
1

PharmaSUG 2023 - Paper AP-309

Macro to Automate Crossover Review in Produced Outputs

Igor Goldfarb, Accenture Life Sciences;

Ella Zelichonok, Naxion

ABSTRACT

The goal of this work is to develop a macro that automates an important and time-consuming part of a final
review process of produced tables, listings, and figures (TLF) – crossover review. Performing this type of
validation is a well-accepted practice typically performed manually by biostatisticians as the final stage in
the multi-step quality check (QC) process. The proposed tool can significantly simplify review work for
biostatisticians who have to verify that TLF were generated correctly, and they are consistent across the
study and its different sections.

Final review of the produced TLF represents an important task in a flow of raw data to final outputs ready
for submission. Comparison, analysis and making sure that the actual outputs are all consistent across the
study is a tedious procedure requiring scrupulous manual work that is subject to human errors.

The proposed macro (developed in Excel VBA) automates this process. It reads the titles and
corresponding content of the produced outputs (e.g., big N - values of safety population by study treatment
group, by subgroup, etc.) and in a matter of seconds creates an ordered table of content (TOC, Excel) that
includes also data of interest. At the next step the macro analyzes the read data and verifies that all
produced outputs are consistent across the study (e.g., numbers of safety population in all outputs by age
subgroup add up correctly to the corresponding values in study treatment groups). In case of any
inconsistency found the macro marks the distinctions. Any further updates in the created TLF, can be easily
reviewed another time by rerunning this macro.

INTRODUCTION

It is well known that a journey of a new invented biologic product or chemical compound from research
laboratory to the authority’s approval as an effective and safe medicine takes many years. Clinical trials
take significant part of this time.

Conduction of clinical trial and analysis of the obtained results represent in our days well established and
regulated (both on national and international levels) environment. It is well known that the collected data
are expected to be analyzed strictly in accordance with Statistical Analysis Plan (SAP), which is developed
as a result of close collaboration of biostatisticians, lead programmers, data managers, clinicians, medical
writers, etc. The results of these analyses are typically presented in the form of tables, listings and figures
(TLF). Normally TLF are produced according to the document that is called shells (or mocks). The shell
document is a necessary part of any SAP and contains clear, concise and detailed instructions how to
produce every one of the planned outputs.

Once a working version of the shells is approved statistical programmers start to produce tables, listings
and figures according to the SAP and the instructions in the shells. Double programming represents a
standard approach in the pharmaceutical industry. Double programming presumes that two persons –
production programmer and validation programmer – independently work on one output, compare the
outcomes, analyze distinctions, investigate them, and eliminate the differences by uncovering an error and
updating the original programs. This methodology allows to essentially reduce a number of human errors,
but cannot eradicate them completely. For example, one group of programmers works on the safety outputs
and uses term “Sex” in displaying results by this subgroup, while another group works on efficacy outputs,

2

and they use term “Gender” for the same purpose. Normal communication between the two groups rarely
allows to uncover differences of this type. Therefore, a typical statistician or a lead programmer faces a
necessity to review the produced outputs before delivering them. The review process includes many
different components and one of them – so called cross over review when one has to verify that the delivery
does not contain contradictory information (e.g., gender subdivision in one table is 50 males and 50
females, while in the other - 51 males and 49 females) and all terms are displayed in consistent way (e.g.,
gender in one set of tables and sex – in others).

The proposed initial version 1.0 of the macro mXREVIEW was developed in a framework of internal project
of systemic automation conducted by the Department of Clinical Programming and Statistics, Accenture
Life Science. The macro represents a natural continuation of the previous work of the authors (Goldfarb
and Zelichonok, 2020, 2021), devoted to development of other macros, namely mSHELL2TOC and
mSHELLvsTLF. Macro mSHELL2TOC allows to automate a process of initial creation and numerous late
updates of the Table of Content (TOC) used to output tables, listings and figures according to the shells
provided by the project statistician. Macro mSHELLvsTLF utilizes the same paradigm and provides the
statistician or lead programmer with an automated way of comparing titles and footnotes as they were
placed in the shell document with actual titles and footnotes as they appeared in the final outputs (tables,
listings and figures produced by statistical programmers).

The developed macro mXREVIEW allows to automate cross-over review of the produced TLF across the
whole study and to verify that all interconnected outputs are presented in the same way and all “children”
outputs are in an absolute synchronization with their “parent” tables. It makes the final delivery more
consistent and robust because it essentially reduces a need in manual tedious review of hundreds of
outputs.

LITERATURE REVIEW

The idea to automate the cross-over review process is not new. Statisticians and lead programmers
constantly face a need to perform this type of review across the study to make sure that delivery is
consistent across all TLF and results presented in one portion of the outputs do not contradict displayed
data in another section of the same set of TLF. Nevertheless, the authors found very limited number of
papers devoted to the automation of the cross-over review of the produced outputs.

To address the challenge of automation, programmers made number of attempts in the past to develop a
system that can allow to automate to some extent the review of the outputs. This Section reviews several
solutions (the list is far from to be complete) that were suggested for public use and published in the
professional literature.

The most recent example of attempts in this direction is “Verify”, a machine learning (ML) based commercial
tool developed by a company Beaconcure and presented in numerous publications during PharmaSUG-
2022 (Donovan and Mayorov, 2022, Carmeli, 2022, Carmeli, Mayorov, and Donovan, 2022, Carmeli and
Bar, 2022). “Verify” is able to perform both within-table and cross-table checks quickly and consistently for
all deliverables. This can be achieved by running a set of standard cross-table checks defined by
statisticians. The key to success in implementing automation is the combination of the human factor and
ML. According to the developers “Verify” can greatly reduce the time and efforts to perform cross-over
review of the tables.

