and is set by macro option

&NO_OFFREASON_TEXT.

A simplified version of the macro code is:

 /**Grabs label and total count**/

 select phase,node,off_trt,n_off,label, 'RIGHT' as position,

count(distinct id) as n,

 strip(label)||' (N='||strip(put(calculated n,12.0))||')' as text

 from _temp4 where off_trt>=1 and ^missing(offrsn) and

 node ^in(select node from _unique_paths_off

 where connect_backward in(select last_step from _unique_paths))

 group by phase,node,off_trt,n_off,label,position

 outer union corr

 /**Grabs each individual non-missing off-treatment reason**/

 select phase,node,off_trt,n_off,off_order,offrsn,'RIGHT' as position,

 count(distinct id) as n,

 &indent_text||strip(offrsn)||' (N='||

 strip(put(calculated n,12.0))||')' as text

 from _temp4 where off_trt>=1 and ^missing(offrsn) and

 node ^in(select node from _unique_paths_off

 where connect_backward in(select last_step from _unique_paths))

 group by phase,node,off_trt,n_off,off_order,offrsn,position

 outer union corr

 /**Grabs patients that didn’t continue but don’t have a reason**/

 select phase,node, 1000 as off_order,offrsn,'RIGHT' as position,

 count(distinct id) as n,

 "&no_offreason_text (N="||strip(put(calculated n,12.0))||')' as text

 from _temp4 where off_trt>=1 and missing(offrsn) and

 node ^in(select node from _unique_paths_off

 where connect_backward in(select last_step from _unique_paths))

 group by phase,node,off_order,offrsn,position

The OFF_ORDER variable keeps the off-treatment reasons in order. The final dataset is

then sorted by PHASE, NODE, and OFF_ORDER. The created data set paints a visual picture

of what will be in the consort diagram. There are no x/y coordinates in the data set, and

there are multiple rows for off-treatment nodes that will be collapsed in the final steps of

the macro. The following figure displays the data set made by these steps:

15

Figure 11 shows the final data set made in this section

Figure 11. The TEXT column contains the combined labels and counts for each

node. The POSITION value will determine which X variable is assigned to the node

in the final steps.

CALCULATING THE X/Y COORDINATES OF THE TEXT BOXES

The next step focuses on finding the x- coordinates for each node. The program initially

gives each node an equal amount of space depending on how many paths exist in that row.

The next steps then use the parent-child links to center each node between its forward

connecting nodes. The simplified process is shown in the following figure:

Figure 12 shows how the x-coordinates start out as evenly spaced and then are adjusted

Figure 12. In step 1 each branch is simply centered based on how many paths

there are in that row. Then working bottom to top in the next steps center the

branch between the forward connecting paths.

Phase Node Label Position N Text Off_trt Off_order Offrsn
1 1.01 Registered BOTTOM 1500 Registered (N=1500)
1 2.01 Screen Failure RIGHT 144 Screen Failure (N=144) 1
1 2.01 RIGHT 66 -Ineligible (N=66) 1 1 Ineligible
1 2.01 RIGHT 78 -Insurance Denied (N=78) 1 2 Insurance

Denied
1 3.01 Randomized BOTTOM 1356 Randomized (N=1356)
2 4.02 Arm 1 BOTTOM 654 Arm 1 (N=654)
2 4.03 Arm 2 BOTTOM 702 Arm 2 (N=702)
2 5.02 Off-Treatment LEFT 37 Off-Treatment (N=37) 1
2 5.02 LEFT 10 -Withdrawal (N=10) 1 1 Withdrawal
2 5.02 LEFT 13 -Progression (N=13) 1 2 Progression
2 5.02 LEFT 14 -Adverse Event (N=14) 1 3 Adverse Event
2 5.03 Off-Treatment RIGHT 51 Off-Treatment (N=51) 1
2 5.03 RIGHT 20 -Withdrawal (N=20) 1 1 Withdrawal
2 5.03 RIGHT 15 -Progression (N=15) 1 2 Progression
2 5.03 RIGHT 16 -Adverse Event (N=16) 1 3 Adverse Event
2 6.02 Started Treatment BOTTOM 617 Started Treatment (N=617)
2 6.03 Started Treatment BOTTOM 651 Started Treatment (N=651)
2 7.02 Off-Treatment LEFT 100 Off-Treatment (N=100) 1
2 7.02 LEFT 22 -Withdrawal (N=22) 1 1 Withdrawal
2 7.02 LEFT 16 -Progression (N=16) 1 2 Progression
2 7.02 LEFT 25 -Adverse Event (N=25) 1 3 Adverse Event
2 7.02 LEFT 18 -Death (N=18) 1 4 Death
2 7.02 LEFT 19 -Alternate Therapy (N=19) 1 5 Alternate

