PharmaSUG 2023 - Paper AP-086

An Introduction to Obtaining Test Statistics and P-Values from SAS[®] and R for Clinical Reporting

Brian Varney, Experis

ABSTRACT

Getting values of test statistics and p-values out of SAS and R is quite easy in each of the software packages but also quite different from each other. This paper intends to compare the SAS and R methods for obtaining these values from tests involving Chi-Square and Analysis of Variance such that they can be leveraged in tables, listings, and figures.

This paper will include but not be limited to the following topics:

- SAS ODS trace
- SAS PROC FREQ
- PROC GLM
- R stats::chisq.test() function
- R stats::aov() function
- R broom package functions

The audience for this paper is intended to be programmers familiar with SAS and R but not at an advanced level.

INTRODUCTION

This paper intends to provide the reader with details on how to extract test statistics, commonly used in clinical trials, from SAS and R. We will look at specific examples in each software package but will not cover every possible scenario. First, we will discuss the high-level methodology for making these values available for the final report in SAS and R. The aspect of the test statistics matching between SAS and R is outside the scope of this paper. Then, we will discuss examples along with the output.

SAS METHODOLOGY

SAS uses procedures to produce statistical test results. Extracting those results into a usable form for reporting can be accomplished using a few different methods.

SAS PROC FREQ Example Using the Output Statement

```
proc freq data=heart;
table sex*diabetes / list chisq fisher cmh;
output out=freqstats chisq fisher cmh;
```

quit;

ODS TRACE DATA SETS

The output delivery system has a feature that allows a user to pick off different pieces of the output SAS sends to the results window and save it as a SAS data set. All the user must do is put the following statement into their program prior to using the statistical procedure of interest.

ODS trace on;

Once ODS trace is turned on, the available data sets are listed in the SAS log. Once you identify the piece of output that you would like as a SAS data set, you can use the ODS output statement to access it. See the excerpt below from a SAS log which utilizes ods trace output.

SAS PROC FREQ Code Example & Log Excerpt Showing ODS Trace Information

```
ods trace on;
proc freq data=heart;
   table sex*diabetes / list chisq fisher cmh;
quit;
```

ODS Trace Log Output

Output Added:

Name:	CrossTabFreqs			
Label:	Cross-Tabular Freq Table			
Template:	Base.Freq.CrossTabFreqs			
Path:	<pre>Freq.Table1.CrossTabFreqs</pre>			

Output Added:

Name:	ChiSq			
Label:	Chi-Square Tests			
Template:	Base.Freq.ChiSq			
Path:	Freq.Table1.ChiSq			

Output Added:

Name:	FishersExact
Label:	Fisher's Exact Test
Template:	Base.Freq.ChisqExactFactoid
Path:	Freq.Table1.FishersExact

Output Added: ------Name: CMH Label: Cochran-Mantel-Haenszel Statistics Template: Base.Freq.CMH Path: Freq.Table1.CMH

Output Added:

Name:	CommonRelRisks		
Label:	Common Relative Risk Estimates		
Template: Path:	Base.Freq.CommonRelRisks Freq.Table1.CommonRelRisks		

Below are the ods output statements to capture the output in SAS Data Sets.

ods output chisq=chisqout; ods output fishersexact=fishersexactout; ods output cmh=cmhout;

proc freq data=heart;

table sex*diabetes / list chisq fisher cmh;
quit;

After running the above code, output data sets containing the Chi-Square, Fisher's Exact test, and Cochran-Mantel-Haenszel statistics would be output to work.chisqout, work.fisherexatout, and work.cmhout respectively.