Earlier Busa (2019) describes how they have used the power of SAS and TIBCO Spotfire®, to build
"Interactive TLFs" using SDTM datasets to meet the predefined demands. The author demonstrated
through a case-study how a clinical team can use their platform to review safety statistical outputs/TLFs
(e.g., demographics, disposition, AEs, concomitant medications, laboratory and vital signs) more
interactively and thereby to avoid flipping through hundreds if not thousands of static pages.

3

Malcolm (Malcolm, 2019) presented a paper where he outlines an approach to TFL automation that involved
creation of the CDISC Analysis Results Metadata at the start of the process, not the end, and uses this
metadata to generate the TFL. A SAS program structure is described that allows standard TFL to be created
while also providing flexibility to easily incorporate study-specific analyses. The proposed approach allows
to fully automate the generation of TLF and potentially reduce a need in cross-over review of the final
outputs.

Authors realize the limited character of conducted literature research and understand that some valuable
works could remain outside of it. Though the detailed literature overview is way outside of the scope of this
paper, the authors will be thankful for any reference to publication/blog devoted to the work in similar
direction.

OVERVIEW – HOW MACRO WORKS

The macro mXREVIEW was created using EXCEL Visual Basic for Applications (VBA), it resides in the
regular Excel file and requires running the appropriate module within VBA environment. The macro reads
the actual outputs (typically .rtf files, MS WORD) and performs a comparative analysis of the related or
inter-connected results displayed in different tables. As the first step, the present version 1.0 of the macro
mXREVIEW reads the table where baseline and demographic characteristics are normally displayed and
creates a tab named “Baseline” in the output Excel file where all potential subgroups (e.g., age group, race
group, gender, ECOG status, etc.) are combined as they are displayed in the source table. On the next
step the macro runs all over the produced tables, finds the outputs that represent the results of the statistical
analysis by the subgroups and compares corresponding numbers of subjects in subgroups and ways how
these subgroups are displayed. Finally, any distinction between the values of populations appearing in the
tables displaying the outcome of the data analysis by subgroups and the source (demographic and baseline
characteristics) is reported (color-coded) in the second tab of the output Excel file (“Errors"). The files
(displaying analysis by subgroup) where no errors were detected are collected in the third tab of the output
Excel file ("Success”).

The authors will demonstrate an application of the proposed macro using a set of outputs developed for
hypothetical company “Zebra Pharmaceutical, Inc.”. The output directory includes tables, listings and
figures produced for this imaginary client.

The macro was developed within an existing environment of the MS Office 2016 that is currently installed
on the SAS server (Accenture Life Sciences). It is possible, therefore, that the next upgrade of the MS
Office will require customized macro tuning to address the changes in VBA that might be introduced by that
upgrade.

DEMOGRAPHIC AND BASELINE CHARACTERISTICS – THE SOURCE

To start running the macro one needs to direct it to the table where the demographic and baseline
characteristics are tabulated. Typically, this table contains all basic subgroups (e.g., sex, race, age, etc.)
and corresponding counts that are used later for planned subgroup analysis (e.g., ECOG status at
baseline). As it was shortly described above, at the first step the macro mXREVIEW reads this table and
extracts all the data that can define the subgroups and creates a tab named “Baseline” in the output Excel
file. Figure 1 displays Table 14.1.2.1 “Demographic and Baseline Characteristics by Treatment Group” (1a)
and corresponding tab “Baseline” in the resulting Excel file (1b).

4

Figure 1. 1a (upper part) - typical table (first page) containing demographic and baseline
characteristics displayed by treatment group. 1b (lower part) – tab “Baseline” where all subgroups
and their corresponding number of subjects (total/overall) extracted from the source/baseline
table are combined.

5

The tab “Baseline” in the resulting Excel file (Fig 1b) is self-explaining. The macro mXREVIEW extracts all
parameters from the source table (Fig.1a) that can serve as subgroups and displays them in this tab. The
first column contains appropriate attribute, the second one – legitimate categories. The last column
represents subpopulations – Big “N” corresponding to every one of the categories. One can see that all
continuous variables from the Table 14.1.2.1 were excluded, and only potential subgroups are included in
this tab.

For example, the gender subgroup is displayed as “Sex” and it contains 15 male and 10 female subjects in
total population (overall columns). It means that any table displaying the results of the analysis by gender
will consist of two sections – one will start with “Sex: Male” (N=15 in Overall column), another – with “Sex:
Female” (N=10 in Overall column). The same way of presentation should be followed in all outputs where
the results are tabulated by gender. On the other hand, parameter “Race" most likely will not be used for
subgroup analysis because of a non-balanced number of subjects (small number of subjects in all race
categories, except “White”). Instead of this parameter “Race Group” can be used.

COMPARATIVE ANALYSIS OF THE OUTPUTS – “ERRORS”

On the second stage of the macro execution, it reads all existing outputs in the folder under analysis and
compares their presentation with the baseline parameters and corresponding values of populations that
were extracted from the source table (Demographic and Baseline Characteristics) and saved in the tab
“Baseline” (Fig.1) of the resulting Excel file. The structure of the tab “Errors” is very intuitive and purpose of
every column in this tab is crystal clear. The first two columns display output number and the attribute where
a distinction between the baseline way of presentation and this output was detected. The next two columns
depict baseline categories and their corresponding populations (Big “N”). Finally, the last two columns
present the categories and their corresponding populations (Big “N”) as they were tabulated in the analyzed
output. The color code allows to point to the category/value that are different from what was extracted from
the source table.

To illustrate how the results of the review and comparison are displayed and analyzed let’s consider a set
of generic outputs that were produced for the hypothetical client Zebra Pharmaceuticals, Inc. To make the
process of the analysis and presentation of the results more visible some outcomes were altered, and
various types of artificial errors were inserted manually.

1. Example #1 – Table 14.3.1.2.2 (Figure 2). One can easily see a distinction in a way how subgroup
is displayed in this table – instead of “Sex: Xxxx” it reads as “Gender: Xxxx”, what is incorrect. Note
that the number of males and females (Big N) are correctly displayed here.

