
1

PharmaSUG 2023 - Paper AP-049

Friends are better with Everything: A User's Guide to PROC FCMP Python
Objects in Base SAS®

Isaiah Lankham and Matthew T. Slaughter, Kaiser Permanente Center for Health Research,
Portland, OR

ABSTRACT

Flexibly combining the strengths of SAS and Python allows programmers to choose the best tool for the
job and encourages programmers working in different languages to share code and collaborate.
Incorporating Python into everyday SAS code opens up SAS users to extensive libraries developed and
maintained by the open-source Python community.

The Python object in PROC FCMP embeds Python functions within SAS code, passing parameters and
code to the Python interpreter and returning the results to SAS. User-defined SAS functions or call
routines executing Python code can be called from the DATA step or any context where built-in SAS
functions and routines are available.

This paper provides an overview of the syntax of FCMP Python objects and practical examples of useful
applications incorporating Python functions into SAS processes. For example, we will demonstrate
incorporating Python packages into SAS code for leveraging complex API calls such as validating email
addresses, geocoding street addresses, and importing a YAML file from the web into SAS.

All examples from this paper are available at https://github.com/saspy-bffs/pharmasug-2023-proc-fcmp-
python

INTRODUCTION

Python is a general-purpose, open-source programming language originally developed for educational
purposes in the 1990s [55]. Because of its straightforward syntax, Python quickly became popular as a
"glue" language [56] and has gone on to be used in many prominent commercial and scientific
applications. Popular websites developed as Python applications include Disqus, Dropbox, Instagram,
Pinterest, Reddit, Spotify, Uber, and YouTube [5][6]. Recently, NASA launched the Ingenuity Mars
Helicopter using Python for elements of the helicopterôs software, including flight modeling and data
processing [8].

Because of Python's ever-increasing popularity for data science [15], many SAS users have considered
adding it to their toolset. Pythonôs deep library of open-source packages and capacity for fast, in-memory
analytics make it an appealing complement to traditional SAS programming. In addition, because of its
large and growing userbase, incorporating Python into existing data pipelines also gives organizations the
ability to hire from a deeper pool of talent, with SAS and Python programmers able to share code and
cooperate while avoiding duplication of effort.

This paper describes how Python code can be embedded inside of SAS programs using PROC FCMP,
along with a series of example use cases illustrating the power of Python inside SAS. For the opposite
direction, embedding SAS code into Python scripts using the Python package SASPy, see [16].

A HISTORY OF USING PYTHON WITHIN SAS

Various options for utilizing Python code inside of SAS programs have been developed over the years.
The simplest approach takes advantage of the operating system's ability to launch Python scripts,

https://github.com/saspy-bffs/pharmasug-2023-proc-fcmp-python
https://github.com/saspy-bffs/pharmasug-2023-proc-fcmp-python

2

passing commands to the operating system from SAS using X commands [51], CALL SYSTEM [32],
SYSTASK [49], or other similar method. Unfortunately, these techniques provide no convenient way to
exchange values or datasets between SAS and Python. This forces the programmer to import and export
manually on both ends. In addition, network administrators might also disable shell commands in some
SAS programming environments for security reasons.

Intermediary technologies can also be used to execute Python code inside of SAS programs, including
Java DATA step component objects [11] and the .NET programming language inside of PROC PROTO
[17]. This generally makes it easier to exchange values or datasets between SAS and Python, but it also
potentially adds the unwanted complexity of Java or .NET as a dependency. Ideally, when integrating
SAS and Python, the programmer should only need to be familiar with these two languages.

FCMP Python objects, released In SAS 9.4 TS1M6 [58][61], allow Python code to be used directly by
SAS [50]. As long as the Python code can be structured as a function, it can be executed directly inside
PROC FCMP, or it can be wrapped in a user-defined SAS function or call routine. User-defined SAS
functions can be called inside DATA step, %SYSFUNC, or any other context where SAS functions are
available, and they can be used to exchange values between SAS and Python by passing in any number
of arguments and returning a single value. On the other hand, user-defined call routines can be used in
fewer contexts (e.g., DATA steps and %SYSCALL), but they can return multiple values to SAS.

Finally, SAS Viya version 2021.1.3 introduced PROC PYTHON. This procedure allows arbitrary Python
code to be embedded inside of a SAS program, with entire datasets able to be passed between SAS and
Python [43]. SAS code and functions can even be nested inside Python code within the procedure.
However, unlike FCMP Python objects, PROC PYTHON cannot be called from inside a DATA step or
another PROC. In addition, this procedure is only available with SAS Viya, while many users continue to
use SAS 9.4.

As of spring 2023, this leaves SAS Viya users with two strong options for embedding Python code in a
SAS program, depending on their use case. However, for the many users and sites using SAS 9.4, FCMP
Python objects are objectively the best tool available.

