

1

PharmaSUG 2023 - Paper AP-268

Display Layout Specification to Flexibly Design and Generate Tables

Songgu Xie, Regeneron Pharmaceutical, Inc.
Michael Pannucci, Independent;

Toshio Kimura, Independent

ABSTRACT

Currently, tables are created in SAS by manually processing the data and defining PROC REPORT to
generate a predefined fixed table. If different layouts are required, extensive data processing will be
required to create alternative table layouts. We propose a new process to decouple the statistical analysis
procedure from the display layout generation process. The first step is performing the statistical
procedure and storing results in standard results datasets (RDS), similar to CDISC ARS. RDS will be
presented separately, thus not in this paper’s scope. The second step is processing RDS to generate
displays. We propose a new specification called the display layout specifications (DLS) to drive display
generation. Through DLS, we will flexibly design various table layouts. DLS will be an input into a flexible
display generation macro that will process RDS according to DLS to greatly facilitate the creation of
alternative table layouts.

INTRODUCTION

COMMON SCENARIO

Tables constitute essential components of clinical reports. Statistical programmers frequently face a
typical scenario in their daily work, where they receive requests from statisticians or medical directors to
create various table layouts to meet diverse requirements. These requests may encompass a broad
range of topics, including clinical outcomes, safety, and efficacy measures. For example, in a given case,
there might be an initial request to create an ANCOVA table, including summary statistics across visits
and ANCOVA-based statistics. The rows should display visits and statistics, while the columns should
present treatments.

Figure 1. Table Layout #1

Nonetheless, during the analysis, new requirements from stakeholders may emerge, possibly requesting
additional statistics in columns to better illustrate the analysis results or make different comparisons.
Generating various table layouts is a routine task for statistical programmers. Provided the data values
are available, transforming the dataset and utilizing the REPORT procedure in SAS to create tables

manually is not exceedingly difficult.

2

Figure 2. Table Layout #2

Figure 3. Table Layout #3

Many pharmaceutical companies already employ standard macros to conduct such analyses. These
macros generate a specific table layout that can be selected and rerun if needed. However, in some
cases, the requested layout might not be available, necessitating manual table generation. In these
instances, the process can become time-consuming, particularly if the requested layout is complex or
requires creating a new layout from scratch.

PROBLEM DECONSTRUCTION

To comprehensively address the issue, the problem was deconstructed into its constituent elements by
examining three distinct table layouts:

• First, it was observed that all three tables contain the same fundamental information, rendering the
repetition of the analysis unnecessary, as no new data would be generated in the process.

• Second, it was noted that the tables only differ in their presentation. The bottom-left table displays
visits and statistics arranged by row, with treatment by column. In contrast, the top table displays
statistics by column and visits and treatment by row. Finally, the third table arranges visits by column.

• Third, it is crucial to consider that, while not depicted in the examples, certain values may require
reformatting, or specific statistics may become obsolete, leading to their removal from the display.
This consideration is vital when analyzing data in real-world contexts.

3

Figure 4. Problem Deconstruction

PAPER OUTLINE

This paper introduces an innovative solution to address the current challenges faced in table generation.
Our team has developed a new display layout specification that will transform the way data is visualized.
Additionally, we have created a flexible table generator macro that seamlessly supports the new layout
specification. With this groundbreaking solution, data can be presented in a flexible and comprehensible
manner, simplifying the process for statistical programmers to generate new layouts that meet their
requirements.

The paper is organized as follows:

• We will first review the upstream process, including the preparation of data and the Analysis Results
Datasets (ARD).

• Subsequently, we will explore table flexibility, covering both content and layout options.

• Lastly, we will discuss display layout specifications and explain how to generate various layouts using
these specifications.

UPSTREAM PROCESS

A fundamental aspect of our proposal is the Analysis Results Standard (ARS) developed by CDISC. This
standard streamlines analysis results by consolidating all results into a uniform format, enabling the
generation and reuse of dynamic data displays. It should be noted that our company has been storing the
results dataset prior to CDISC's development of ARD. Therefore, while the concept is consistent, the
exact structure may differ. Despite the fact that ARS is still under development and its details may change
in the future, we will be able to adapt effectively to the new standard.

The standard allows for consistent dissemination of data, facilitating more efficient communication and
collaboration. With standardized analysis results, we can ensure that data is interpreted accurately and
consistently across different teams and organizations. This is especially important in fields like clinical
research, where data accuracy and reliability can have significant implications.