Figure 2. Outcome of the analysis of the Table 14.3.1.2.2. Upper part shows a record in the tab
“Errors”, the lower part – screenshot of the actual table.

6

2. Example #2 - Table 14.2.6.1.5 (Figure 3). The red color clearly demonstrates differences between
this output and values that were presented in the table for demographic and baseline
characteristics. First, there are 4 categories reported in this output – in addition to three legitimate
values of ECOG Status at baseline (“0”, “1”, “Missing”) one can see the fourth one – “2” and it is an
error. Secondly, the values of Big N do not match – there are 6 and 16 subjects in subgroups with
ECOG Status at baseline “0” and “1” correspondingly, but several subjects with missing ECOG
Status at baseline is presented incorrectly in this table (3 is a correct value, while 1 is wrong).

Figure 3. Outcome of the analysis of the Table 14.2.6.1.5. Upper part shows a record in the tab
“Errors”, the lower part – screenshot of the actual table.

3. Example #3 - Table 14.3.1.1.1 (Figure 4). At the first glance the presentation by the Age Group in
this table is different from what was displayed in the table for demographic and baseline
characteristics – “Age Group” in the analyzed table and “Age Group at Baseline” in the Table
14.1.2.1 (Demographic and Baseline Characteristics). But one is not allowed to miss another
distinction – two symbols “>=” are used instead of one “≥” and it adds up to general inconsistence
of the delivery. In the cases like this one it is up to the statistician or the lead programmer of the
project – to fix it and make a delivery consistent across all outputs or to leave it as is and to
concentrate on more important issues. No need to say that the consistent delivery of hundreds of
outputs looks much better than one having multiple differences across the study (even if they are
not major).

Figure 4. Outcome of the analysis of the Table 14.3.1.1.1. Upper part shows a record in the tab
“Errors”, the lower part – screenshot of the actual table.

7

4. Example #4 - Table 14.2.6.1.1 (Fig. 5). The situation with this table is essentially different from what
we observed in the previous example (#3). In addition to two distinctions in the way of presentation
(“Age Group” vs “Age Group at Baseline” and “>=” vs “≥”) one can easily see that the second age
subgroup is displayed incorrectly – it reads as “greater or equal to 80 years old”, which is evidently
wrong.

Figure 5. Outcome of the analysis of the Table 14.2.6.1.1. Upper part shows a record in the tab
“Errors”, the lower part – screenshot of the actual table.

5. Example #5 – Table 14.2.2.1.2 (Figure 6). One can easily see a distinction in a way how subgroup
is displayed in this table – instead of “Sex: Male” it reads as “Sex Group: Male”, what is incorrect.

Figure 6. Outcome of the analysis of the Table 14.2.2.1.2. Upper part shows a record in the tab
“Errors”, the lower part – screenshot of the actual table.

8

6. Example #6 – Table 14.3.1.2.5.1 (Figure 7). The Figure 7 illustrating this example depicts only
screenshot from the tab “Errors”. The reason is quite obvious – it is impossible to display something
that is absent. The matter is that the baseline shows a programmer that there are three categories
for the attribute “ECOG Status at Baseline” – “0”, “1” and “Missing”. The reviewed output however
does not contain pages responsible for presentation the processed data for subjects with “Missing”
value in this parameter and this line remains empty in the “Reported Section”. As an additional
remark one can note that numbers of subjects (6 and 16) in the produced output do not add up to
the correct value of overall population (25).

Figure 7. Outcome of the analysis of the Table 14.3.1.2.5.1. A record in the tab “Errors” shows that
one of the baseline categories (Missing) is missing in the produced table.

COMPARATIVE ANALYSIS OF THE OUTPUTS – “SUCCESS”

The third tab of the output Excel file is titled “Success” and it contains a list of the produced outputs that
were analyzed by the macro and no issues were uncovered (within the scope of the macro’s abilities) during
this part of the QC process. It means that a lead programmer or statistician reviewing the final delivery can
be sure that these tables are presented correctly from this point of view and no additional manual review is
required. Figure 8 demonstrates in the column “File Name” a list of produced outputs that passed the cross-
over review successfully. The second column, “Attribute”, shows the name of the subgroup that was used
to develop this table.

Note, that this tab displays only the outputs that reviewed by the macro, not all of the outputs in the directory.
For example, Tables similar to 14.2.1.1 (typically displaying the primary end point in the efficacy section) or
14.3.1.1 (typically presenting an overview of TEAE in the safety section) will never appear in this list
because they do not present the results of the analysis by subgroups.

Figure 8. A screen shot of the tab “Success” shows a few of produced outputs which passed the
cross-over review successfully.

9

DISCUSSION

Accenture Life Sciences accrued some experience of practical application of the developed macro
mXREVIEW. The accumulated practice taught us some lessons. Some of the lessons leant are worth to be
shared with the prospective users of the macro.

The main conclusion is that proposed macro essentially reduces amount of efforts required to verify that
the final outputs (at least part of them displaying the results of the statistical analysis by subgroups) are
produced in a correct way. The developed macro mXREVIEW allows in seconds to verify that all
interconnected outputs are presented in the same way and all “children” outputs are synchronized with their
“parent” tables. It makes the final delivery more consistent and robust because it essentially reduces a need
in manual review of hundreds of outputs.

As every professional working in the pharmaceutical industry knows the subgroup analysis plays very
important role in the process of the agency’s review and a requirement to perform this type of investigation
appears in numerous guidance documents issued by regulating authorities. Final review of the produced
TLF represents an important task in a process of statistical programming and consists of a number of
components. Cross-over review is one of these components and the proposed macro mXREVIEW allows
to replace a tedious process requiring scrupulous work (subject to human errors!) with its automated
analogue.

