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ABSTRACT 
Code validation presents a common challenge to programming teams embedded in the pharmaceutical 
data sphere. How much effort is enough? Is it possible to have a lightweight and nimble approach to 
validation that accommodates the variety that statistical programmers see in our daily codebase?  

At Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Center (SCHARP) 
we have adopted the R Validation Framework (PHUSE, 2021) as a language-agnostic paradigm for 
validating code at various stages of maturity, during both internal development efforts and when adopting 
community-authored resources. We will share examples from three major use categories: (1) Validation of 
community-authored resources (2) Validation integrated into development, and (3) Validation separate 
from R packages.  

A brief review of the R Validation Framework will be provided. Examples are drawn from the R language 
environment with additional discussion exploring the intersection of a risk-based strategy for adoption and 
development of an R codebase, with a particular emphasis to empower reproducibility and R package 
development. While examples shown in this paper and accompanying talk are in the R statistical 
programming language, the concepts are not dependent on programming language and no audience 
fluency is expected. 

INTRODUCTION  
Data verification and code validation are two sides of ensuring data quality when performing statistical 
analysis of clinical data for regulatory purposes. This paper focuses on the code validation aspect. When 
performing code validation, it is easy to focus on the practical challenge of implementing this process. 
However, significant value lies in capturing decisions implicit in the code base. For what activity and task 
is this code intended? What is the likelihood that using this code will fail to accomplish the designated 
task? What are the consequences of a failure and are there features of implementation that flag 
successes and failures for human attention? Answering these questions for a given codebase collectively 
identifies the requirements and risk assessment that is the first step of code validation. 

CODE VALIDATION IS NOT DATA VERIFICATION 
The nuance when distinguishing between code validation and data verification lies in whether one is 
considering the reproducibility of the process versus a comparison of the product, e.g. an individual 
dataset. A process will include definitions of input, output, and transformations. The product is simply an 
output. In the following code example, we see two implementations that deliver the same output, with 
different definitions of input and transformations: 

combine_text1 <- function(x, y){ 
 paste(x, y) 
} 
combine_text2 <- function(x){ 
 paste(x, collapse = " ")  
} 
 
combine_text1("Hello", "world!") 
# [1] "Hello world!" 
 
input_vector_a <- c("Hello", "world!") 
combine_text2(input_vector_a) 
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# [1] "Hello world!" 
 

In the above example, although data verification would demonstrate equivalence for both cases, the 
differences in implementation will have downstream implications for code reuse and extensibility: 

combine_text1(input_vector_a) 
# Error in paste(x, y) : argument "y" is missing, with no default 
 
combine_text1("Hello", "new", "world") 
# Error in combine_text1("Hello", "new", "world!") : unused argument  
# ("world!") 
 
 
combine_text2("Hello", "world!") 
# Error in combine_text2("Hello", "world!") : unused argument ("world!") 
 
input_vector_b <- c("Hello", "new", "world!") 
combine_text2(input_vector_b) 
# [1] "Hello new world!" 
 

Some questions for programmers and stakeholders alike in this set of examples is whether potential use 
cases include inputs of differing lengths or if the length of input arguments is a rigid expectation of length 
two. While the "Hello world!" implementation is trivial, it is easy to imagine use cases where a function 
includes evaluating whether inputs meet specified criteria, and the transformations may vary based on 
that initial evaluation.  

CODE VALIDATION IS SOFTWARE VALIDATION  
Under real-world constraints of resource allocation, analytical complexity and emphasis on quality, an 
investment in statistical programming demonstrates greatest value-add when code can be reused with 
clear documentation to capture details of that input, transformation, and output. Collectively these 
documentation elements make up a set of specifications that define user expectations regarding the 
scope of software code, with a particular emphasis on fitness for purpose and illustrative scenarios to 
capture generalizability. The set of expectations can be referred to as requirements, while the scenarios 
make up a set of test cases. For readers coming from a background of software development, this stage 
of evaluation may be known as "user site testing" and it allows programmers to confirm that they are 
building the right software. This is done by documenting the tasks that the software code is intended to 
address while evaluating for appropriate responses to a range of use cases. 

Looking towards regulatory guidance on this topic, we see that software validation is "confirmation by 
examination and provision of objective evidence that software specifications conform to user needs and 
intended uses, and that the particular requirements implemented through software can be consistently 
fulfilled." (FDA, 2002). Of note is that the practice of validation is agnostic to language and task, but a 
particular implementation is focused on meeting specific business needs and generalized beyond a 
particular study deliverable. What is essential is that a validation effort is both reproducible and traceable, 
and the test cases address risks of the particular use cases. 

