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ABSTRACT 

In oncology trials, patients are often allowed to switch from one treatment arm to the other when their 
disease progresses. This crossover of patients, which is typically not at random, may lead to bias in the 
estimates of overall survival for the study. As such, when patient crossover is allowed, the intent-to-treat 
population is no longer appropriate for analysis. Various methods have been developed to handle the 
crossover of patients. 

This paper presents two SAS® macros to implement methods that account for treatment crossover in 
oncology trials. The methods included are (1) the rank preserving structural failure time (RPSFT) model, 
and (2) the inverse probability of censoring weighting (IPCW) model. Both models have previously been 
implemented in SAS, but this paper expands upon those implementations and provides corrections to 
code for the IPCW model for both the estimates of the weights in the first step of the method and the 
implementation of the weights in the second step of the method, as well as accounting for repeated 
measures for the subjects. 

INTRODUCTION 

In oncology trials, patients are often allowed to switch from one treatment arm to the other when their 
disease progresses. This crossover of patients, which is typically not at random, may lead to bias in the 
estimates of overall survival for the study. As such, when patient crossover is allowed, the intent-to-treat 
population is no longer appropriate for analysis. Various methods have been developed to handle the 
crossover of patients. 

This paper presents two SAS macros to implement methods that account for crossover in oncology trials, 
which focuses on scenarios where subjects are allowed to switch from the control arm to the experimental 
treatment arm. The methods included are (1) the rank preserving structural failure time (RPSFT) model, 
and (2) the inverse probability of censoring weighting (IPCW) model. Both models have previously been 
implemented in SAS. 

In previous work for the RPSFT model, only code for the log-rank test was presented (Danner & Sarkar, 
2018). This paper includes additional options in the macro, allowing for a Weibull or Cox proportional 
hazards models. The macro also includes confidence intervals for the acceleration factor, which had to be 
done manually in previous work. 

In previous work for the IPCW model, authors have provided code that uses logistic models to estimate 
weights to be used in the final model (Jiménez-Moro and Gómez, 2014). In addition to the logistic model 
for estimating weights, the macro presented in this paper allows for Cox proportional hazards models to 
estimate weights. It also provides corrections to their code for the weighted Cox proportional hazards 
model to estimate treatment effect to (1) account for repeated measures for the subjects and (2) properly 
implement the weights derived from the first step of the method. 

RANK PRESERVING STRUCTURAL FAILURE TIME MODEL 

The rank preserving structural failure time model estimates the change in survival time due to receiving 
the experimental treatment. This effect assumes that survival times are multiplied by a constant, called 
the acceleration factor once a subject begins treatment. This acceleration factor is interpreted as the 
change in survival once a patient begins treatment. 

Let 𝑇𝑖 = 𝑇𝑖
𝑜𝑓𝑓

+ 𝑇𝑖
𝑜𝑛 be the observed event time for subject 𝑖, where 𝑇𝑖

𝑜𝑓𝑓
 and 𝑇𝑖

𝑜𝑛 are the time spent off 

and on treatment, respectively. For patients in the treatment group, 𝑇𝑖
𝑜𝑓𝑓

 will be equal to 0, and so 𝑇𝑖 =

𝑇𝑖
𝑜𝑛. For patients who never crossed over from the control to the treatment group, 𝑇𝑖

𝑜𝑛 is equal to 0, and 

so 𝑇𝑖 = 𝑇𝑖
𝑜𝑓𝑓

. Now, consider another event time, 𝑈𝑖 = 𝑇𝑖
𝑜𝑓𝑓

+ 𝑇𝑖
𝑜𝑛exp(𝜓), which represents the survival 



 
 

2 

time that would have been observed if the treatment had never been given. This is the unobserved 
counterfactual time. The factor exp(𝜓) is the acceleration factor, which is assumed to be constant, 
regardless of when a patient switched treatments. This is an untestable assumption, which may or may 
not be true. If exp(𝜓) is equal to 1, then there is no observed treatment effect. 