FURTHER PERSPECTIVE

It is well known that a way of a synthesized compound from research laboratory to the FDA approval as an
effective and safe drug takes many years. Clinical trials take significant part of this time. Data collected
during a clinical trial are cleaned, reviewed, verified, reconciled, fixed (if necessary), and, finally, analyzed,
processed, summarized, and displayed in the form of TLF. Every one of these steps takes its own time, no
error is permitted in this sequence and all team members share the common task of reducing the total time
required for drug approval. The goal of this paper is to suggest both specific tool (macro) and general
methods that can be helpful in development and implementation of time-saving approaches and can spark
elegant and innovative solutions in the future.

The authors believe that the developed macro mXREVIEW can be further improved and to be used widely
to automate the review process and to save time and efforts for numerous statisticians, lead programmer
and those who face the similar task in their professional routine.

An experience accumulated by Accenture allows the authors to formulate the list of problems that are simply
technical by nature and can be considered as short-term tasks.

First, the present version of the proposed macro considers and examines the value of overall/total
populations, while the investigation of the similar values for specific treatment groups (refer to Figure 1 –
groups DL1, DL2, DL3, DL4) remain out of scope. This addition would allow to verify that all values of Big
N are synchronized across the study and not only ones appearing in Overall/Total column.

Second, the next version of the proposed macro can examine the values from the main body of the tables.
One can mention parameters like “Number of Total TEAE” or “Number of Subjects with at least one TEAE”
as an example. It is obvious that being displayed by subgroup in the “child” table the values for these
parameters must add up to the corresponding number in the “parent” table.

Another idea that is awaiting to be implemented in one of the future versions of the proposed macro relates
to an ability to verify the values of Big N for different population across the whole study. It is well known that
typical study is analyzing the collected data using different kinds of populations – full analysis set (FAS),
safety population (SAF), intent-to-treat population (ITT), per protocol population (PP), etc. Every population

10

is used for the very specific purpose as it is described in the corresponding SAP for the study. Values of
Big N and appropriate numbers in the body of the tables and figures are differing from each other for various
populations. The future version of the macro is supposed to be able to read the title of the output under
consideration, to identify the population (e.g., ITT population) and to perform cross-over review using tables
and figures based on this population only.

The successful implementation of the prospective additions – both mentioned above and those still in the
process of formulation - would definitely improve the robustness of the final delivery and save valuable time
of lead programmers and statisticians by automation of cross-over review of the produced outputs. Further
development of the macro can transform its current version in a valuable and powerful tool for streamlining
the review process and reducing the risk of errors. The authors’ intention is to develop a user-friendly and
effective macro that can help to improve the efficiency and accuracy of clinical trial data analysis.

CONCLUSIONS

To recap the discussion of the current version (1.0) of the developed macro mXREVIEW it would be
worthwhile to summarize macro’s capabilities and emphasize its main advantages:

1. The developed macro mXREVIEW automates a cross-over review of the produced outputs across the
whole study.

2. The code of the macro resides in the standard MS Excel file (Excel VBA). While running it generates
three different tabs – “Baseline”, “Errors” and “Success” – in the same Excel file.

3. The proposed macro reads the basic information from the table (standard MS Word file) where all
demographic and baseline characteristics of the study population are presented and creates a list of
potential subgroups in the tab “Baseline”.

4. Suggested macro reads the actual tables, finds the ones using subgroups for analysis and examines
them. The outputs where any distinction is uncovered are added to the tab Errors using color code to
clearly mark the differences.

5. The distinctions uncovered during the comparative analysis of inter-related outputs require additional
manual review and following decision of lead programmer or statistician.

6. The outputs where no errors were detected are displayed in the third tab – “Success”. And all three
steps of the macro run take literally seconds!

REFERENCES

Busa, B., (2019), Interactive TLFs - A Smarter Way to Review your Statistical Outputs, Proceedings of the
PharmaSUG 2019, Paper AD-326

Carmeli, I., (2022), Data Mining of Tables: The Barrier for Automation, Proceedings of the PharmaSUG
2022, Paper AI-010.

11

Carmeli, I. and Bar, Y., (2022), Validation of Statistical Outputs Using Automation, Proceedings of the
PharmaSUG 2022, Paper SA-011.

Carmeli, I., Mayorov, K., and Donovan, H., (2022), The Emerging Use of Automation to Address the
Challenge of Cross-Table Consistency Checking of Output Used in the Reporting of Clinical Trial Data,
Proceedings of the PharmaSUG 2022, Paper SA-009.

Donovan, H. and Mayorov, K., (2022), The Emerging Use of Automation to Address the Challenge of
Cross-Table Consistency Checking of Output Used in the Reporting of Clinical Trial Data, Proceedings of
the PharmaSUG 2022, Paper SA-009.

Goldfarb, I., and Zelichonok, E., (2020), Macro To Produce SAS®-Readable Table of Content From TLF
Shells, Proceedings of the PharmaSUG 2020, Paper AD-106.

Goldfarb, I., and Zelichonok, E., (2021), Macro to Compare Titles and Footnotes in Produced TLF and
Corresponding Shells, Proceedings of the PharmaSUG 2021, Paper AD-179.

Malcolm, S., (2019), Large-scale TFL Automation for regulated Pharmaceutical trials using CDISC
Analysis Results Metatadata (ARM), Proceedings of the PharmaSUG 2022, Paper AD-203.