RISK AS A STRUCTURED OPINION 
Risk is often measured on the orthogonal axes of impact and likelihood of an event occurring (Table 1). 
This approach assumes that events of increasing complexity are more likely to happen. Higher risk 
events are both more likely to happen and have greater negative impact when they occur.  

Where opinion comes into play is in the subject matter expert assessment of events along either of these 
axes. It is not possible or efficient to be exhaustive when identifying possible events. However, features 
such as: adoption rate, historical usage, documentation, developer testing and previous validation are 
metrics that justify categorization of lower risk when assessing community-authored sources. Open-
source projects in the community such as {riskmetric} (R Validation Hub, et al, 2023) and R Validation 
Hub collaborators are seeking to formalize this assessment in a manner that is consistent and sharable 
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across the pharmaceutical industry. Such efforts are paralleled by open-source development of R 
packages to facilitate submission activities by industry collaborators (Herbert et. al, 2022) and reinforced 
by FDA via guidance (FDA, 2003) and clarifying statement (FDA, 2015). 

Table 1: Risk assessment matrix. 

Overall Risk Likelihood 

Impact Low Medium High 

Low L L M 

Medium L M H 

High M H H 

 
Internally authored code or software authored by the wider community may also benefit from validation 
efforts implemented using a just in time strategy to advance efforts with a modular approach. This is the 
iterative method that we describe in later sections. The general rule of thumb is for events of high risk to 
be considered with greatest scrutiny when defining requirements and test cases, while controlling for 
events of low risk which may be deferred to general control checkpoints. Justification of whether to 
include or exclude medium risk events from the validation process is a decision that is specific to the 
organization, with an understanding that risk categorization may change over time. The possibility that a 
risk category may change over time, due to new applications or additional details suggests that it is 
pragmatic to review the validation plan periodically, and to be open to the possibility of re-validation using 
an agile, iterative approach. Historically, organizations have avoided iterative validation due to the 
extensive effort of documenting manual testing. Since the primary activity of statistical programming 
involves running of code, there exists the opportunity to reuse and extend a suite of test code to execute 
test cases in a validation framework that logs the results for audit and review purposes. The authoring of 
these test code scripts are subject to the controls and review that is traditionally applied to manual 
validation, with the adoption of some technical elements to facilitate extensibility. 

CONCEPTS OF A VALIDATION FRAMEWORK 
The R Validation Framework (PHUSE, 2021) is a system-agnostic and flexible paradigm to identify, 
implement and distribute the decisions and tests of validation. While the framework may be deployed 
without consideration of development stage or programming language, the primary value lies in a modular 
ability to extend validation as the code base evolves, whether that growth is in the extension of existing 
code, adoption of community code or a new development effort. The R package {valtools} (Hughes, et.al. 
2021) implements this framework specifically for R. 

A new implementation of the validation framework should start with evaluation and categorization of risk 
of a particular event (see: Table 1). While some events may be more likely to occur, the potential negative 
impact of such events may be minimal. Other events may be less likely to occur but have the potential for 
greater negative effect. For example, if a variable contains censored data instead of the raw numeric 
observations, how may that bias later derived values? Does the code alert users of that detail with 
warnings or informative messaging? And does that impact apply to the use case at hand? While it may be 
tempting to simply test for all potentially negative events, limitations of resources may curtail what is 
possible at a practical level. A more efficient and pragmatic strategy is to quantify the likelihood and 
impact – including thresholds – of risk tolerance for the use cases.  
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ORGANIZATION OF VALIDATION ELEMENTS 
A key aspect of the validation framework is that elements are organized consistently, and content follows 
a defined structure. Within the top-level validation folder, one folder exists each for requirements, test 
cases and test code scripts. Individual files in both the requirements and test cases folders can be 
markdown (Cone, 2018) or rmarkdown (Xie, 2018) extensions. Test code scripts are written with the file 
extension “.R”. The R package {valtools} (Hughes, et.al., 2021) includes documentation and functions to 
help with this preparation and may be found at: https://github.com/phuse-org/valtools.  

 

 
Figure 1: Directory structure of R Validation Framework showing validation elements. 