Because of the counterfactual times produced for patients who switch treatment, the censoring times 
need to be re-estimated to be in the same scale. Let the new censoring time for patient 𝑖 be denoted 𝐷𝑖, 

then 𝐷𝑖 = min(𝐶𝑖 , 𝐶𝑖 exp(𝜓)), which is the minimum possible censoring time. 

Estimation of 𝜓 is commonly done using various methods, including the log-rank test, the Weibull test, 

and the Cox test. 𝑍(𝜓) is the test statistic, and the optimal value of 𝜓 is the value that sets 𝑍(𝜓) = 0. 

RPSFTM has an R package, which contains a dataset that is used in this paper for the implementation of 
the model (Allison et. al., 2017). Additionally, authors have previously implemented RPSFTM in SAS, but 
only provided code for the log-rank test. Appendix 1 includes code for the log-rank test that is based on 
theirs and additionally, it provides code for the Weibull and Cox tests. The immdef dataset from the 
RPSFTM R package is used to demonstrate the code in SAS. The dataset contains the following 
variables: 

1. id: subject identifier. 

2. def: indicator for deferred treatment arm. Subjects in the control arm have a value of 1. subjects 

in the treatment arm have a value of 9. 
3. imm: indicator for immediate treatment. Equal to 1 - def. 

4. censyrs: time from randomization to end of trial. 

5. xo: indicator variable that is equal to 1 if the patient switched treatment and 0 otherwise. 

6. xoyrs: time from randomization to treatment crossover. If imm = 1 then xoyrs = 0. 

7. prog: indicator variable that is equal to 1 if the patient has disease progression and 0 otherwise. 

8. progyrs: time from randomization to disease progression. 

9. entry: time from beginning of the study to subject’s participation. 

The RPSFTM macro has the following input arguments: 

1. data: the input dataset. 

2. subjid: a unique subject identifier. 

3. surv_time: time to event endpoint. 

4. trt: which treatment arm the subject is in (0 for reference treatment, 1 for other arm that 

subjects can crossover into). 

5. xo: indicator variable to indicate if subjects crossed over during the study. 

6. xo_time: time when the subject crossed over. 

7. dth_event: indicator variable that is equal to 1 if the subject died during the study. 

8. ct: continuous covariates. 

9. cl: class covariates. 

10. method: a variable to select which method to use for the RPSFT model. Options are 

‘logrank’, ‘coxph’, and ‘weibull’. 

To implement the RPSFT model, we first import the data into SAS: 

   proc import datafile = 'filepath\immdef.xlsx' 

   dbms = excel out = immdef; 

   run; 

Next, we can use the rpsftm  macro using the logrank test with the following code: 

   %rpsftm(data       = immdef, 

           subjid     = id, 

           surv_time  = censyrs, 

           trt        = imm, 
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           xo         = xo, 

           xo_time    = xo_yrs, 

      dth_event  = dthevent, 

           ct         = entry, 

           cl         = , 

           method     = 'logrank'); 

Output 1 contains the point estimates and confidence intervals for 𝜓 and the acceleration factor. 0 is 

contained within the interval for 𝜓, and 1 is contained within the interval for the acceleration factor. An 
acceleration factor of 1 indicates that there is no difference in overall survival times for the control and 
treatment groups, and so for these data, the treatment effect is not significant. Figure 1 is a plot of the Z-
score for the logrank test versus 𝜓. The optimal value of 𝜓 is the one with a Z-score equal to 0. Because 
the macro uses a grid-based search, the optimal value is linearly interpolated between the largest value < 
0 and the smallest value > 0. 

 

Output 1. Point Estimates and Confidence Intervals for Psi and for the Acceleration Factor for the 
Logrank Test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Plot of Z-Score vs. Psi for the Logrank Test. 
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The macro also allows for Weibull or Cox-PH models. Results are similar for all three models. Output 2 and Output 3 
contain the point estimates and confidence intervals for 𝜓 and the acceleration factor for the Weibull and Cox PH 
models, respectively. 