ACKNOWLEDGMENTS

The authors are very thankful to upper management of Accenture Life Sciences and Naxion,
correspondingly, for their constant support of this work.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Please feel free to contact anyone of the
authors at:

Igor Goldfarb
Accenture Life Sciences
Igor.goldfarb@accenture.com

Ella Zelichonok
Naxion
ezelichonok@naxionthinking.com

12

APPENDIX A – TEXT OF THE MACRO

 ‘Macro mXREVIEW
'ReadMe text - below
'Attention - Make sure to add reference to Microsoft Word in Tools->References menu
Dim W As Word.Application

 Dim attributes As New Collection 'will contain all the found attributes
 Dim categories As New Collection 'will contain all the found categories of corresponding attributes
 Dim catCounts As New Collection 'will contain all the counts of corresponding categories of attributes
 Dim OverallCount As String

'This macro will create 3 spreadsheets. First one - Baseline - will contain read info from the baseline file
'Then the program will read all the files in the directory where baseline file is and report:
' errors found in the second spreadsheets (named Errors)
' list of all the successfully read files (in spreadsheet named Success)

Sub xReview10()
'
' Macro1 Macro
' This macro reads the baseline word document

 Dim File_Name As String
 Dim sOutputFile As Variant
 Dim ShellSheet As Worksheet

 'temporarily assign the name and skip open file dialog to choose the file
' File_Name = "F:\Internal Use\Stats\Macro ParmaSUG2023\Zebra Pharmaceutical\Output\Table
14.1.2.1.RTF"
' GoTo DoWork

 'Allow only single select from file dialog
 Application.FileDialog(msoFileDialogOpen).AllowMultiSelect = False
 'Filter WORD documents only to be shown for user to choose from
 Application.FileDialog(msoFileDialogOpen).Filters.Add "Word and RTF Documents", "*.doc*;*.rtf", 1
 Application.FileDialog(msoFileDialogOpen).Title = "Select Baseline document"

 'Show file dialog
 If Application.FileDialog(msoFileDialogOpen).Show Then

 frmProcessing.Show
 frmProcessing.MousePointer = fmMousePointerHourGlass

 frmProcessing.lblProcessing.Caption = "Starting Microsofft Word"

 Application.DisplayAlerts = False

13

 Set W = CreateObject("Word.Application")

 'disable word and application alerts
 W.DisplayAlerts = wdAlertsNone
 Application.DisplayAlerts = False

 File_Name = Application.FileDialog(msoFileDialogOpen).SelectedItems(1)

DoWork:

 'remove all the sheets except the first one which will be used for baseline info
 For i = Sheets.Count To 2 Step -1
 Sheets(i).Delete
 Next
 Sheets(1).Name = "Sheet1"
 Worksheets.Add After:=Sheets(1) 'adding 2nd sheet that will contain information about processed
files where errors found
 Worksheets.Add After:=Sheets(2) 'adding 3rd sheet that will contain information about processed
files with no problems

 Sheets(1).Name = "Baseline"
 Sheets(2).Name = "Errors"
 Sheets(3).Name = "Success"

 'read baseline file and fills first spreadsheet with found attributes, categories and counts
 frmProcessing.lblProcessing.Caption = "Reading Baseline Information"
 ReadBaseLineInfo File_Name

 ExamineTables File_Name

 frmProcessing.lblProcessing.Caption = "Formatting the Output"
 FormatOutput

 W.Quit
 Application.DisplayAlerts = True

 Unload frmProcessing
 MsgBox "Done", vbInformation
 End If
End Sub

'This function examines all the documents in the same directory as FileName
Sub ExamineTables(FileName As String)
Dim fn As String
Dim fn0 As String
Dim dirName As String
Dim r As Integer 'will hold Excel row number to print information in errors sheet
Dim r3 As Integer 'will hold Excel row number to print information in success sheet

Dim i1 As Integer

14

i1 = InStr(1, FileName, Dir(FileName), vbTextCompare)
dirName = Mid(FileName, 1, i1 - 1)

fn0 = Dir(FileName)
fn = Dir(dirName & "Table *.*")
Sheets(2).Cells.ClearContents
Sheets(3).Cells.ClearContents

'forming header in the second sheet

Sheets(2).Activate
r = 1
Sheets(2).Cells(r, 3) = "Baseline"
Sheets(2).Cells(r, 5) = "Reported"

 With Range(Cells(r, 3), Cells(r, 4))
 .HorizontalAlignment = xlCenter
 .Merge
 End With
 With Range(Cells(r, 5), Cells(r, 6))
 .HorizontalAlignment = xlCenter
 .Merge
 End With

r = r + 1
Sheets(2).Cells(r, 1) = "File Name"
Sheets(2).Cells(r, 2) = "Attribute"
Sheets(2).Cells(r, 3) = "Categories"
Sheets(2).Cells(r, 4) = "Overall N"
Sheets(2).Cells(r, 5) = "Categories"
Sheets(2).Cells(r, 6) = "Overall N"

Range(Cells(r, 1), Cells(r, 6)).HorizontalAlignment = xlCenter

With ActiveWindow
 .SplitColumn = 0
 .SplitRow = 2
End With
ActiveWindow.FreezePanes = True

r3 = 1
Sheets(3).Cells(r3, 1) = "File Name"
Sheets(3).Cells(r3, 2) = "Attribute"

Sheets(3).Activate

With ActiveWindow
 .SplitColumn = 0
 .SplitRow = 1
End With
ActiveWindow.FreezePanes = True

15

Sheets(2).Activate

Do While fn <> ""

 If fn <> fn0 Then

 frmProcessing.lblProcessing.Caption = "Processing file " & fn
 ProcessFile dirName, fn, r, r3

 End If

 fn = Dir()
Loop

'autofit columns
For i = 1 To 6
 Sheets(2).Columns(i).EntireColumn.AutoFit

Next
For i = 1 To 2
 Sheets(3).Columns(i).EntireColumn.AutoFit

Next

End Sub

'This function will process each file and examine tables in this file to crosscheck with counts for found
subcategories
Sub ProcessFile(dirName As String, fn As String, ByRef r As Integer, ByRef r3 As Integer)
 Dim FileName As String

 FileName = dirName & fn

 Dim dc As Document
 Dim HdrRange 'will contaionheaders of the sections
 Set dc = W.Documents.Open(FileName, , True)
 Dim arr
 Dim FoundAttName As String

 'Examine first section - all other sections will have the same header

 Set HdrRange = dc.Sections.Item(1).Headers(wdHeaderFooterPrimary).Range

 DoEvents

 arr = Split(HdrRange.text, vbCr)
 arr = CleanLines(arr)
 Dim foundAttr As New Collection
 'clear foundAttr collection - in case it sticks in memory
 For i = foundAttr.Count To 1 Step -1
 foundAttr.Remove (i)
 Next