Therapy
2 7.03 Off-Treatment RIGHT 109 Off-Treatment (N=109) 1
2 7.03 RIGHT 27 -Withdrawal (N=27) 1 1 Withdrawal
2 7.03 RIGHT 25 -Progression (N=25) 1 2 Progression
2 7.03 RIGHT 17 -Adverse Event (N=17) 1 3 Adverse Event
2 7.03 RIGHT 14 -Death (N=14) 1 4 Death
2 7.03 RIGHT 26 -Alternate Therapy (N=26) 1 5 Alternate

Therapy
2 8.02 Completed Neoadjuvant~Chemotherapy BOTTOM 517 Completed Neoadjuvant~Chemotherapy (N=517)
2 8.03 Completed Neoadjuvant~Chemotherapy BOTTOM 542 Completed Neoadjuvant~Chemotherapy (N=542)

St
e

p
 1

St
ep

 2
St

ep
 3

16

The code that assigns the initial x-coordinates is the following:

 create table _temp7 as

select distinct a.phase,a.node,a.connect_backward,a.connect_forward,

a.min_path,a.max_path,c.npaths,a.total_npath,a.x_min,a.x_max,a.x,a.y

from (select *, count(distinct path) as npath,

min(path) as min_path, max(path) as max_path,

100*(calculated min_path-1)/max(total_npath) as x_min,

calculated x_min+100*count(distinct path)/max(total_npath) as x_max,

(calculated x_max+calculated x_min)/2 as x,int(node) as y

from (select a.*, b.path, b.total_npath _temp6 (drop=path) a

left join (select *,count(distinct path) as total_npath from _temp6) b

on a.phase=b.phase and a.node=b.node)

group by node) a left join

(select phase,count(distinct node) as npaths from

(select phase,node,path from _temp6

group by path,phase having node=min(node))

group by phase) c

on a.phase=c.phase;

And the resulting data set is:

Figure 13 shows the initial x-coordinates for each node

Figure 13. The SQL procedure works well for performing multiple merges and on-

the-fly data set modifications for this step.

The code that then goes from bottom to top of the CONSORT to reassign the x-coordinates

is:

select distinct row into :dsteps separated by '|' from _temp6;

%do i=&nsteps %to 1 %by -1;

create table _step&i as

%if &i=&nsteps %then %do;

select * from _temp7 (drop=connect_forward x_min x_max)

where y=%scan(&dsteps,&i,|);

%end;

Phase Node Connect_backward Connect_forward Min_path Max_path Npaths Total_npath X_min X_max X Y

1 1.01 1.01 3.01 1 2 1 2 0 100 50 1

1 3.01 1.01 4.02 1 2 1 2 0 100 50 3

1 3.01 1.01 4.03 1 2 1 2 0 100 50 3

2 4.02 3.01 6.02 1 1 2 2 0 50 25 4

2 4.03 3.01 6.03 2 2 2 2 50 100 75 4

2 6.02 4.02 8.02 1 1 2 2 0 50 25 6

2 6.03 4.03 8.03 2 2 2 2 50 100 75 6

2 8.02 6.02 1 1 2 2 0 50 25 8

2 8.03 6.03 2 2 2 2 50 100 75 8

17

%else %do;

select a.phase, a.node, a.connect_backward, a.y,

coalesce(min(b.x),max(a.x_min)) as x_min,

coalesce(max(b.x),max(a.x_max)) as x_max,

coalesce((min(b.x)+max(b.x))/2,max(a.x)) as x

from (select * from _temp7

where y=%scan(&dsteps,&i,|)) a

 left join _step%eval(&i+1) b on a.connect_forward=b.node

group by a.phase, a.node,a.connect_backward,a.y;

%end;

%end;

The current example would not change since it has a balanced number of branches on each

side of the CONSORT, but the output data set would be nearly the same as Figure 13 with

updated x-coordinates. Each unique x-coordinate is counted as a new column in ascending

order.