SAS PROC GLM Code Example Using the Output Statement/Option Strategy

```
proc glm data=heart outstat=glmoutstat;
    class sex;
    model platelets = sex anaemia sex*anaemia;
    quit;
```

	NAME	_SOURCE_	_TYPE_	DF	SS	F	PROB
1	platelets	ERROR	ERROR	295	2.7915049E12		
2	platelets	sex	SS1	1	44626047643	4.7159809164	0.030680179
3	platelets	anaemia	SS1	1	8905783533.7	0.9411432876	0.332778714
4	platelets	anaemia*sex	SS1	1	5532509892.7	0.5846632729	0.445101460
5	platelets	sex	SS3	1	44766901095	4.7308659942	0.030420065
6	platelets	anaemia	SS3	1	12391677511	1.3095247675	0.253408366
7	platelets	anaemia*sex	SS3	1	5532509892.7	0.5846632729	0.44510146

ODS Trace Log Output

Output Added:

Name:	ClassLevels
Label:	Class Levels
Template:	STAT.GLM.ClassLevels
Path:	GLM.Data.ClassLevels

Output Added:

Name:	NObs
Label:	Number of Observations
Template:	STAT.GLM.NObsNotitle
Path:	GLM.Data.NObs

Output Added:

Name:	OverallANOVA
Label:	Overall ANOVA
Template:	stat.GLM.OverallANOVA
Path:	GLM.ANOVA.platelets.OverallANOVA

Output Added:

Name: FitStatistics Label: Fit Statistics Template: stat.GLM.FitStatistics Path: GLM.ANOVA.platelets.FitStatistics

Output Added:

Name:	ModelANOVA
Label:	Type I Model ANOVA
Template:	stat.GLM.Tests
Path:	GLM.ANOVA.platelets.ModelANOVA

Output Added:

Name:	ModelANOVA
Label:	Type III Model ANOVA
Template:	stat.GLM.Tests
Path:	GLM.ANOVA.platelets.ModelANOVA

Output Added:

Name:	ANCOVAPlot
Label:	ANCOVA Plot
Template:	Stat.GLM.Graphics.ANCOVAPlot
Path:	GLM.ANOVA.platelets.ANCOVAPlot

Below are the ods output statements to capture the output in SAS Data Sets.

```
ods output overallanova=overallanovaout;
proc glm data=heart;
    class sex;
    model platelets = sex anaemia sex*anaemia;
quit;
```

After running the above code, output data sets containing the overall ANOVA statistics would be output to work.overallanovaout.

VIEW1	TABLE: Work.C	Overallanovaout (Overall ANOV	A)				
	Dependent	Source	DF	SS	MS	FValue	ProbF
1	platelets	Model	3	59064341069	19688113690	2.08	0.1029
2	platelets	Error	295	2.7915049E12	9462728631.4	_	_
3	platelets	Corrected Total	298	2.8505693E12	_	_	_

	Dependent	HypothesisType	Source	DF	SS	MS	FValue	Probl
1	platelets	1	sex	1	44626047643	44626047643	4.72	0.03
2	platelets	1	anaemia	1	8905783534	8905783534	0.94	0.33
3	platelets	1	anaemia*sex	1	5532509893	5532509893	0.58	0.44
4	platelets	3	sex	1	44766901095	44766901095	4.73	0.03
5	platelets	3	anaemia	1	12391677511	12391677511	1.31	0.25
6	platelets	3	anaemia*sex	1	5532509893	5532509893	0.58	0.44

R METHODOLOGY

R uses function calls to produce statistical test results. R typically stores its results in an R object called a list. To make these results easier to work with, a package called broom can be leveraged. The broom package contains functions such as tidy(), augment(), and glance() which turn results stored in lists to well organized tibbles.