Syntax of eye-readable files 
Each requirement or test case is captured in an individual file. At the top of the file, common {roxygen2} 
(Wickham et. al. 2022) style tags are used to capture the document title and details regarding author. The 
motivation for using these tags is multifactorial: (1) quick to skim-read (2) consistent with documentation 
of other R package elements for ease of use by programmers (3) plays nicely with version control such as 
git or svn and (4) leverages auto-complete features of Posit IDE. 

{valtools} implements custom tags to map requirements to test cases and identify risk levels for each 
requirement set. A single requirement may be supported by multiple test cases. Risk levels are a free text 
field. 

Syntax of test code files 
Within each test code file, a single set of tests is R code wrapped within a call to the test_that 
function. Evaluated code is compared to expected results via the expect_* set of functions. Both 
functions may be found as part of the existing {testthat} package (Wickham, 2011). 

VALIDATION ELEMENT CONTENT 

Capturing risk via requirements 
FDA guideline (FDA, 2002) instructs industry to determine the level of software validation by assessing 
the safety risk posed by the system. Typically, SCHARP considers both the likelihood and impact of a 
negative event, prioritizing high risk use cases for immediate assessment (Table 1). For example, when 
validating code to generate a statistical report, it may be essential that the necessary math fonts are 
installed. Since the mathematical characters are displayed in every report, accessing these font libraries 
is both highly likely (every time) and has enormous negative impact (the report is blocked) if an error 
occurs, so it may be considered “high risk”. At minimum, requirements that carry high risk should be 

https://github.com/phuse-org/valtools
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included in the validation plan. Organizations may also choose to include requirements of medium risk as 
part of initial validation or defer these events to a later validation phase. Unless there is a clear 
justification for exhaustive validation, it is unlikely that most teams will find it efficient to validate low risk 
scenarios. When considering risk, it is important to give weight to stakeholder perspectives outside of the 
immediate software user group. In the high-risk example, statistical analysts may grade risk of formatting 
errors lower because this user group traditionally interacts with data directly. However, for a stakeholder, 
failure in the process of generating a report may delay or block access to analysis that is routinely shared 
by email correspondence. 

What is also of considerable value is to consider that requirements, risk assessment and use cases may 
drift over time. This supports the idea that the requirement list should be organized in a modular manner 
and be accessible to stakeholders without need for special or proprietary software. Using markdown files 
and separating each requirement into its own file facilitates these dual goals and introduces the flexibility 
to reuse (source) this information for multiple audiences. Of additional interest to reviewers and future 
automation is capturing author/edit details of “who” and “when” directly in the file using headers and 
meaningful tags. Once the requirements have been drafted, it is possible to compile an initial requirement 
report as a single PDF and be confident the same source information will be incorporated into the final 
validation report. 

Test cases to identify use cases 
While requirements are generic high-level descriptors of use cases, “test cases” refer to code-specific 
usage and is referred to in literature as “User Site Testing”. Note that while test cases describe software 
specific usage on the intended system, these cases are written in a format that is both human-readable 
and ready for automation. 

Test code for execution  
Although the purpose of test code files are to document technical details of action taken as part of 
validation, it is also necessary to consider whether it is possible for an unbiased user to arrive at that 
course of action. Authors of the codebase being validated have extremely detailed understanding of the 
codebase and may choose or avoid actions that are undocumented due to that deep and nuanced 
insight. Likewise, authors of the validation requirements or validation test cases may assume a standard 
practice that is not-so-standard and warrants capturing through standard operating procedures (SOPs). 
The solution to addressing this human variability is to simply designate the test code author as someone 
who was not part of the development team nor is part of authoring other elements of the validation 
project. Thus, one way of describing the test code is: “what a reasonable programmer” would choose. 
“Reasonable” meaning that the individual has access to organizational SOPs and the documentation i.e. 
tutorials and help pages published by developers.  

PULLING IT TOGETHER INTO REPORTS 
To execute validation and generate the report involves creating a rmarkdown template with sections that 
iterate over files in the requirement, test case and test code folders. Both {valtools} and {knitr} offer 
functions that facilitate this process. Of particular interest is that as the files in each of the folders are 
updated, new files are added and/or deprecated, re-running the template will update validation, 
generating a new report without overwriting the existing pdf. Additionally, it is possible to update the 
template structure, for example if corporate logos change. 