ENABLING SAS AND PYTHON TO TALK TO EACH OTHER

PYTHON INSTALLATION AND SETUP

Before calling Python from SAS, a Python distribution must be installed in the same environment where
SAS will be running. For users new to Python, we recommend the latest version of an analytics-oriented
distribution called Anaconda [1]. Any version of Python 2.7 or later can be used [58], but examples in this
paper were written in Python 3.91 and may not work in earlier versions of Python.

Because Python is an open-source language, it's common to use additional packages beyond the pre-
installed standard library. Many popular third-party packages are included with Anaconda, and additional
packages can be installed with a package manager. The most commonly used package manager is a
command-line program called pip 2 [26] with this syntax:

pip install <space - separated list of package names>

Alternatively, some online tutorials recommend syntax like

python - m pip install <space - separated list of package names>

or

python3 - m pip install <space - separated list of package names>

1 As of this writing, the Anaconda distribution defaults to Python 3.9 [3]. However, the newest Python, version 3.11,

can be downloaded directly from https://www.python.org/downloads/ or installed using conda [2].
2 Perhaps apocryphal, it's commonly said that pip is a recursive acronym for "pip installs packages."

https://www.python.org/downloads/

3

or even

python3.9 - m pip inst all <space - separated list of package names>

In each of these cases, weôre telling a specific Python interpreter to use its specific pip module to install

a package. This is especially useful when multiple versions of Python have been installed and we want to
make sure we are installing a package for the right version.

Alternatively, the Anaconda distribution also provides its own package manager called conda 3 [3]. The

basic syntax for installing packages from the command line with conda is essentially the same:

conda install <space - separated list of package names>

In order to use all of the examples in this paper, the following third-party packages should be installed:

¶ email-validator [54]: a package for checking formatting and deliverability of email addresses

¶ Faker [14]: a package for generating synthetic data values

¶ geocoder [4]: a package for querying web APIs to turn physical addresses into latitude/longitude

¶ pandas [23]: a package providing a tabular data object known as a DataFrame, which is essentially
the Python equivalent of a SAS dataset

¶ PyYAML [52]: a package for reading and writing YAML files

¶ requests [31]: a package for making HTTP requests

¶ saspy [57]: a package for executing embedded SAS code inside of Python scripts, as well as reading
and writing SAS datasets4

¶ XlsxWriter [19]: a package for creating highly formatted Excel files

These eight packages can be installed simultaneously from the command line, along with any other
packages they depend on, as follows:

pip install Faker email - validator geocoder pandas PyYAML requests saspy XlsxWriter

The examples in this paper also use the packages pathlib , random , and sys , but these are already

included in the Python standard library and shouldnôt need to be installed separately. Similarly, if youôre
using the Anaconda distribution, pandas and XlsxWriter should already be installed. Attempting to

install a package that's already installed should just result in a message stating it's already available.

ENVIRONMENT VARIABLES

Some additional configuration is also necessary to help SAS find Python. These two environment
variables must be set prior to launching SAS [58]:

¶ MAS_M2PATH: This variable should be set to the path of the file mas2py.py included in your SAS
installation. SAS uses this file to execute Python code5.

¶ MAS_PYPATH: This variable should be set to the path of the Python executable, which is determined
when Python is installed.

3 Conda is also an environment manager, meaning it can be used to install and manage multiple instances of Python

on a particular machine, with each instance allowed to be a different version of Python with different packages
installed. Pip can be used with another environment manager (e.g., venv) to achieve the same effect. See [27] for

more information about pip and Python environments in general.
4 In this paper, we will be using Python with SASPy inside of PROC FCMP, which will allow us to return a SAS
dataset. In general, Python can be used with SASPy independently of PROC FCMP. For more information, see [16].
5 If you're interested in what's happening behind the scenes, we encourage you to look through the Python code in

mas2py.py. This file defines a class called MAS2py, which sets up a connect to a Python interpreter and uses it to
execute Python functions submitted inside PROC FCMP steps. The arguments passed to a Python function, as well
as the function's return value(s), are also translated between corresponding Python and SAS data types.

4

Figure 0 . Example SAS log generated when checking environment variable values .

Note th e use of a Python interpreter in a custom conda environment.

In Windows, you can permanently set environment variables for your account using the Control Panel
[20], or by using the setx command from the command line [21]. For example, if SAS and Anaconda are

both locally installed with default settings, the command-line version might look like this:

setx MAS_M2PATH " C: \ Program Files \ SASHome\ SASFoundation \ 9.4 \ tkmas \ sasmisc \ mas2py.py"

setx MAS_PYPATH " C: \ ProgramData \ Anaconda3 \ python.exe"

These environment variables can also be set dynamically with the -SET option [44] when SAS is
launched, for example, using a Windows shortcut [45] or a SAS config file [35]. This might be helpful if
your administrator has disabled setting local environment variables, or if you'd like to set the value of
MAS_PYPATH to point to different Python installations for different projects.