The y-coordinates are much easier to calculate, and there are two methods. The first

counts the total number of rows in the CONSORT data (Figure 10) and then assigns an

equal amount of vertical spacing for each row (1/&NROWS). The y-coordinate would then

be the center of each set of vertical space. The second is a more flexible method that

counts maximum number of text lines in each row of nodes. The denominator then

becomes the total number of lines across all rows (maximum of each row) to assign the

vertical space.

FINALIZING THE PLOT DATA SET

Now that all the data pieces were calculated by the macro, they are merged into a final

preparation data set. There are still multiple rows for off-treatment nodes that must be

collapsed, and this is done in the following data step:

data _temp9;

set _temp8;

by y x;

where ^missing(x) and ^missing(y);

length _temp_text $10000.;

if first.x then call missing(_temp_text);

if ^(first.x and last.x) then do;

_temp_text=catx('~',_temp_text,text);

if last.x then do;

text=_temp_text;

output;

end;

end;

else output;

retain _temp_text;

18

drop _temp_text;

run;

The program creates a text variable that concatenates the off-treatment label with each row

of the off-treatment reasons using the line split character as a delimiter. The final output

only has the final row of each node with the concatenated text variable:

Figure 14 shows the data set with the concatenated text variable

Figure 14. The final data set has the text value, the y value that will be converted

to a y-coordinate, the x-coordinate, and row/column indexes for arrays in the next

steps.

The next step sets up a data set with attributes of each textbox (x/y-coordinates, number of

text lines, and position) all in the same row so that they can be used in arrays. This data

step is then merged into the data set from Figure 14 so that each row has access to the

attributes of all the other textboxes.

The last components needed for the plot are the coordinates for the lines. There are several

that must be considered. The components that are needed to make each line:

• Two x/y coordinates: each line must have a start and an end

• Unique ID value to be used in the GROUP option to keep all lines individual

THE LINKING TEXTBOXES ARE IN THE SAME COLUMN

This is the simplest scenario with the most straightforward calculation. This scenario only

requires a straight line from the x/y coordinates of the previous textbox to the x/y

coordinates of the current textbox. This will cause the line to run behind the previous

textbox as the anchor points are at the top and middle of the textbox, but because each

textbox is opaque that part of the line will not be seen.

phase node position text off_trt n_off off_order connect_backward connect_forward x y column

1 1.01 BOTTOM Registered (N=1500) 1.01 3.01 50.0 1 3

1 2.01 RIGHT Screen Failure (N=144)~ -Ineligible
(N=66)~ -Insurance Denied (N=78)

1 1 2 1.01 3.01 65.0 2 4

1 3.01 BOTTOM Randomized (N=1356) 1.01 4.03 50.0 3 3

2 4.02 BOTTOM Arm 1 (N=654) 3.01 6.02 25.0 4 2

2 4.03 BOTTOM Arm 2 (N=702) 3.01 6.03 75.0 4 5

2 5.02 LEFT Off-Treatment (N=37)~ -Withdrawal
(N=10)~ -Progression (N=13)~ -
Adverse Event
(N=14)

1 1 3 4.02 6.02 17.5 5 1

2 5.03 RIGHT Off-Treatment (N=51)~ -Withdrawal
(N=20)~ -Progression (N=15)~ -
Adverse Event
(N=16)

1 1 3 4.03 6.03 82.5 5 6

2 6.02 BOTTOM Started Treatment (N=617) 4.02 8.02 25.0 6 2

2 6.03 BOTTOM Started Treatment (N=651) 4.03 8.03 75.0 6 5

2 7.02 LEFT Off-Treatment (N=100)~ -Withdrawal
(N=22)~ -Progression (N=16)~ -
Adverse Event
(N=25)~ -Death (N=18)~ -Alternate
Therapy
(N=19)