16

 FoundAttName = ""
 For i = 0 To UBound(arr)
 If InStr(1, arr(i), " by ", vbTextCompare) > 0 Then
 For Each att In attributes
 att0 = Trim(Replace(att, "at baseline", "", , , vbTextCompare))
 If InStr(1, arr(i) & " ", " by " & att & " ", vbTextCompare) > 0 Or InStr(1, arr(i) & " ", " and " & att &
" ", vbTextCompare) > 0 Then
 foundAttr.Add Trim(att)
 ElseIf InStr(1, arr(i) & " ", " by " & att0 & " ", vbTextCompare) > 0 Or InStr(1, arr(i) & " ", " and " &
att0 & " ", vbTextCompare) > 0 Then
 foundAttr.Add Trim(att)
 End If
 Next
 End If

 Next i

 'examine all possible candidates - race vs race group - need to find the longest
 FoundAttName = ""
 For Each att In foundAttr

 If Len(att) > Len(FoundAttName) Then FoundAttName = att
 Next

 If FoundAttName <> "" Then
 'Attribute name found
 'need to get overall count and examine the sections

 'get overall count in the last cell of the table

 'examine all the sections
 Dim docCategories As New Collection
 Dim reportedCatCounts As New Collection
 For i = reportedCatCounts.Count To 1 Step -1
 reportedCatCounts.Remove (i)
 Next
 ReDim catChecks(UBound(categories(FoundAttName)))
 For k = 1 To dc.Sections.Count
 DoEvents
 Set HdrRange = dc.Sections.Item(k).Headers(wdHeaderFooterPrimary).Range

 arr = Split(HdrRange.text, vbCr)
 arr = CleanLines(arr)
 Dim docCat
 docCat = ""
 For i = 0 To UBound(arr)

 If InStr(1, arr(i), ":", vbTextCompare) > 0 Then

 'allowing error will let handle duplicate entries
 On Error Resume Next
 docCategories.Add arr(i), arr(i)

17

 docCat = arr(i)
 On Error GoTo 0

 For j = 1 To UBound(categories(FoundAttName))
 'compress before comparing - to avoid space misalignment
 If Replace(arr(i), " ", "") = Replace(FoundAttName, " ", "") & ":" &
Replace(categories(FoundAttName)(j), " ", "") Or Replace(arr(i), " ", "") = Replace(FoundAttName0, " ", "")
& ":" & Replace(categories(FoundAttName)(j), " ", "") Then

 catChecks(j) = 1
 Exit For
 End If

 Next
 End If

 Next i

 'now look at the table in this section and get last cell of the first non empty row
 Dim secText, valOverall
 secText = dc.Sections.Item(k).Range.text
 Dim i1, i2, i3
 i1 = InStr(1, secText, "overall", vbTextCompare)
 If i1 > 0 Then
 i2 = InStr(i1, secText, "=")
 If i2 > 0 Then
 i3 = InStr(i2, secText, ")")

 'remove error handling because sometimes table spans for 2 sections and there will be
duplicate entries
 On Error Resume Next
 reportedCatCounts.Add Mid(secText, i2 + 1, i3 - i2 - 1), docCat
 On Error GoTo 0
 End If

 End If

 Next k

 nMatched = 0
 For j = 1 To UBound(categories(FoundAttName))
 If reportedCatCounts.Count < UBound(categories(FoundAttName)) Then Exit For
 If catChecks(j) = 1 And Val(catCounts(FoundAttName)(j)) =
Val(reportedCatCounts(docCategories(j))) Then nMatched = nMatched + 1
 Next j

 If nMatched = UBound(categories(FoundAttName)) And nMatched = docCategories.Count Then
 r3 = r3 + 1
 Sheets(3).Cells(r3, 1) = fn
 Sheets(3).Cells(r3, 2) = FoundAttName
 Else
 r = r + 1
 Sheets(2).Cells(r, 1) = fn

18

 Sheets(2).Cells(r, 2) = FoundAttName

 For j = 1 To UBound(categories(FoundAttName))
 Sheets(2).Cells(r, 3) = FoundAttName & ": " & categories(FoundAttName)(j)
 Sheets(2).Cells(r, 4) = catCounts(FoundAttName)(j)

 If j <= docCategories.Count Then
 Sheets(2).Cells(r, 5) = docCategories(j)
 Sheets(2).Cells(r, 6) = reportedCatCounts(docCategories(j))

 Else
 'this will happen if there are more baseline categories than reported - will mark it red
 Sheets(2).Cells(r, 3).Font.Color = 192
 Sheets(2).Cells(r, 4).Font.Color = 192

 End If

 'mark red any mismatches
 If Replace(Sheets(2).Cells(r, 3), " ", "") <> Replace(Sheets(2).Cells(r, 5), " ", "") Then
 Sheets(2).Cells(r, 5).Font.Color = 192
 End If
 If Sheets(2).Cells(r, 4) <> Sheets(2).Cells(r, 6) Then
 Sheets(2).Cells(r, 6).Font.Color = 192
 End If
 r = r + 1
 Next j

 For j = UBound(categories(FoundAttName)) + 1 To docCategories.Count
 If j <= docCategories.Count Then
 Sheets(2).Cells(r, 5) = docCategories(j)
 Sheets(2).Cells(r, 6) = reportedCatCounts(docCategories(j))

 'this will happen if there are more reported categories than baseline - will mark it red
 Sheets(2).Cells(r, 5).Font.Color = 192
 Sheets(2).Cells(r, 6).Font.Color = 192
 End If
 r = r + 1
 Next j

 End If

 Else
 'not reporting when file has no categories

 End If

 dc.Close 0
End Sub

'This function will read all the baseline information and fill corresonding collections (attributes, categories
and catCounts) as well as finding OverallCount
Sub ReadBaseLineInfo(FileName As String)
Dim dc As Document