In summary, the ARS is a critical foundation for our proposal, and its importance should not be
overlooked. It provides a standardized format for analysis results, enabling more efficient communication
and collaboration, as well as ensuring data accuracy and reliability.

The following presents an exemplar dataset derived from our analytical process. The variables
encompassed within are clearly delineated: a treatment variable (ARM/ARMN), visit variables

(AVISIT/AVISITN), and statistic variables (STATX/STATCD). The column designated as STATCD

comprises the statistic code, which serves an internal purpose within our organization. Each combination

4

of these variables corresponds to a specific data value stored in the RESULT column. Additional columns,

namely STATCLS1 and STATCLS2, have been incorporated to facilitate the generation of nested column

headers.

Figure 5. Example of Analysis Results Dataset

TABLE FLEXIBILITY

When defining a table, there are two aspects that may impact it:

1. Content: Content refers to the statistical values incorporated in the table. In the example below, there
are three tables with distinct sets of statistics. The first table contains only basic summary and
ANCOVA statistics, while the second table encompasses additional mean, standard error, and LS-
means statistics. The third table features confidence intervals. It is essential to have the ability to
select the variables we wish to display in the table based on varying scenarios.

Figure 6. Content Flexibility

2. Layout: Layout pertains to the organization of the variables in our example. In this instance, the
variables are visit, treatment, and statistics. We can arrange these variables either in columns or
rows. For more complex tables, other elements such as sorting order, labeling, and nested headers
also hold significance.

5

Figure 7. Layout Flexibility

With that in mind, we developed the Flexible Table Generator macro (%flexible_table_generator).

We have incorporated content and layout flexibility into the macro.

%macro flexible_table_generator(

 ...

 statvar = /* List of statistics to display */,

 combvar = /* Combine variables into a new statistic to display */,

 ...

 colvar = /* Variables used to define the columns */,

 rowvar = /* Variables used to define the rows */,

 ...

);

Content is the first consideration. Utilizing <STATVAR> allows for the enumeration of all requisite statistics

for display. The input order for these statistics holds significance, as it dictates their arrangement in rows
or columns. Employing <COMBVAR> provides users with the capability to combine variables, thereby

creating a novel statistic for presentation. Typical selections encompass counts and percentages,
confidence intervals, among others.

For layout, users must define both <COLVAR> (column variables) and <ROWVAR> (row variables). These

two inputs determine the basic table layout. There are sub-options for these two parameters, which we
will discuss later. The macro also includes additional parameters such as <DATAIN> (input dataset). To

simplify and focus, we will limit displayed parameters to those contributing to table flexibility.

CONTENT FLEXIBILITY

STATVAR Parameter

In our example, which involves analyzing results datasets, STATX represents the statistic header or

description, and STATCD corresponds to the statistic code. In order to obtain the desired results, it is

necessary to input the selected statistic code into the STATVAR parameter.

Figure 8. Input Selected Statistic Code

%macro flexible_table_generator(

6

 ...

 statvar = BIGN N LSMEANDIFF LSDIFFCL LSMEANPVAL,

 ...

);

%macro flexible_table_generator(

 ...

statvar = BIGN N MEAN SE LSMEAN LSMEANSE LSMEANDIFF

LSDIFFCL LSMEANPVAL,

 ...

);

%macro flexible_table_generator(

 ...

statvar = BIGN N MEAN SE LSMEAN LSMEANSE LSMEANCL LSMEANDIFF

LSMEANDIFFSE LSDIFFCL LSMEANPVAL,

 ...

);

All of these statistics originate from analysis result datasets. The macro is instructed to display these
statistics in a table. It is important to note that the order of input variables directly impacts the table's
layout. The display order of statistical variables is solely dependent on the order in which they are
inputted during the macro call.

COMBVAR Parameter

For those interested in understanding the creation of the LS-mean difference confidence interval
(LSDIFFCL) in previous section, it is important to note that it is derived from two distinct statistics: the LS-

mean difference upper confidence limit (LSDIFFUCL) and lower confidence limit (LSDIFFLCL). To

combine these variables and adjust their format, a method employing the <COMBVAR> parameter is

provided. The process consists of two steps: firstly, specifying the type of combined variables as
confidence interval ((alternative options encompass counts and percentages, minimum to maximum, Q1
to Q3, etc.); and secondly, inputting the included variables, in this case, the upper and lower confidence
limits. Additionally, users can assign labels to the newly created variables.