1 1 5 6.02 8.02 17.5 7 1

2 7.03 RIGHT Off-Treatment (N=109)~ -Withdrawal
(N=27)~ -Progression (N=25)~ -
Adverse Event
(N=17)~ -Death (N=14)~ -Alternate
Therapy
(N=26)

1 1 5 6.03 8.03 82.5 7 6

2 8.02 BOTTOM Completed
Neoadjuvant~Chemotherapy (N=517)

6.02 25.0 8 2

2 8.03 BOTTOM Completed
Neoadjuvant~Chemotherapy (N=542)

6.03 75.0 8 5

19

THE LINKING TEXTBOXES ARE IN DIFFERENT COLUMNS AND POSITION=”BOTTOM”

This is the scenario when a SPLIT has occurred in the prior row of the CONSORT. The

macro moves the connecting lines in a rectangular path rather than at an angle (see Figure

4). Due to this there are three lines that need to be created:

1. A line that runs from the vertical midpoint between the two textboxes to the current

textbox with an arrowhead. The x-coordinate for this line is the same as the current

textbox for both points

2. A line that runs from the previous textbox to the vertical midpoint with no

arrowhead. The x-coordinate for this line is the same as the previous textbox for

both points.

3. A line that runs horizontally at the vertical midpoint from the x-coordinate of the

current textbox to the prior textbox with no arrowhead

While the above appears straightforward there is one major complication: the vertical

midpoint between textboxes is from the bottom of the previous textbox to the top of the

current textbox. The x/y coordinates are known only for the top of the current textbox and

the y-coordinate of the bottom of the previous textbox is not directly available and must be

estimated. The CONSORT macro has the macro parameter &MULTILINE_ADJUST to assign

a certain amount of space for each line of text, and this is used to estimate the distance

from the top of a textbox to the bottom:

guessed_bottom=y+&multiline_adjust*_nlines_(row,column);

The macro parameter can be adjusted depending on font size to approximate the bottom of

the textbox, and this estimate can then be used to calculate the vertical midpoint.

THE LINKING TEXTBOXES ARE IN DIFFERENT COLUMNS AND POSITION^=”BOTTOM”

This scenario applies to the off-treatment textboxes which have a position of LEFT or RIGHT.

They are designed to pop out at the vertical midpoint between the previous textbox and the

following textbox. This y-coordinate is computed the same way as the previous example

but uses the y-axis of the previous and following textboxes instead of the current one. The

x-coordinates for this line are the x-coordinate of the previous textbox and the x-coordinate

of the current textbox.

Figure 15 shows an example of the calculated x/y coordinates for lines

Phase Node Position Label X_b2 X_b Y X_r X_l X_line Y_line Id X_line2 Y_line2

1 1.01 BOTTOM Registered (N=1500) 50 6.2500

1 2.01 RIGHT Screen Failure (N=144)~ -
Ineligible
(N=66)~ -Insurance Denied
(N=78)

19.7682 65.0

1 2.01 RIGHT 50.0 19.7682 1002.0

1 2.01 RIGHT 65.0 19.7682 1002.0

1 3.01 BOTTOM Randomized (N=1356) 50 31.2500

1 3.01 BOTTOM 50.0 6.2500 1003.0

1 3.01 BOTTOM 50.0 31.0500 1003.0

2 4.03 BOTTOM Arm 2 (N=702) 75 43.7500

2 4.03 BOTTOM 75.0 38.5182 1004.0

2 4.03 BOTTOM 75.0 43.5500 1004.0

2 4.03 BOTTOM 1004.1 50 38.5182

2 4.03 BOTTOM 1004.1 75 38.5182

2 4.03 BOTTOM 1004.2 50 38.5182

2 4.03 BOTTOM 1004.2 50 31.2500

20

Figure 15. There are two separate sets of x/y variables for lines. The

x_line/y_line combinations are for lines with arrowheads, and the x_line2/y_line2

combinations are for lines without arrowheads.

The SGPLOT procedure runs multiple TEXT statements and multiple SERIES statements

which requires different x variables to use in the different statements. The X_B variable is

for TEXT statements with POSITION=BOTTOM, X_L for POSITION=LEFT, and X_R for

POSITION=RIGHT. The ID variable is used with the SERIES plot statements, and there are

two sets of x/y coordinates for each ID value. In Figure 15 above, the ID combinations for

1004 show the three sets of lines that occur when a SPLIT variable is used.