19

Set dc = W.Documents.Open(FileName, , True)

Dim firstCellText As String
Dim lastCellText As String

Dim AttName As String

 'clear all the collections
 For i = attributes.Count To 1 Step -1
 attributes.Remove (i)
 Next
 For i = categories.Count To 1 Step -1
 categories.Remove (i)
 Next
 For i = catCounts.Count To 1 Step -1
 catCounts.Remove (i)
 Next

ReDim cats(0)
ReDim counts(0)

'iterating through the tables of the word document
For t = 1 To dc.Tables.Count
 'iterating through all the rows of a given table
 For r = 1 To dc.Tables(t).Rows.Count
 DoEvents
 'getting the first cell that will contain a label and clean it removing all the non-ascii characters
 firstCellText = CleanText(dc.Tables(t).Rows(r).Cells(1).Range.text)

 'last cell will contain counts
 lastCellText = CleanText(dc.Tables(t).Rows(r).Cells(dc.Tables(t).Rows(r).Cells.Count).Range.text)

 If OverallCount = "" Then
 'overallcount will need to be read only once
 If InStr(1, lastCellText, "overall", vbTextCompare) > 0 Then
 OverallCount = lastCellText

 'getting a number out of string that is of the form: Overall(n=XX)
 OverallCount = Replace(OverallCount, "overall", "", , , vbTextCompare)
 OverallCount = Replace(OverallCount, "N=", "", , , vbTextCompare)
 OverallCount = Replace(OverallCount, "(", "")
 OverallCount = Replace(OverallCount, ")", "")
 OverallCount = Replace(OverallCount, " ", "")
 End If
 End If

 If firstCellText <> "" And AttName = "" Then
 'first label appearing after empty labels
 AttName = Trim(firstCellText)

 ReDim cats(0)
 ReDim counts(0)
 ElseIf firstCellText <> "" And AttName <> "" Then
 'if attName is filled, next non-empty rows will contain categories
 ReDim Preserve cats(UBound(cats) + 1)

20

 cats(UBound(cats)) = Trim(firstCellText)

 ReDim Preserve counts(UBound(counts) + 1)

 'count might be in a form of 5(6%) - need to get a number that is before paren
 Dim theCount As String
 theCount = lastCellText
 If InStr(theCount, "(") > 0 Then theCount = Mid(theCount, 1, InStr(theCount, "(") - 1)
 counts(UBound(cats)) = theCount

 ElseIf firstCellText = "" And AttName <> "" And UBound(cats) > 0 Then
 'prepare for next attribute
 attributes.Add AttName
 categories.Add cats, AttName
 catCounts.Add counts, AttName

 AttName = ""
 ReDim cats(0)
 ReDim counts(0)
 ElseIf firstCellText = "" And AttName <> "" And UBound(cats) = 0 Then
 AttName = ""
 End If
 Next r

 'last iteration - before end of the table - need to fill attributes and categories if non-empty
 If AttName <> "" And UBound(cats) > 0 Then

 attributes.Add AttName
 categories.Add cats, AttName
 catCounts.Add counts, AttName

 AttName = ""
 ReDim cats(0)
 ReDim counts(0)
 End If

Next t

'Displayiong results from reading baseline on the first sheet of curent excel document
Sheets(1).Activate
Sheets(1).Cells.ClearContents
Sheets(1).Cells.Style = "Normal"

Sheets(1).Cells(3, 1) = "Overall Count: " & OverallCount

Sheets(1).Cells(5, 1) = "Attribute"
Sheets(1).Cells(5, 2) = "Category"
Sheets(1).Cells(5, 3) = "Count"

r = 6
For a = 1 To attributes.Count
 Sheets(1).Cells(r, 1) = attributes(a): r = r + 1
 For c = 1 To UBound(categories(a))
 Sheets(1).Cells(r, 2) = categories(a)(c)

21

 Sheets(1).Cells(r, 3) = catCounts(a)(c)
 r = r + 1
 Next c
Next a

'autofit columns
Sheets(1).Columns(1).EntireColumn.AutoFit
Sheets(1).Columns(2).EntireColumn.AutoFit
Sheets(1).Columns(3).EntireColumn.AutoFit
Sheets(1).Columns(4).EntireColumn.AutoFit
Sheets(1).Columns(5).EntireColumn.AutoFit

Sheets(1).Cells(1, 1) = FileName

dc.Close 0
End Sub

Function CleanText(text)
 Dim newText As String

 For i = 1 To Len(text)
 If Asc(Mid(text, i, 1)) >= 32 Then newText = newText & Mid(text, i, 1)
 Next i
 newText = Trim(newText)
 newText = Replace(newText, " ", " ")
 'newText = Replace(newText, "at baseline", "", , , vbTextCompare)

 CleanText = newText
End Function

Function CleanLines(arr)
'This function will remove Empty lines and those containing outid.sas from array and return array of all
non-empty lines
 Dim coll As New Collection
 For i = 0 To UBound(arr)
 arr(i) = Replace(arr(i), "� ", vbTab) 'remove bullet
", vbTab) 'remove bullet
 arr(i) = Replace(arr(i), Chr(7), vbTab) 'remove bullet
 arr(i) = Trim(arr(i))
 arr(i) = Replace(arr(i), " ", vbTab)
 For Each s In Split(arr(i), vbTab)
 If s <> "" And InStr(LCase(s), "outid.sas") = 0 And _
 InStr(LCase(s), "program:") = 0 And _
 InStr(LCase(s), "programmer:") = 0 And _
 InStr(LCase(s), "sas 9.4") = 0 And _
 InStr(LCase(s), "sas9.4") = 0 And _
 InStr(s, "Page ") <> 1 Then

 If s <> "" Then coll.Add Trim(s)

 'coll.Add (arr(i))
 End If
 Next
 Next i

22

 If coll.Count = 0 Then
 ReDim arrReturn(0)
 Else
 ReDim arrReturn(coll.Count - 1)
 For i = 0 To UBound(arrReturn)
 arrReturn(i) = coll(i + 1)
 Next
 End If