VALIDATION EXAMPLES FROM USE CATEGORIES 

COMMUNITY-AUTHORED RESOURCES: BASE R FUNCTIONS VIA THE R PQ PROJECT  
Community-authored R packages are often recognized as the most stable and well-maintained 
resources. The attributes that contribute to their quality include: a large base of experienced developers, 
wide adoption across many use cases in production, extensive unit testing, mature documentation and/or 
tutorials, a robust issue tracking system with rapid response, and open-source code that is under scrutiny 
by academic and industry experts. For example, {ggplot2} (Wickham et.al., 2016), {kableExtra} (Zhu 
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et.al., 2021), {data.table} (Dowle et.al., 2022), {knitr} (Xie, 2023), and {Rcpp} (Eddelbuettel et.al., 2023) R 
packages have been maintained over several years, and over a decade in some cases. Other 
community-authored R packages are less robust, perhaps due to an early developmental stage, niche 
application, or position in emerging practice. 

During the validation process, a risk assessment may address the package as a single unit or explore 
application of individual functions. Similar tasks may be classified with a common risk level. Alternatively, 
it may be wise to consult programmers to qualitatively evaluate for developers' consistency with best 
practices. 

Defining requirements 
One reality of validation testing is that it is simply not an efficient use of resources to exhaustively test all 
scenarios. At SCHARP, our initial interest focuses on identifying basic operations in the categorical areas 
of command line usage, data ingestion, data output, plot generation, statistical distributions, statistical 
modeling, statistical tests, and summary statistics. The RPQ project at SCHARP captures the 
specifications, test cases and test code related to this effort. The following code example explores an 
individual category e.g., statistical modeling – correlation. For this category statistical analysts identified 
frequently used evaluations such as Pearson's correlation and Spearman's rank correlation coefficient 
from two samples. A risk level was assigned to the category, and these were saved as a single 
requirement file in markdown format: 

#' @title Statistical Modeling – correlation 
#' @editor A Statistical Programmer 
#' @editDate 2023-01-01 
#' @riskAssessment 
#' 1.1: Low/Medium/High 
#' 1.2: Low/Medium/High 
 
## Statistical Modeling – correlation 
 
+ 1.1 Calculate Pearson's correlation coefficient between two samples. 
+ 1.2 Calculate Spearman's rank correlation coefficient between two 
samples. 

 

This is repeated for each category. With a complete set of requirements, we can circulate the requirement 
report for review. Team members confident reviewing markdown files directly leveraged the GitHub 
interface. After an initial review is complete, a pdf is compiled for circulation by email to individuals who 
are only available by email. Note that it is also possible to compile these requirements into Word 
document format to allow for track changes. 

Defining test cases 
From these requirements test cases are defined. While requirements are reviewed by stakeholders who 
may not be technical staff, test cases allow for explicit technical details to be captured, describing the use 
cases that statistical programmers employ. First, we identify the two input numeric vectors for 
consideration. Second, we identify which R function are being tested and the output value expected. In 
this case, both coefficients make use of the cor function, but we are interested in different parts of the 
output. In the test case file, the expected output values are also identified: 

#' @title Test Case - Statistical Modeling – correlation 
#' @editor A Statistical Programmer 
#' @editDate 2023-03-24 
#' @coverage 
#' TC1.1: Req1.1 
#' TC1.2: Req1.2 
 
## Statistical Modeling – correlation 



 
 

7 

 
+ Setup: create a vector `v1` with values: 1:5 and the vector `v2` with 
values c(1, 1, 3, 6, 2) 
 

  + TC1.1 Test that Pearson's correlation using the `cor` function, setting  
  the x argument to `v1` and the y argument to `v2`, and assigning the result  
  to `cor_p`. 
      + TC1.1.1 Confirm that the value of `cor_p` is 0.534 

 
+ TC1.2 Test that Spearman's rank correlation using the `cor` function, 
setting the x argument to `v1`, the y argument to `v2`, the `method` 
argument to "spearman", and assigning the result to `cor_s`. 

      + TC1.2.1 Confirm that the value of `cor_s` is 0.667 
 

Test cases are written for full coverage of all requirements. Full coverage simply means that all 
requirements have one or more test cases that demonstrate the use scenario. Because test case files are 
also authored individually, it is possible to review each set of test case individually. This allows the testing 
programmer (next section) to start authoring code before all test cases are finalized. In a busy team, this 
allows for an agile approach and reduces overall elapsed time by introducing parallelization. 