 

 

Output 2. Point Estimates and Confidence Intervals for Psi and for the Acceleration Factor for the 
Weibull Model. 

 

 

Output 3. Point Estimates and Confidence Intervals for Psi and for the Acceleration Factor for the 
Cox PH Model. 

INVERSE PROBABILITY OF CENSORING WEIGHTING MODEL 

The inverse probability of censoring weighting (IPCW) model weights patients in the group with patient 
crossover in order to create a pseudo-population of patients that would have been observed if no 
crossover had occurred. This model assumes that there are no unobserved confounders, which is an 
untestable assumption. Additionally, time-dependent covariates should not be perfect, or nearly perfect 
predictors of cross-over; this affects the estimation of weights, ruining the analysis. 

The IPCW model is a two-step process. It has been implemented in both R and SAS. The first step can 
be accomplished using either pooled logistic regression or a Cox proportional hazards (Cox PH) model to 
model the probability of remaining uncensored. In previous work in R, a Cox PH model is used for the first 
step, whereas in SAS, a logistic regression model is used, but was not implemented correctly. The macro 
presented in this paper estimates the weights using the Cox PH model and full code is available in 
Appendix 2. Standardized weights are estimated using the ratio of the probabilities estimated from two 
models, one containing only baseline covariates, the other containing baseline and time-varying 
covariates. The denominator of the weights is estimated using the baseline covariate model and the 
numerator of the weights are estimated using the time-varying covariate model. Given censoring times, 

𝑇𝐶, baseline covariates, 𝑋, and time-varying covariates, 𝑍, the formula for the weights is given by: 
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𝑤𝑖𝑗 = ∏
𝑃(𝑇𝑖

𝐶 > 𝑡𝑘  | 𝑇𝑖
𝐶 > 𝑇𝑘−1, 𝑋 = 𝑥𝑖)

𝑃(𝑇𝑖
𝐶 > 𝑡𝑘  | 𝑇𝑖

𝐶 > 𝑡𝑘−1, 𝑋 = 𝑥𝑖 , 𝑍 = 𝑧𝑖)

𝑗

𝑘=1

. 

To explain the meaning of the weights, imagine two patients with identical characteristics who are 
randomized to the same treatment. It is reasonable to assume that the patients would have similar 
outcomes if given the same treatment. Now, assume that one of the patients switches to the other 
treatment at time t. The remaining patient is now given a weight of 2 for all timepoints past time t to adjust 
for the fact that the other patient was censored when they switched treatments. This seeks to maintain 
the characteristics of the population to negate the effects of treatment censoring. 

The second step of the IPCW model is to fit a Cox proportional-hazards model for overall survival with the 
weights to estimate the effects that would have been observed in the absence of switching or 
discontinuation of treatment.  

To implement the IPCW model, the data must be set up in the counting process style of input, where an 
observation corresponding to every censoring time due to treatment switching and every event time is 
present for each patient until either treatment switching, or an event occurs (SAS, 2023). Instructions and 
an example on how to format data sets to the counting process style of input are available in Kumar, 
2018. From this dataset, the macro creates two additional datasets used for the progression free survival 
endpoint. The first being the dataset with only the baseline covariates and the second containing time-
varying covariates up until the time of treatment censoring. A snapshot of the input dataset for two 
patients is given in Figure 2. 

 

 

Figure 2. Simulated Data in the Counting Process Style of Input. 

The dataset contains the following variables: 

subjid:  unique subject ID. 

trt:   is the variable specifying which treatment the subject received. 

xo_time:  number of days since randomization that the subject switched treatments.  

xo_ind:  indicator for whether a subject crosses over. 

xo_cnsr:  variable to that indicates when a subject crosses over. Equal to 0 when tend < 

xo_time and 1 otherwise. If xo_ind = 0 for a subject, then xo_cnsr = 0 at all 

timepoints. 

dth_time: number of months since randomization that the subject died. 

dth_ind:  indicator for whether a subject dies. 

dth_event:  variable to that indicates when a subject dies. Equal to 0 when tend < dth_time and 1 

otherwise. If dth_ind = 0 for a subject, then dth_cnsr = 0 at all timepoints. 
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In addition, to the above variables, the dataset includes baseline and time-varying covariates. dth_time 

is the number of days since randomization until death of the patient, age is the age at randomization, 

tv1 and tv2 are time varying covariates, tstart is the number of days since randomization for the 

beginning of the interval, tend is the number of days since randomization for the end of the interval. 