The steps for a UNIX-like operating systems are similar [33]:

export MAS_M2PATH="/install/SASServer/SASHome/SASFoundation/9.4/misc/tkmas/mas2py.py"

export MAS_PYPATH="/usr/bin/python"

However, unlike the Windows setx command, the Unix export command only sets environment

variables temporarily. To make environment variables permanent, the export command would typically

need to be placed inside a shell configuration file [9].

Finally, to check whether environment variables have been properly set, we recommend the sysget

function [47] inside a DATA step. Here's an example, which produces the output in Figure 0:

* SAS Code producing the output shown in Figure 0;

data _null_ ;

 MAS_M2PATH=sysget('MAS_M2PATH');

 put MAS_M2PATH=;

 MAS_PYPATH=sysget('MAS_PYPATH');

 put MAS_PYPATH=;

run ;

PROC FCMP: A PRIMER

PROC FCMP allows SAS programmers to define their own SAS functions and call routines [34].
Generally, user-defined functions return a single value but can be called from any context that allows SAS
function calls (including a DATA step, PROC SQL, and the macro function %SYSFUNC). On the other
hand, call routines can return multiple values but are generally only usable inside of a DATA step6.

6 Or procedures which support DATA step statements, like PROC REPORT compute blocks or PROC FCMP itself.
It's also possible to use a call routine with the macro function %SYSCALL [46].

5

Figure 1 . The log generated by a hello - world SAS functio n example .

FCMP functions and call routines must be stored in a function library for later use, meaning a CMPLIB
option like the following should be set before any PROC FCMP steps in a program:

options cmplib =work.funcs;

This statement saves our functions and call routines in the WORK directory. To save functions for use in
another program or for sharing with other programmers, we could instead create a permanent libref with a
LIBNAME statement and use it in an CMPLIB option instead of work .

SAY "HELLO" TO USER-DEFINED FUNCTIONS

To create a SAS function that takes a parameter and returns a value, we use the FUNCTION statement:

* SAS Code producing the output shown in Figure 1;

options cmplib =work.funcs; ¬

proc fcmp outlib=work.funcs.sas; ¬

 function hello_from_sas(name $) $ 25 ; ­

 Message = 'Hello, ' ||name; ®

 return(Message); ®

 endfunc; ̄

run ;

data _null_ ; °

 message = hello_from_sas('PharmaSUG');

 put message=;

run ;

%put %sysfunc (hello_from_sas(PharmaSUG)); ±

When we invoke the FCMP procedure, we must specify a package name (sas) within a function library

that was previously defined in a CMPLIB option ¬. The FUNCTION statement marks the beginning of a
function definition ­ and gives the function name (hello_from_sas), parameter list7 (here, just name),

and the type of the returned value (character with length 25)8. The function body ® defines the variable
Message and uses a RETURN statement to return this value. Finally, the ENDFUNC statement marks

the end of the function definition .̄ At this point, we can call our function from a DATA step °, or from
any other context that a SAS function can be used, such as %SYSFUNC ±. In both cases, the value of
the variable Message defined in hello_from_sas is printed to the log, as shown in Figure 1.

7 If the dollar sign were left out, a numerical argument would be assumed.
8 In general, it's only necessary to include this type of information about a character return value.

6

Figure 2 . The log generated by a hello - world call routine example .

Because SAS functions use a RETURN statement, they can only return a single value. If we wish to
instead return multiple values, we can create a call routine using the SUBROUTINE and ENDSUB
statements in place of FUNCTION and ENDFUNC (and OUTARGS in place of RETURN):

* SAS Code producing the output shown in Figure 2;

options cmplib =work.funcs; ¬

proc fcmp outlib=work.funcs.sas; ¬

 subroutine hello_goodbye(name $, greeting $, farewell $); ­

 outargs greeting, farewell; ®

 greeting = 'Hello, ' ||name; ̄

 farewell = name|| ', Goodbye!' ; ̄

 endsub ; °

run ;

data _null_ ; ±

 length message1 message2 $ 25 ; ²

 call hello_goodbye(' PharmaSUG' , message1, message2); ³

 put message1 / message2; ́

run ;

As before, we invoke the FCMP procedure, and we specify a package name within a function library
previously defined in a CMPLIB option ¬. We then use the SUBROUTINE statement to list the routine
name and parameters ­, and the OUTARGS statement is used to specify which parameters can be
modified to serve as return values ®. The call routine body sets return values ̄before we end the call
routine definition with an ENDSUB statement °. We then start a DATA steps ±, where we are careful to
specify variable type and length ² before using our new call routine to get values for message1 and

message2 ³. Finally, we print our return values9 to the SAS log ,́ as shown in Figure 2.