 
Figure 2: Gantt chart of hypothetical validation cycle. Parallelization opportunities exist between 
authoring/updating each requirement. Opportunity for parallelization also exists within the set of 
test case and within the set of test code. A dependency exists between Requirement 1 -> Test 
Case 1 -> Test Code 1. Each element is reviewed twice: once at the technical level e.g. peer 
review, and once at non-technical level e.g. stakeholder review. Elements may be reused for 
multiple deliverables e.g. Requirement Report and Validation Report. Individual elements may 
form basis of next iteration of the validation cycle. Deliverables are outlined in red. 

Programming test code 
To ensure that validation is independent of bias, a key feature of validation is that the author of a 
particular test code script may not be the same person who authored the associated test case, or the 
function(s) being tested. In many organizations, this task is left to the most novice programmer as an 
opportunity for training and a sanity check to evaluate the quality of documentation. Each test case is a 
separate call to the test_that function: 

    # Test setup 
    v1 <- 1:5  

  v2 <- c(1, 1, 3, 6, 2) 
 
 
    #' @editor Test Programmer 
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    #' @editDate 2023-05-14 
    test_that("TC.1.1", { 
      # Pearson's correlation 
      cor_p <- cor(x = v1, y = v2) 
      expect_equal(cor_p, 0.534) 
    }) 
 
    #' @editor Test Programmer 
    #' @editDate 2023-05-14 
    test_that("##tc:1.2", { 
        # Spearman correlation 
        cor_s <- cor(x = v1, y = v2, method = "spearman") 
        expect_equal(cor_s, 0.667) 
    }) 
 

The validation report 
Once all the validation elements are finalized, compiling the validation template executes all the test code 
scripts and generates the final report ready for signatures. In this project the SCHARP validation team 
also includes a coverage matrix to demonstrate mapping between requirements, test cases and test 
code. 

 
Figure 3: Coverage table shows immediately that each requirement is addressed by one or more 
test cases. 

 
Figure 4: Matrix display of requirement mapping to individual test cases. 
 

 

 

 

Figure 5: Evaluation of test code cases displaying that the results are as expected and pass 
validation. If the test code script generates an error or warning, it is a hard stop and the validation 
report will not compile, e.g. no PDF is generated. To complete compilation of a validation report, 
all test code scripts must pass. 
 

INTEGRATED INTO DEVELOPMENT: {SCHARPYVERSE} 
In-house development of R packages presents a unique risk, if only because the software codebase is 
opaque to testing via implementation by the larger pharmaceutical industry. The validation framework 
implemented via {valtools} may be incorporated into package development. As statistical programmers at 
SCHARP create R package to share code across internal teams, we identify requirements during an early 
stage of development. The validation process for package development is similar to the process of 
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validation of base R functions. Test cases to support the requirements are authored. An independent 
person is tasked with authoring the test code. The validation report is compiled from the collection of 
requirements, test cases and test code. 

A benefit of validation as part of development is that during distribution of the validated package, a copy 
of the validation report pdf and the validation raw files are included. This allows an individual to re-validate 
if they seek to use the package in a different use case. From a traceability perspective the entire package 
code base, including validation efforts, are tracked and distributed as a single unit. The key to this 
functionality is that the entire validation framework directory structure is saved to the “vignettes” folder 
within the R package directory. Individuals can choose to re-validate by setting build_vignettes = 
TRUE during initial setup for the user. If the subject-matter expert does not need to re-validate, they can 
set build_vignettes = FALSE and can depend on the existing validation report. Additionally, 
{valtools} facilitates the process of re-executing validation test code at any time subsequently. 

SEPARATE FROM PACKAGE: CUSTOMIZING THE FRAMEWORK 

Validation of annual reporting code 
Another example of validation in use at SCHARP involves the validation of R scripts that prepare 
standard annual reports. The goal of this validation is to reduce the risk associated with this codebase 
and minimize the risk for use in production without data verification. Usually, the output created using R 
scripts will be verified by performing double programming to make sure two outputs match i.e. data 
verification. However, data verification can be labor-intensive, especially in cases where the R script is 
complex, but the use case is highly consistent. 

While the validation process for these R scripts begins with collecting requirements, the test cases focus 
on capturing that the code demonstrates fitness for purpose. For instance, summarization and formatting 
of values that may be evaluated by visual inspection instead of programmatic test code for a defined set 
of input cases. While the evaluation of output is manual, the expectations and input are captured using 
version-controlled csv files. 