The ipcw macro can be ran using the following code: 

    

%IPCW( data      = os, 

       subjid    = subjid, 

       endpnt    = dth_time, 

       trt       = trt, 

  ref       = 0, 

 tstart    = tstart, 

  tend      = tend, 

       xo        = xo_time, 

       xo_ind    = xo_ind, 

  xo_cnsr   = xo_cnsr, 

  dth_event = dth_event, 

  bl_ct     = age, 

       bl_cl     = , 

       tv_ct     = tv1 tv2, 

       tv_cl     = ); 

 

To get the estimates of the weights, we run two models, one with only the baseline covariates, and one 
with the baseline and time varying covariates. This can be accomplished with the following code: 
 
proc phreg data=&data outest=survmod covs(aggregate) covm; 

  where &trt = &ref; 

  class &bl_cl &tv_cl; 

  model (&tstart,&tend)*xo_cnsr(0)= &bl_ct &bl_cl &tv_ct &tv_cl /rl; 

  id &subjid; 

  output out= probs_TV survival = w_TV; 

run; 

 
The text highlighted in yellow is not used for the baseline covariate model. Additionally, weights are only 
estimated for those receiving the control treatment (treatment 0). For the experimental treatment 
(treatment 1), all weights are set equal to 1 because they are not allowed to switch treatments. It is 
important to note that this model can accommodate patients from either arm switching to the other, but 
this paper focuses on scenarios where patients can switch only from the control arm to the experimental 
arm. 
 
After getting the weights from the baseline and time-dependent models, we take the ratio of the weights 
to use in the final model. The Cox PH model is given by: 
 
proc phreg data=surv_ph outest=survmod covs(aggregate) covm;  

  class &bl_cl &tv_cl &trt(ref=first); 

  model (&tstart,&tend)*dth_event(0)= &trt &bl_ct &bl_cl &tv_cl &tv_ct /rl; 

  id &subjid; 

  weight sw_t/norm; 

run;   

 

The macro gives the following results: 
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In this example, the treatment provides a hazard ratio of 0.614 with a 95% confidence limit of (0.395, 
0.955), and so in this simulated data, the treatment provides a significant reduction in the hazard of death. 

COMPARING THE MODELS 

Both models seek to account for patients who switch treatments during a study and both rely heavily on 
untestable assumptions that may not be true. The IPCW model requires that covariates are collected 
throughout the study, while the RPSFT model does not. Additionally, the data structure may need to be 
adjusted to conform with the counting process data format for the IPCW model, which is a complex and 
time consuming process. As such, the RPSFT model is oftentimes easier to implement. This model tests 
for an acceleration factor of the treatment, which is assumed to be constant, regardless of when a patient 
switches treatments. The IPCW model censors patients who switched treatments and reweights the 
remaining patients in that arm in an attempt to get a new group of patients who represent the original 
data. Again, this model relies heavily on the assumption that this reweighted group of patients is similar to 
the original group. 

CONCLUSION 

This paper presents two SAS macros to implement models to account for patient crossover in studies, 
being the RPSFT model and the IPCW model. It extends the options for the RPSFT model beyond what 
previous authors have provided, by including not only the logrank test, but also the Weibull and Cox PH 
tests as options to the macro. Additionally, the macro provides 95% confidence intervals for the 
acceleration factor, as well as a plot to visualize the optimal acceleration factor. This paper makes 
corrections for the IPCW model that previous authors have provided and additionally, it has expanded the 
options for this model by including the option to estimate weights using the Cox PH model. 