 CleanLines = arrReturn
End Function

Private Sub FormatOutput()
 Dim rLast
 Dim cLast

 '*******************************
 ' FORMATTING Success Spreadsheet
 '*******************************
 Sheets(3).Activate
 With Cells.SpecialCells(xlCellTypeLastCell)
 rLast = .Row
 cLast = .Column
 End With
 cLast = 2

 Range(Cells(1, 1), Cells(1, cLast)).Select
 FormatAsHeader
 Range(Cells(2, 1), Cells(rLast, cLast)).Select
 FormatAsTable True

 Rows(2).Select
 ActiveWindow.FreezePanes = True
 Range("A2").Select

 '*******************************
 ' FORMATTING Errors Spreadsheet
 '*******************************
 Sheets(2).Activate
 With Cells.SpecialCells(xlCellTypeLastCell)
 rLast = .Row
 cLast = .Column
 End With
 cLast = 6

 Range(Cells(1, 3), Cells(1, cLast)).Select
 FormatAsHeader
 Range(Cells(2, 1), Cells(2, cLast)).Select
 FormatAsHeader

 Range(Cells(3, 1), Cells(rLast, cLast)).Select
 FormatAsTable False

 For i = 3 To rLast
 If Cells(i, 1) <> "" Then

23

 Range(Cells(i, 1), Cells(i, cLast)).Select
 DrawTopLine
 End If

 Next i
 Rows(3).Select
 ActiveWindow.FreezePanes = True

 Range("A3").Select

 '********************************
 ' FORMATTING Baseline Spreadsheet
 '********************************
 Sheets(1).Activate

 Columns(2).NumberFormat = "@"

 With Cells.SpecialCells(xlCellTypeLastCell)
 rLast = .Row
 cLast = .Column
 End With
 cLast = 3

 Range(Cells(5, 1), Cells(5, cLast)).Select
 FormatAsHeader

 Range(Cells(6, 1), Cells(rLast, cLast)).Select
 FormatAsTable False

 For i = 6 To rLast
 If Cells(i, 1) <> "" Then
 Range(Cells(i, 1), Cells(i, cLast)).Select
 DrawTopLine
 End If

 Next i

 Range("A1").Font.Bold = True
 Range("A3").Font.Bold = True

 Rows(6).Select
 ActiveWindow.FreezePanes = True

 Range("A6").Select

 'Activate Errors sheet at the end
 Sheets(2).Activate
End Sub
Private Sub DrawTopLine()
 With Selection.Borders(xlEdgeTop)
 .LineStyle = xlContinuous
 .ColorIndex = 0
 .TintAndShade = 0
 .Weight = xlThin
 End With

24

End Sub
Private Sub FormatAsHeader()
 Selection.Borders(xlDiagonalDown).LineStyle = xlNone
 Selection.Borders(xlDiagonalUp).LineStyle = xlNone
 With Range(Cells(1, 3), Cells(1, 6)).Borders(xlEdgeLeft)
 .LineStyle = xlContinuous
 .ColorIndex = xlAutomatic
 .TintAndShade = 0
 .Weight = xlThin
 End With
 With Selection.Borders(xlEdgeTop)
 .LineStyle = xlContinuous
 .ColorIndex = xlAutomatic
 .TintAndShade = 0
 .Weight = xlThin
 End With
 With Selection.Borders(xlEdgeBottom)
 .LineStyle = xlContinuous
 .ColorIndex = xlAutomatic
 .TintAndShade = 0
 .Weight = xlThin
 End With
 With Selection.Borders(xlEdgeRight)
 .LineStyle = xlContinuous
 .ColorIndex = xlAutomatic
 .TintAndShade = 0
 .Weight = xlThin
 End With
 With Selection.Borders(xlInsideVertical)
 .LineStyle = xlContinuous
 .ColorIndex = xlAutomatic
 .TintAndShade = 0
 .Weight = xlThin
 End With
 Selection.Borders(xlInsideHorizontal).LineStyle = xlNone
 With Selection.Interior
 .Pattern = xlSolid
 .PatternColorIndex = xlAutomatic
 .ThemeColor = xlThemeColorLight2
 .TintAndShade = 0.799981688894314
 .PatternTintAndShade = 0
 End With
 With Selection
 .HorizontalAlignment = xlCenter
 .VerticalAlignment = xlCenter
 .WrapText = True
 End With
End Sub
Sub FormatAsTable(IsHorizontal As Boolean)
 Selection.Borders(xlDiagonalDown).LineStyle = xlNone
 Selection.Borders(xlDiagonalUp).LineStyle = xlNone
 With Selection.Borders(xlEdgeLeft)
 .LineStyle = xlContinuous
 .ColorIndex = 0
 .TintAndShade = 0

25

 .Weight = xlThin
 End With
 With Selection.Borders(xlEdgeTop)
 .LineStyle = xlContinuous
 .ColorIndex = 0
 .TintAndShade = 0
 .Weight = xlThin
 End With
 With Selection.Borders(xlEdgeBottom)
 .LineStyle = xlContinuous
 .ColorIndex = 0
 .TintAndShade = 0
 .Weight = xlThin
 End With
 With Selection.Borders(xlEdgeRight)
 .LineStyle = xlContinuous
 .ColorIndex = 0
 .TintAndShade = 0
 .Weight = xlThin
 End With
 With Selection.Borders(xlInsideVertical)
 .LineStyle = xlContinuous
 .ColorIndex = 0
 .TintAndShade = 0
 .Weight = xlThin
 End With
 If IsHorizontal Then
 With Selection.Borders(xlInsideHorizontal)
 .LineStyle = xlContinuous
 .ColorIndex = 0
 .TintAndShade = 0
 .Weight = xlThin
 End With
 Else
 Selection.Borders(xlInsideHorizontal).LineStyle = xlNone

 End If
End Sub