%macro flexible_table_generator(

 ...

 combvar = LSDIFFCL(type=CI, vars=LSDIFFLCL LSDIFFUCL, label="95% CI"),

 ...

);

The diagram below demonstrates the data transformation process. The left side represents the storage of
data in the analysis results dataset, while the right side displays the data in the table format.

Figure 9. Combine Different Variables and Change Their Formats

LAYOUT FLEXIBILITY

In this section, a more thorough exploration of the layout aspect will be conducted. A conventional table
layout encompasses three principal constituents: row headers, column headers, and a table body.
Additional components, such as titles and footnotes, may also be incorporated.

• Row/Column Headers: These labels serve the purpose of identifying the data values present within
the table. They may also encompass nested headers, which furnish more intricate details about the

7

data.

• Table Body: This component houses all the significant data values. The headers provide a
description of the data values in the table.

It is imperative to note that certain essential elements, such as the title and footnotes, have been
excluded in order to preserve simplicity. Nonetheless, users retain the ability to modify these elements as
required, utilizing the parameters provided.

Figure 10. Table Components

To reconstruct the previously mentioned table layout, it can be dissected into three distinct parts, as
previously delineated. The first table designates "Treatment" as the column variable and "Visit" and
"Statistics" as the row variables. In the second table, the column variable transitions to "Statistics" and the
row variables become "Visit" and "Treatment". Finally, in the third table, "Visit" is assigned as the column
variable and "Treatment" and "Statistics" as the row variables. This table design model offers flexibility
and allows us to view the data from different perspectives while remaining organized.

Figure 11. Layout Breakdown

Table Layout #1

To exemplify diverse table layouts, the identical analysis results dataset can be utilized as input for
difference macro calls. The analysis results dataset is preserved, and different row and column variables
are employed to regulate the table structure.

In order to generate the first table layout utilizing the analysis results dataset, the subsequent input
parameters can be implemented:

• In the initial part, the <COLVAR> represents the Treatment. Within the macro, ARM is utilized as the

<COLVAR> and the sort= option is employed to indicate the sorting variable, ARMN.

• The second part is organized by visit number and labeled "Visit", which serves as the table header.

• The third part is more intricate. As previously noted, the variables STATCLS1 and STATCLS2 have

8

been incorporated, functioning as row headers. These headers are displayed in separate columns
and denote distinct categories of the statistics. In this table, two disparate header information
instances are observed, both sorted by the STATN statistics number. This arrangement is contingent

upon the user's input of the <STATVAR> parameter.

%macro flexible_table_generator(

 ...

 colvar = ARM (sort=ARMN),

 rowvar = AVISIT (sort=AVISITN, label="Visit")

 STATCLS1 (sort=STATN)

 STATCLS2 (sort=STATN)

 STATX (sort=STATN),

 ...

);

Table Layout #2

The second layout bears considerable resemblance to the first. Initially, the table incorporates statistics
with nested headers at the top. To define the nested header, we utilize the head= option, which

establishes different levels of headers for all the statistics. As we arrange the statistics based on user
input order in the <STATVAR> section, a sorting variable is not necessary here. In the row variables, we

have "Visit", sorted by visit number (AVISITN), and "Treatment", sorted by treatment number (ARMN).

%macro flexible_table_generator(

 ...

 colvar = STATX (head=STATCLS1 STATCLS2),

 rowvar = AVISIT (sort=AVISITN, label="Visit")

 ARM (sort=ARMN, label="Treatment"),

 ...

);

This table layout presents the data differently from the first layout, with statistics serving as the column
headers and visit and treatment as the row headers. By employing the macro with the appropriate input
parameters, we can effortlessly generate table layouts that cater to various needs and preferences,
enabling the presentation of data in a more customizable and adaptable manner.

Table Layout #3

In the third layout, we position the "Visit" variable in the columns and sort by visit number (AVISITN). We

can also incorporate a header spanning across the columns using the label= option. For row variables,

we arrange the "Treatment" variable first, followed by the statistics. We display the statistics somewhat
differently from the first layout. Although there are two separate columns, we group them together and
introduce indentations using the indent= option for all related variables.

%macro flexible_table_generator(

 ...

 colvar = AVISIT (sort=AVISITN, label="Visit"),

 rowvar = ARM (sort=ARMN, label=)

 STATCLS1 (sort=STATN, label=, indent=Y)

 STATX (sort=STATN, label=, indent=Y),

 ...