 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. 
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APPENDIX 1 

RPSFTM macro:  

%macro 

rpsftm(data,subjid,surv_time,trt,prog,prog_time,xo,xo_time,ct,cl,method,l_bou

nd,u_bound); 

 

  data &data; 

  set &data; 

  length immcat $9; 

    if &trt = 0 then do; 

   imm = 0; 

   def = 1-imm; 

      immcat="Defer";  

    end; 

    else if &trt ne 0 then do; 

   imm = 1; 

   def = 1-imm; 

      immcat="Immediate"; 

    end; 

  run; 

 

  data step1; 

  set &data; 

   

  do psi = &l_bound to &u_bound by 0.001; 

    if imm = 1 then do; 

      t_on = &prog_time; 

     t_off = 0; 

    end; 

    else if imm = 0 then do; 

      if &xo = 1 then do; 

        t_on = &prog_time - &xo_time; 

       t_off = &xo_time; 

      end; 

     else if &xo = 0 then do; 

        t_on = 0; 

     t_off = &prog_time; 

      end; 

    end; 

 

    T = t_off + t_on; 

    U = t_off + exp(psi)*t_on; 

 cut_U = min(exp(psi)*&surv_time,&surv_time); 

 if &prog = 1 then do; 

   if U > cut_U then do; 

     U = cut_U; 

  event_U = 0; 

   end; 

   else do; 

     event_U = 1; 

   end; 

 end; 

 else do; 

   event_U = 0; 

   if U > cut_U then U = cut_U; 
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 end; 

 output; 

  end; 

 

  run; 

 

proc sort data = step1; 

by psi &subjid; 

run; 

 

%if &method = 'logrank' %then %do; 

  ods graphics off; 

  ods html close; 

  ods listing close; 

 

  ods output logrankhomcov = hcov  

             homtests      = htests 

             homstats      = hstats; 

  proc lifetest data = step1; 

    by psi; 

 time U*event_U(0); 

 strata immcat / test=logrank;   

  run; 

 

  ods html; 

  ods output; 

  ods graphics; 

 

  data step2; 

   merge hstats hcov; 

   by psi immcat; 

   if immcat = "Defer"; 

   Z_value = logrank / sqrt(defer); 

  run;  

 

  data step3; 

  set step2; 

    label prob = 'Optimal Psi'; 

    by psi; 

    retain last_Z_value; 

    if Z_value eq 0 then output; 

    if _n_ ne 1 then do; 

      if Z_value * last_Z_value < 0 then do; 

  psi_search = psi - Z_value/(Z_value-last_Z_value)*0.001; 

  call symputx('psi_search',psi_search); 

        output; 

      end; 

    end; 

    last_Z_value = Z_value; 

 keep psi psi_search prob; 

  run;  

 

  data step2; 

  merge step2 step3; 

  by psi; 

  y=0; 

  run; 
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  data step2; 

  set step2; 

  label z_value='Z-Score' y='Optimal Psi'; 

  run; 

 

  ods graphics on; 

  

  title 'Z-Score vs. Psi';  

  proc sgplot data = step2; 

  series x=psi y=z_value; 

  scatter x=psi_search y=y / markerattrs=(color=CXFF0000); 

  refline &psi_search / axis=x lineattrs=(pattern=ShortDash) label=("Optimal 

value of Psi = &psi_search"); 

  refline 0 / axis=x; 

  refline 0 / axis=y; 

  xaxis label='Psi'; 

  yaxis label='Z-Score'; 

  run;  

  quit; 

 

  data htests1; 

  merge htests step3; 

  by psi; 

  run; 

 

  data htests1; 

  set htests1; 

  label psi_search='Optimal Psi' prb='Optimal Psi'; 

  if psi_search ne . then probchisq = 1; 

  prb = probchisq; 

  run; 

 

  title 'Logrank p-Value vs. Psi';  

  proc sgplot data = htests1; 

  series x=psi y=probchisq; 

  scatter x=psi_search y=prb / markerattrs=(color=CXFF0000); 

  refline &psi_search / axis=x lineattrs=(pattern=ShortDash) label=("Optimal 

value of Psi = &psi_search"); 

  refline 0 / axis=x; 

  xaxis label='Psi'; 

  yaxis label='p-Value'; 

  run;  

  quit;  

  title ; 