In this application, we are using the directory structure as identified in Figure 1 and many of the concepts 
of the Validation Framework as proposed in the PHUSE whitepaper (PHUSE, 2021). Specifically, we 
preserve the definition of requirements, test case and test code. We track and maintain elements in a 
modular approach that supports the process visualized in Figure 2. However, what is different is that the 
Validation Report template is pulling details from files in csv form for requirements and test cases and is 
evaluating code at command-line. This is consistent with the approach that is currently employed by the 
{Tplyr} package (Atorus Research, 2023).  

SAS validation  
Validation of base SAS functions (Duran, Etikala, Rammohan, 2023, p.1) includes approaches used in 
both the R PQ project and the customization of annual reporting code described earlier. The risk and 
usage evaluation are consistent the categorization in use when validating base R functionality. The file 
format and listing structure of individual requirements and test cases, however, is specific to this 
validation project. SAS code is run according to organizational standards for that language. 

Future work to support this validation use category involves developing functions that may be 
incorporated into {valtools} to handle csv input as an alternative to the (r)markdown file format currently 
expected. In preparation for this, a consensus regarding the structure of csv input must be addressed. 

DIFFICULTIES WITH IMPLEMENTATION AND LESSONS LEARNED 
Implementation of validation is not without its hurdles. Consider that the definition of validation includes 
the idea the software must perform consistently for all intended users, and that differences in 
performance between use cases must be clearly identified and accommodated during production. We 
encountered difficulties in validating base R for SCHARP given our goal of demonstrating that base R is 
“consistent” across platforms and environments among various users at SCHARP.   
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It was necessary to first define a standard environment for validation, especially when considering the 
different packages each user might have loaded for different data analysis steps. We decided on base R 
for this reason, so that we would have a foundation for validation that could theoretically perform 
consistently for all users. By defining a standard environment, regardless of packages loaded, and 
performing tests in that environment, we are better able to offer the confidence needed for a successful 
validation project.  

In another instance, the initial iteration of test code returned different results between local machines and 
servers running a different operating system. For example, the simple test case to read in a file with 
specified, Greek letters such as sigma and alpha are printed in a .csv file:  

  

    greek_csv <- read.csv("example_csv_encoding.csv", fileEncoding = "windows-1253") 

  

Users accessing the R via an instance of RStudio Integrated Development Environment (IDE) expect to 
see the same performance regardless of whether the application is run locally or hosted via a server 
instance, despite the two scenarios being run on different operating systems. With the assumption that 
fileEncoding of type “windows-1253” is appropriate, in some scenarios the special character is encoded 
as “S” and in others, the same special character is encoded as Ó. Discovering this during review of the 
validation test code, prior to executing the final validation report allowed the team to identify an encoding 
that is usable across the computational environments that programmers encounter daily. 

Another use case that identified performance differences across operating environments was captured 
during identifying the appropriate test case for invoking “R CMD” tools from within R. Again, was to 
demonstrate the usage that can be consistently used across operating systems. Due to assumptions of 
the function tools::Rcmd, SCHARP stakeholders determined that the function call to system("R CMD 
BATCH", ) was a better fit for purpose. 

Network/user differences that must be anticipated in advance poses even more difficulties for validation. 
While we can meet the needs and specifications of one network at SCHARP with simple requirements 
and test cases, here we have multiple people with different needs across a variety of networks that must 
be captured via validation efforts. This obviously leads to increased complexity in scope and requires 
increased effort to discern. In multiple networks within SCHARP, assay data formats are continually 
evolving. Validation of R packages that depend on these data formats must be updated due to differences 
in needs and expectations that have changed. A common change we anticipate will lead to the addition of 
columns (variables) and data points (records) for unique entries that must be accounted for in processing 
that data. While requirements, test cases and test code will need to be updated or developed, many of 
the existing elements will simply need confirmation that continue to execute as expected. While the R 
Validation Framework reduces the rework needed for future validation, it does not eliminate need for 
coordination and collaboration across teams. If a requested calculation needs to be created for one 
network and is forgone for a different network, test cases would need to capture both events. At 
SCHARP, similarities and differences in code usage are discussed as part of our joint-network efforts to 
develop packages for shared use. 