);

In this particular scenario, we successfully converted all three designs using the same set of analysis
results. However, it is essential to recognize that numerous additional layouts may be available for use.
Fortunately, we can still employ the aforementioned approach to effectively handle all these variations
with ease and efficiency, ensuring the timely and accurate delivery of the desired results. The Flexible

9

Table Generator macro enables adaptation to different requirements and preferences, making it an
indispensable tool for statistical programmers working with varying table layouts.

Sub-options

The following section enumerates the sub-options available for managing layouts. These sub-options
have been developed to facilitate the customization of layouts according to specific requirements.

Figure 12. Sub-options

• sort= option: This parameter determines the sorting order. It is crucial to ensure proper sorting

of tables. For instance, visit variables were sorted by AVISITN and treatments by ARMN, as specified

in the macro call as sorting variables. Employing alphanumeric sorting may result in week 12 being
sorted prior to week 4, an undesired outcome.

Figure 13. Sorting Variables

• label= option: Utilize the label= option to designate the row or column label for the variable.

This label functions as the table header. In the absence of a defined label option, the variable label
serves as the header. However, when the label option is specified, the designated label is employed
as the row header label or a spanning column header.

• indent= option: This parameter enables row header indentation. The indent= option permits

the collapsing of individual column-based displays into a single column display featuring indentation.
For instance, in the first example provided, variables under "Comparison to Placebo" are indented,
whereas in the second example, each variable is presented as a separate column.

Figure 14. Single Column (Indented)

10

Figure 15. Multi-Columns

• head= option: Define column header nesting. To illustrate the creation of nested column headers,

the head= option can be utilized within the macro to designate variables that function as headers. In

the example provided, two column header variables, STATCLS1 and STATCLS2, describe distinct

categories of statistics, such as basic "Summary Statistics" and "Statistics based on ANCOVA". As
shown in the figure, these two variables contribute to the construction of the nested column header
arrangements. STATX represents the most fundamental level of header for the data values.

Figure 16. Nested Column Header Structure

Incorporating these sub-options accommodates a variety of table layouts, affording users the flexibility to
adjust the table layout according to their distinct necessities.

DISPLAY LAYOUT SPECIFICATIONS

Display Layout Specifications provide an effective method for generating adaptable and customizable
tables tailored to the requirements of diverse stakeholders. Employing machine-interpretable metadata to
define the table guarantees that both the content and layout are pertinent and easily comprehensible for
the target audience.

When utilizing Display Layout Specifications and a flexible table generator macro, the following key points
should be taken into consideration:

1. Both content and layout are crucial components in table design. Thoughtful selection of statistical
variables and their organization in a meaningful manner can facilitate valuable insights from the data.

2. A table generator macro enables flexibility in table design. This macro permits users to designate
statistical variables, column and row variables, sorting order, nested headers, and additional
elements, customizing the table to meet specific project needs.

3. Metadata can be employed to define and construct table designs. By entering parameters such as
statistical variables (<STATVAR>), row variables (<ROWVAR>), and column variables (<COLVAR>),

along with their associated sub-options, this information can be stored as metadata for future
utilization.

4. This also facilitates the production of an increased number of pre-defined layouts utilizing the
aforementioned metadata, rendering batch processing viable and streamlining standard analysis
macros, as concerns regarding future table output are obviated.

In summary, the integration of Display Layout Specifications and a flexible table generator macro
provides an efficacious approach for generating customizable and adaptable tables tailored to diverse
project requirements. By taking into account both content and layout, as well as employing metadata to

11

establish table designs, the presentation of data can be ensured to be both meaningful and
comprehensible for an extensive array of stakeholders.

CONCLUSION

This paper examines the potential challenges encountered when generating diverse table layouts.
Although table layouts exhibit considerable flexibility, encompassing all layout options within a standard
macro design can prove arduous. To tackle this issue, the employment of the Analysis Results Dataset as
an upstream process is recommended. This approach ensures the consistent formatting of all results,
facilitating the development of a general macro capable of transforming and producing the desired table
layout. The Display Layout Specifications and the flexible table generator macro serve as invaluable tools
for defining and generating table outputs. By leveraging these tools, a dynamic and adaptable table layout
can be readily achieved.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Songgu Xie
Regeneron Pharmaceutical, Inc.
(914) 479-2866
songgu.xie2@regeneron.com

Any brand and product names are trademarks of their respective companies.