R FUNCTION OUTPUT TO LIST

chisq.test() Function

stats chisq <- stats::chisq.test(heart\$sex, heart\$diabetes)</pre>

Resulting list named stats_chisq

stats_chisq List of 9
\$ statistic: Named num 6.78
attr(*, "names")= chr "X-squared"
\$ parameter: Named int 1
attr(*, "names")= chr "df"
\$ p.value : num 0.0092
<pre>\$ method : chr "Pearson's Chi-squared test with Yates' continuity correction"</pre>
<pre>\$ data.name: chr "data_heart\$sex and data_heart\$diabetes"</pre>
\$ observed : 'table' int [1:2, 1:2] 124 50 70 55
attr(*, "dimnames")=List of 2
\$ data_heart\$sex : chr [1:2] "1" "0"
\$ data_heart\$diabetes: chr [1:2] "0" "1"
\$ expected : num [1:2, 1:2] 112.9 61.1 81.1 43.9
attr(*, "dimnames")=List of 2
\$ data_heart\$sex : chr [1:2] "1" "0"
\$ data_heart\$diabetes: chr [1:2] "0" "1"
\$ residuals: 'table' num [1:2, 1:2] 1.05 -1.42 -1.23 1.68
attr(*, "dimnames")=List of 2
\$ data_heart\$sex : chr [1:2] "1" "0"
\$ data_heart\$diabetes: chr [1:2] "0" "1"
\$ stdres : 'table' num [1:2, 1:2] 2.73 -2.73 -2.73 2.73
attr(*, "dimnames")=List of 2
\$ data_heart\$sex : chr [1:2] "1" "0"
\$ data_heart\$diabetes: chr [1:2] "0" "1"
- attr(*, "class")= chr "htest"

USING BROOM PACKAGE FUNCTIONS

The broom package functions facilitate retrieving statistical results from the list object created by the statistical function and returning them in a tibble.

tidy()

The tidy() function summarizes a models statistical findings.

augment()

The augment() function adds columns containing statistical results to the original data.

glance()

The glance function provides a one row summary of model level statistics.

For the sake of this paper, we will just look at the tidy() function as we just want to save the test statistic and p-value into a tibble; which is easier to work with versus a list.

```
tidy_stats_chisq <- tidy(stats_chisq)</pre>
```

Resulting tibble named tidy_stats_chisq

^	statistic 🗧 🗘	p.value [‡]	parameter 🗘	method ÷
1	6.783853	0.009198613	1	Pearson's Chi-squared test with Yates' continuity correction

R FUNCTION OUTPUT TO LIST

aov() Function

```
aov1 <- aov(platelets ~ sex + anaemia + sex:anaemia, data = data_heart)</pre>
```

Resulting list named aov1

Name	Туре	Value
🗢 aov1	list [13] (S3: aov, lm)	List of length 13
coefficients	double [4]	256160 35033 -4510 -18164
residuals	double [299]	8840 7198 -94160 -41650 58481 -47650
effects	double [299]	-4553886 211249 -94370 -74381 49418 -52695
rank	integer [1]	4
fitted.values	double [299]	256160 256160 256160 251650 268519 251650
assign	integer [4]	0123
🔘 qr	list [5] (S3: qr)	List of length 5
df.residual	integer [1]	295
contrasts	list [2]	List of length 2
xlevels	list [2]	List of length 2
🔘 call	language	aov(formula = platelets ~ sex + anaemia + sex:anaemia, data = data_heart)
💿 terms	formula	platelets ~ sex + anaemia + sex:anaemia
model	list [299 x 3] (S3: data.frame)	A data.frame with 299 rows and 3 columns

aov1_tidy <aov1 %>% tidy()

Resulting aov1_tidy tibble

^	term [‡]	df [‡]	sumsq 🗘	meansq 🗘	statistic 🗘	p.value 🗘
1	sex	1	4.462605e+10	44626047643	4.7159809	0.03068018
2	anaemia	1	8.905784e+09	8905783534	0.9411433	0.33277871
3	sex:anaemia	1	5.532510e+09	5532509893	0.5846633	0.44510146
4	Residuals	295	2.791505e+12	9462728631	NA	NA

CONCLUSION

Obtaining test statistics and p-values from SAS and R is not difficult but is quite different. In SAS you use output SAS data set options and/or ODS TRACE statements. In R you can use the list output from the statistical function or use the broom package functions to get your results. It takes a little time to learn how to work in each software package, but the results are there for the taking!

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Brian Varney Experis 269-365-1755 brian.varney@experis.com https://www.experis.com

Any brand and product names are trademarks of their respective companies.