A resourcing difficulty is the necessary separation of labor during the validation process. To avoid 
conflicts such as a programmer reviewing their own functions, or programmers changing specifications 
retroactively in accordance with their own experience, project collaborators must be divided smartly into 
appropriate categories. Given for example, 3 programmers and 2 research associates, we can potentially 
divide the labor as follows:  
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Table 2: Example of role assignment during validation. The modular structure of validation 
elements means that these roles may fluctuate by identifier. That is "Alex A. Programmer" may act 
as "Programmer 1" for module id 1, and in the capacity of “Programmer 2” for module id 2, where 
module identifiers 1:N enumerate a single linked set of Requirement/Test Case/Test Code files. 

Module Author Reviewer 
Requirements Researcher 1 Researcher 2, 

Programmers 
Test Case  Programmer 1 Researcher 1 and 2 
Test Case Code Programmer 2 Programmer 3, 

Researchers 
  

With fewer programmers or research associates, problems can arise with improper division of labor. 
Adding more staff can cause duties to become fragmented, and more tracking is needed. For large 
validation teams, or if multiple validation efforts are simultaneously ongoing, there may be operational 
benefit by designate a project manager to coordinate. 

FUTURE WORK 
At SCHARP, our future efforts are focused in three areas: (1) increasing the number of community-
authored R Packages that are validated (2) ongoing validation of code that has been previously validated 
by the team and (3) developing new R Packages that incorporate the validation framework at the start. 
This involves defining an ongoing maintenance cycle for code that is currently validated, with the 
expectation that while a future validation cycle should take less time than initial validation, the total sum of 
all ongoing validation efforts will increase. It will not be possible to let this accumulate indefinitely, so a 
clear strategy for risk mitigation that allows designation of resources in a parsimonious manner will be 
well received. Additionally, any increase to the number of community-authored packages that undergo 
validation will need assessment from a risk-based perspective, considering efforts and progress towards 
this goal in the wider R in pharma community and addressing the accumulation of validation demands at 
a resourcing level. 

Given the interest in use of the Validation Framework with requirements and test cases that are captured 
via CSV files, an opportunity exists to extend the {valtools} package to transform the content into 
validation files consistently. 

CONCLUSION  
In this paper we have described three categories of code validation use cases, with examples from 
production use at SCHARP. We have shown that the R Validation Framework first proposed by PHUSE 
contributors (PHUSE, 2021) has been successfully implemented via the R package {valtools} (Hughes, 
et.al., 2021). We have identified opportunities to extend that implementation for greater flexibility via 
custom code implemented both at SCHARP and in the community. 

Validation of code has historically been a labor-intensive process that is idiosyncratic to an organization. 
The R Validation Framework and technical implementations thereof present a systematic and modular 
approach to focus efforts on facilitating risk mitigation. By emphasizing standard concepts, the primary 
challenges that occur during validation can focus on resolving questions pertaining to use cases of data 
processing, analysis, and reporting in production. Once these challenges are addressed it is possible to 
summarize the intersection of requirements, test cases and test code scripts for future reference both in 
programmatic and eye-readable displays. This approach also creates opportunity to parallelize validation 
efforts and iterate the validation cycle with greater frequency and minimal rework. At SCHARP, we are 
excited that this approach allows us to operationalize code validation, increase transparency and promote 
rigor. 

  



 
 

12 

REFERENCES 
1. Atorus Research LLC, Miller, E., Stackhouse, M., Tarasiezecz, A., Kosiba, N., Mascary, S. “A 

Traceability Focused Grammar of Clinical Data Summary”. 2023. https://github.com/atorus-
research/Tplyr  

2. Cone, M., "The Markdown Guide". 2018. https://www.markdownguide.org/  

3. Dowle, M., Srinivasan, A. “data.table: Extension of 'data.frame'”. 2022. https://CRAN.R-
project.org/package=data.table 

4. Duran, V., Etikala E., Rammohan H., “Integrating Practices: How Statistical Programmers Differ 
and Align Within User Groups”. Proceedings of PharmaSUG 2023 (accepted). SI-139. 

5. Eddelbuettel D., “Rcpp: Seamless R and C++ Integration”, https://cran.r-
project.org/web/packages/Rcpp/index.html 

6. FDA. "Electronic Signatures – Scope and Application: Guidance for Industry Part 11, Electronic 
Records". September 2003. Last updated July 2018. Accessed March 17, 2023. 
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/part-11-electronic-
records-electronic-signatures-scope-and-application 

7. FDA. "General Principles of Software Validation: Guidance for Industry and FDA Staff". January 
2002. Last updated May 2019. Accessed March 17, 2023. https://www.fda.gov/regulatory-
information/search-fda-guidance-documents/general-principles-software-validation 