 

  data ci; 

  set htests1; 

  where probchisq >= 0.025; 

  run; 

 

  proc means data=ci noprint; 

  var psi; 

  output out=psi_ci min=min max=max; 

  run; 

   

  data psi_ci; 
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  set psi_ci; 

  format point 8.3; 

  point = &psi_search; 

  keep point min max; 

  run; 

   

  title '95% Confidence Interval for Psi'; 

  proc print data=psi_ci label; 

  var point min max; 

  label point='Point Estimate' min='Lower Limit (95% CI)' max='Upper Limit 

(95% CI)'; 

  run; 

 

  data acc_fact; 

  set psi_ci; 

  exp_psi = exp(-point); 

  exp_psi_min = exp(-max); 

  exp_psi_max = exp(-min); 

  keep exp_psi exp_psi_min exp_psi_max; 

  run; 

   

  title '95% Confidence Interval for Acceleration Factor (exp(-Psi))'; 

  proc print data=acc_fact label; 

  var exp_psi exp_psi_min exp_psi_max; 

  label exp_psi='Point Estimate of exp(Psi)' exp_psi_min='Lower Limit (95% 

CI)' exp_psi_max='Upper Limit (95% CI)'; 

  run; 

 

%end; 

%else %if &method = 'weibull' %then %do; 

 

 ods graphics off; 

 ods html close; 

 ods listing close; 

 

 ods output ParameterEstimates=fit; 

  proc lifereg data=step1; 

    by psi; 

 model U*event_U(0) = imm entry/dist=weibull; 

  run; 

 

  ods html; 

  ods output; 

  ods graphics; 

 

  data fit; 

  set fit; 

  where parameter = upcase(symget('trt')); 

  run; 

   

  data fit1; 

  set fit; 

  by psi; 

    retain last_estimate last_probchisq; 

    if estimate eq 0 then output; 

    if _n_ ne 1 then do; 

      if estimate * last_estimate < 0 then do; 
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  psi_search = psi - estimate/(estimate-last_estimate)*0.001; 

  probchisq_search = probchisq + 

last_probchisq/(probchisq+last_probchisq)*(last_probchisq-probchisq); 

  call symputx('psi_search',psi_search); 

        output; 

      end; 

    end; 

    last_estimate = estimate; 

 last_probchisq = probchisq; 

 keep psi psi_search probchisq_search; 

  run; 

 

  data fit; 

  merge fit fit1; 

  by psi; 

  y=0; 

  label y='Optimal Psi' chisq='Chi-Square'; 

  run; 

 

  title 'Treatment Effect vs. Psi'; 

  proc sgplot data = fit; 

  series x=psi y=estimate; 

  scatter x=psi_search y=y / markerattrs=(color=CXFF0000); 

  refline &psi_search / axis=x lineattrs=(pattern=ShortDash) label=("Optimal 

value of Psi = &psi_search"); 

  refline 0 / axis=x; 

  refline 0 / axis=y; 

  xaxis label='Psi'; 

  yaxis label='Treatment Effect'; 

  run; 

 

  title 'Chi-Square Statistic vs. Psi'; 

  proc sgplot data = fit; 

  series x=psi y=chisq; 

  scatter x=psi_search y=chisq / markerattrs=(color=CXFF0000); 

  refline &psi_search / axis=x lineattrs=(pattern=ShortDash) label=("Optimal 

value of Psi = &psi_search"); 

  refline 0 / axis=x; 

  refline 0 / axis=y; 

  xaxis label='Psi'; 

  run; 

 

  data ci; 

  set fit; 

  where probchisq >= 0.025; 

  run; 

 

  proc means data=ci noprint; 

  var psi; 

  output out=psi_ci min=min max=max; 

  run; 