OTHER POTENTIAL COMPLICATIONS

The CONSORT macro was designed originally in a Linux environment and upon testing the

program in other environments several complications were found.

CERTAIN FONTS CAUSE ALIGNMENT ISSUE

The TEXT plot is a powerful tool but does include several current bugs. This paper already

mentioned the POSITION option failing under certain conditions, and another is not aligning

properly when POSITION=LEFT with certain font families. The following example compares

running the same code first with the font TIMES and secondly with ARIEL:

Figure 16 shows an example of misaligned text boxes due to font type

Figure 16. The left figure has a font that causes the text plot to appear left of the

intended anchor point. The right figure is the exact same data and macro call with

a different selected font.

This bug does not appear when POSITION=RIGHT or POSITION=BOTTOM. There currently

is not a list of which fonts this affects for which systems.

DIFFERENT DEFAULTS FOR MISSING OPTION

The CONSORT macro makes heavy use of the VVALUE and MISSING functions. There can

be complications with missing values depending on the value of the MISSING option. When

this option is not set to OPTIONS MISSING=’’ then it becomes possible for the VVALUE

function to return a ‘.’ or other character depending on the options current value which will

not return as missing in the MISSING function. This leads to a series of complications with

aggregating the correct numbers and values within the macro code.

AVAILABILITY OF UNICODE CHARACTERS

The CONSORT macro originally made use of a Unicode character for non-breaking space to

create the indentation within the off-treatment text boxes. Testing in additional systems

has discovered that varying Unicode character sets are installed and will lead to potential

(N=1500)

Registered

(N=1356)

Randomized

(N=690)

Arm 2

(N=666)

Arm 1

(N=625)

Treatment

Started

(N=643)

Treatment

Started

-Insurance Denied (N=78)

-Ineligible (N=66)

Screen Failure (N=144)

-Adverse Event (N=16)

-Progression (N=19)

-Withdrawal (N=12)

Untreated (N=47)

-Adverse Event (N=13)

-Progression (N=12)

-Withdrawal (N=16)

Untreated (N=41)

(N=1500)

Registered

(N=1356)

Randomized

(N=690)

Arm 2

(N=666)

Arm 1

(N=625)

Treatment

Started

(N=643)

Treatment

Started

-Insurance Denied (N=78)

-Ineligible (N=66)

Screen Failure (N=144)

-Adverse Event (N=16)

-Progression (N=19)

-Withdrawal (N=12)

Untreated (N=47)

-Adverse Event (N=13)

-Progression (N=12)

-Withdrawal (N=16)

Untreated (N=41)

21

errors when running. The macro parameter INDENT_TEXT can be modified to specify the

text that appears before each list item.

CONCLUSION

The concept of automating a CONSORT diagram programmatically was extremely

challenging. There are many, many ways to design a CONSORT diagram and it is nearly

impossible to write one program that can cover them all. The methods described in this

paper, however, can be applied to any CONSORT program with modifications for the final

product. There are numerous other functions and features of the CONSORT macro that

were not described by this paper because focusing on the more universal methods behind

the macro.

REFERENCES
1Matange, Sanjay and Hebbar, Preshant. “CONSORT Diagrams with SG Procedures.”

Proceedings of the PharmaSUG 2018 Conference, Seattle, Washington

ACKNOWLEDGMENTS

A special thanks to the current and former SAS ODS Graphics team including Preshant,

Sanjay, and Dan for always being willing to discuss ideas and giving encouragement.

Another thank you to SAS technical support for helping me find solutions for potential SAS

glitches while making this program.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Jeffrey Meyers

Regeneron Pharmaceuticals

Jeffrey.Meyers@regeneron.com

SAS Communities Link

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

mailto:Jeffrey.Meyers@regeneron.com
https://communities.sas.com/t5/SAS-Global-Forum-Proceedings/Methods-of-a-Fully-Automated-CONSORT-Diagram-Macro-CONSORT/ta-p/726358