8. FDA. "Statistical Software Clarifying Statement". May 2015. Accessed March 17, 2023. 
https://www.fda.gov/media/161196/download  

9. Hartford, A., Pang, H., Wan, L., Griffiths, K.L., Eds. "Biopharmaceutical Report". Fall 2022. 29(3)  

10. Hughes, E., Vendettuoli, M., Miller, E., Peyman, E. "Automate Validated Package Creation". 
2021. https://github.com/phuse-org/valtools  

11. R Validation Hub, Kelkhoff, D., Gotti, M., Miller, E., Kevin, K., Zhang, Y., Milliman, E., Manitz, J., 
"riskmetric: Risk Metrics to Evaluating R Packages". 2023. https://CRAN.R-
project.org/package=riskmetric 

12. PHUSE. R Package Validation Framework. 2021. WP059. Accessed March 17, 2023. 
https://stage.phuse.global/Deliverables/1  

13. Wickham H., "ggplot2: Elegant Graphics for Data Analysis.” 2016. Springer-Verlag New York. 
https://ggplot2.tidyverse.org  

14. Wickham, H., "testthat: Get Started with Testing". 2011. The R Journal https://journal.r-
project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf   

15. Wickham, H., Danenberg, P., Csárdi, G., Eugster, M. "roxygen2: In-Line Documentation for R". 
2022. https://CRAN.R-project.org/package=roxygen2  

16. Wickham, H., et.al. "Welcome to the {tidyverse}". 2019. Journal of Open Source Software, 4(43). 

17. Xie Y, “knitr: A General-Purpose Package for Dynamic Report Generation in R”. 2022. 
https://cran.r-project.org/web/packages/knitr/index.html 

18. Xie, Y., Allaire, J.J., Grolemund, G., "R Markdown: The Definitive Guide". 2018. 
https://bookdown.org/yihui/rmarkdown  

19. Zhu, H., "kableExtra: Construct Complex Table with 'kable' and Pipe Syntax. https://CRAN.R-
project.org/package=kableExtra  

  

https://github.com/atorus-research/Tplyr
https://github.com/atorus-research/Tplyr
https://www.markdownguide.org/
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=data.table
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/part-11-electronic-records-electronic-signatures-scope-and-application
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/part-11-electronic-records-electronic-signatures-scope-and-application
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/general-principles-software-validation
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/general-principles-software-validation
https://www.fda.gov/media/161196/download
https://github.com/phuse-org/valtools
https://cran.r-project.org/package=riskmetric
https://cran.r-project.org/package=riskmetric
https://stage.phuse.global/Deliverables/1
https://ggplot2.tidyverse.org/
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://cran.r-project.org/package=roxygen2
https://cran.r-project.org/web/packages/knitr/index.html
https://bookdown.org/yihui/rmarkdown
https://cran.r-project.org/package=kableExtra
https://cran.r-project.org/package=kableExtra


 
 

13 

ACKNOWLEDGMENTS 
The authors would like to express gratitude to our SCHARP coworkers and collaborators, past and 
present, who have generously invested time and wisdom in support of our continuing professional 
development. We declare that no conflict of interests exists. 

RECOMMENDED READING  
• R Validation Hub https://www.pharmar.org/  

• valtools cheat sheet https://github.com/phuse-org/valtools#cheat-sheet  

CONTACT INFORMATION  
Your comments and questions are valued and encouraged. Contact the primary author at: 

Marie C Vendettuoli, PhD 
mvendett@scharp.org 
 

  
 
 

https://www.pharmar.org/
https://github.com/phuse-org/valtools#cheat-sheet
mailto:mvendett@scharp.org

	Abstract
	Introduction
	Code Validation is Not Data Verification
	Code validation is software validation
	Risk as a structured opinion

	Concepts of a validation framework
	Organization of validation elements
	Syntax of eye-readable files
	Syntax of test code files

	Validation element content
	Capturing risk via requirements
	Test cases to identify use cases
	Test code for execution

	Pulling it together into reports

	validation Examples from use categories
	Community-authored resources: base R functions via the R PQ project
	Defining requirements
	Defining test cases
	Programming test code
	The validation report

	Integrated into development: {scharpyverse}
	Separate from package: Customizing the framework
	Validation of annual reporting code
	SAS validation


	Difficulties with implementation and Lessons learned
	Future work
	Conclusion
	References
	Acknowledgments
	Recommended Reading
	Contact Information