   

  data psi_ci; 

  set psi_ci; 

  format point 8.3; 

  point = &psi_search; 

  keep point min max; 
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  run; 

   

  title '95% Confidence Interval for Psi'; 

  proc print data=psi_ci label; 

  var point min max; 

  label point='Point Estimate' min='Lower Limit (95% CI)' max='Upper Limit 

(95% CI)'; 

  run; 

 

  data acc_fact; 

  set psi_ci; 

  exp_psi = exp(-point); 

  exp_psi_min = exp(-max); 

  exp_psi_max = exp(-min); 

  keep exp_psi exp_psi_min exp_psi_max; 

  run; 

   

  title '95% Confidence Interval for Acceleration Factor (exp(-Psi))'; 

  proc print data=acc_fact label; 

  var exp_psi exp_psi_min exp_psi_max; 

  label exp_psi='Point Estimate of exp(Psi)' exp_psi_min='Lower Limit (95% 

CI)' exp_psi_max='Upper Limit (95% CI)'; 

  run; 

 

%end; 

%else %if &method = 'coxph' %then %do; 

 

  ods output ParameterEstimates=fit; 

  ods graphics off; 

  ods html close; 

  ods listing close; 

  proc phreg data=step1; 

  by psi; 

    model U*event_U(0)= imm entry /rl; 

  run; 

 

  ods html; 

  ods listing; 

 

  data fit; 

  set fit; 

  where parameter = upcase(symget('trt')); 

  run; 

 

  data fit1; 

  set fit; 

  by psi; 

    retain last_estimate last_probchisq; 

    if estimate eq 0 then output; 

    if _n_ ne 1 then do; 

      if estimate * last_estimate < 0 then do; 

  psi_search = psi - estimate/(estimate-last_estimate)*0.001; 

  probchisq_search = probchisq + 

last_probchisq/(probchisq+last_probchisq)*(last_probchisq-probchisq); 

  call symputx('psi_search',psi_search); 

        output; 

      end; 
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    end; 

    last_estimate = estimate; 

 last_probchisq = probchisq; 

 keep psi psi_search probchisq_search; 

  run; 

 

  data fit; 

  merge fit fit1; 

  by psi; 

  y=0; 

  label y='Optimal Psi' probchisq_search='Optimal Psi'; 

  run; 

 

  ods graphics on; 

 

  title 'Treatment Effect vs. Psi'; 

  proc sgplot data = fit; 

  series x=psi y=estimate; 

  scatter x=psi_search y=y / markerattrs=(color=CXFF0000); 

  refline &psi_search / axis=x lineattrs=(pattern=ShortDash) label=("Optimal 

value of Psi = &psi_search"); 

  refline 0 / axis=x; 

  refline 0 / axis=y; 

  xaxis label='Psi'; 

  yaxis label='Treatment Effect'; 

  run; 

 

  title 'Chi-Square Statistics vs. Psi'; 

  proc sgplot data = fit; 

  series x=psi y=chisq; 

  scatter x=psi_search y=chisq / markerattrs=(color=CXFF0000); 

  refline &psi_search / axis=x lineattrs=(pattern=ShortDash) label=("Optimal 

value of Psi = &psi_search"); 

  refline 0 / axis=x; 

  refline 0 / axis=y; 

  xaxis label='Psi'; 

  run; 

 

  data ci; 

  set fit; 

  where probchisq >= 0.025; 

  run; 

 

  proc means data=ci noprint; 

  var psi; 

  output out=psi_ci min=min max=max; 

  run; 

   

  data psi_ci; 

  set psi_ci; 

  format point 8.3; 

  point = &psi_search; 

  keep point min max; 

  run; 

   

  title '95% Confidence Interval for Psi'; 

  proc print data=psi_ci label; 
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  var point min max; 

  label point='Point Estimate of Psi' min='Lower Limit (95% CI)' max='Upper 

Limit (95% CI)'; 

  run; 

 

  data acc_fact; 

  set psi_ci; 

  exp_psi = exp(-point); 

  exp_psi_min = exp(-max); 

  exp_psi_max = exp(-min); 

  keep exp_psi exp_psi_min exp_psi_max; 

  run; 

   

  title '95% Confidence Interval for Acceleration Factor (exp(-Psi))'; 

  proc print data=acc_fact label; 

  var exp_psi exp_psi_min exp_psi_max; 

  label exp_psi='Point Estimate of exp(Psi)' exp_psi_min='Lower Limit (95% 

CI)' exp_psi_max='Upper Limit (95% CI)'; 

  run; 

   

   

%end; 

 

%mend rpsftm; 
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APPENDIX 2 

%macro 

IPCW(data,subjid,dth_time,trt,ref,tstart,tend,xo_time,xo_ind,xo_cnsr,dth_ind,

dth_event,bl_ct,bl_cl,tv_ct,tv_cl); 

  data &data; 

  set &data; 

    if &tstart >= &dth_time then delete; 

    if &xo_ind = 1 then do; 

      if &tstart >= &xo_time then delete; 

    end; 

  run; 

 

  data weight_est; 

  set &data; 

  where &trt = &ref; 

  run; 

 

  proc sort data=weight_est; 

  by &subjid &tstart; 

  run; 

 

  proc phreg data=weight_est outest=survmod covs(aggregate) covm; 

    by &trt; 

   class &bl_cl; 

   model (&tstart,&tend)*xo_cnsr(0)= &bl_ct &bl_cl/rl; 

 id &subjid; 

 output out= probs_BL survival = w_BL; 

  run; 

 

  proc phreg data=weight_est outest=survmod covs(aggregate) covm; * covs 

option and id statement adjust for repeated measures; 

    by &trt; 

    class &bl_cl &tv_cl; 

   model (&tstart,&tend)*xo_cnsr(0)= &bl_ct &bl_cl &tv_ct &tv_cl /rl; 

   id &subjid; 

 output out= probs_TV survival = w_TV; 

  run; 

 

  data probs_BL; 

    set probs_BL; 

    keep &subjid &trt w_BL &tstart &tend; 

  run; 

 

  data probs_TV; 

    set probs_TV; 

    keep &subjid &trt w_TV &tstart &tend; 

  run; 

   

  data weights; 

  merge probs_TV probs_BL; 

    by &subjid &tstart &tend; 

    sw_t = w_BL/w_TV; 

 w_BL = 1/w_BL; 

 w_TV = 1/w_TV; 

  run; 
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  * Truncation Percentiles; 

  %let pctl_l = 1; 

  %let pctl_u = 99; 

  proc univariate data=weights noprint; 

  var sw_t; 

  output out=trunc 

  pctlpts = &pctl_l &pctl_u 

  pctlpre = p_; 

  run; 

 

  data trunc; 

  set trunc; 

  &trt = 0; 

  output; 

  run; 

 

  data weights; 

  merge weights trunc; 

  by &trt; 

  run; 

 

  data weights; 

  set weights; 

    if sw_t < p_&pctl_l then sw_t = p_&pctl_l; 

    else if sw_t > p_&pctl_u then sw_t = p_&pctl_u; 

  run;   

 

  data surv_ph; 

   merge &data weights; 

   by &trt &subjid &tstart &tend; 

 if &trt ne &ref then do; 

      sw_t = 1; 

   w_TV = 1; 

 end; 

 log_w_TV = log(w_TV); 

 log_sw_t = log(sw_t); 

  run; 

 

  proc sort data=surv_ph; 

  by &trt; 

  run; 

 

  proc phreg data=surv_ph outest=survmod covs(aggregate) covm; * covs option 

and id statement adjust for repeated measures; 

   title 'Final Model using weights from Cox PH Model'; 

   class &bl_cl &tv_cl &trt(ref=first); 

   model (&tstart,&tend)*dth_event(0)= &trt &bl_ct &bl_cl &tv_cl &tv_ct 

/rl; 

   id &subjid; 

   weight sw_t/norm; 

  run;   

%mend IPCW; 