9 On separate lines, per the slash separating the variable names.

7

FCMP PYTHON OBJECTS OVERVIEW

The general pattern for invoking Python from PROC FCMP is as follows [58]:

proc fcmp ;

 declare object <object - name>(python(' <optional - module - name>')); ¬

 submit into <object - name>; ­

 def <python - function >(< input parameter s list >): ®

 """Output: < output - key>""" ̄

 <Python statements> °

 return <return - value> ±

 endsubmit ; ­

 rc= <object - name>.publish(); ²

 rc= <object - name>.call(' <python - function >' ,< input parameter s list >); ³

 output = <object - name>.results[' <output - key >']; ́
 <additional SAS statements> µ

run ;

We begin by declaring an instance of a Python object ¬ with optional module name10. We then use a
SUBMIT block11 ­, within which Python syntax is used to define a function12 ®, a comment13 specifying
the name of a value to return to SAS ,̄ additional Python code °, and an actual value to return ±. This
is followed by a PUBLISH method ², which makes our Python function available, and a CALL method ³,
which invokes the function and sets output to the <return - value> create by <python - function>

.́ Finally, the return value output can be used in SAS statements µ, such as printing to the log.

Here's a concrete example:

* SAS Code producing the output shown in Figure 3;

options cmplib =work.funcs;
proc fcmp ;

 length message $ 25 ;

 declare object py(python); ¬

 submit into py; ­

 def hello(): ®

 """Output: hello_return_value""" ̄

 return 'Hello' ±

 endsubmit ; ­

 rc = py.publish(); ²

 rc = py.call('hello'); ³

 message = py.results['hello_return_value']; ́

 file log; µ

 put message=; µ

run ;

After a LENGTH statement creates a character variable, we use a DECLARE statement ¬ to define a
Python object py , and we use a SUBMIT block ­ to define Python function hello ® with a return value

named hello_return_value ̄but having the actual value ' Hello' ±. The contents of the SUBMIT

block are executed when the PUBLISH method is called ², passing the definition of the Python function
hello to the Python interpreter. The hello function is then called ³, and the SAS variable message is

set to its return value .́ Finally, the value of message is printed14 µ, as shown in Figure 3.

10 In this paper, we have opted not to include module names in our examples.
11To submit Python code from a file instead, use rc= <object - name>.infile('< path/to/script.py >')
12 Note that the body of the Python function -̄± must be indented since white space is significant in Python.
13 A triple-quoted statement appearing as the first line in a Python function is called a docstring [10].
14 A FILE statement is used to explicitly tell PROC FCMP to direct output to the log, instead of whatever its default

output destination might already have been set to.

8

Figure 3 . The log generated by a Python - driven hello - world example .

USING A SAS FUNCTION AS A WRAPPER FOR PYTHON CODE

To call a Python function from outside of PROC FCMP, we need to go one step further and wrap it in a
SAS function, as in this example:

* SAS Code producing the output shown in Figure 4;

options cmplib =work.funcs;

proc fcmp outlib=work.funcs.python;

 function greetings_from_python() $ 25 ; ¬

 length message $ 25 ; ­

 declare object py(python); ®

 submit into py; ®

 def greetings(): ̄

 """Output: greetings_return_value""" °

 import random ±

 greeting = random.choice(±

 ['Hello' , "What's up" , 'How do you do?'] ±

) ±

 return greeting ²

 endsubmit ; ®

 rc = py.publish(); ³

 rc = py.call('greetings'); ³

 message = py.results['greetings_return_value']; ³

 return (message); ́

 endfunc ; ¬

run ;

data _null_ ; µ

 message = greetings_from_python();

 put message=;

run ;

9

Figure 4 . The log generated by a Python - driven hello - world function example .

As we saw in our very first PROC FCMP hello-world example, a FUNCTION block ¬ is used to define a
SAS function named greetings_from_python with a character return value as follows:

- A LENGTH statement ­ is used to define a SAS variable message to be used later.

- Drawing from our first Python-driven hello-world example above, we use a combination of a
DECLARE statement and a SUBMIT block ® to define PROC FCMP Python object py .

- Inside of this SUBMIT block, we define a Python function named greetings ̄with a return

value named greetings_return_value °.

- In order to create this return value, we first import the module random (from Python's standard

library), and we use this module's choice method to randomly select from the list of values

provided ± before returning the resulting random greeting ².

- After the SUBMIT block, we use the same pattern as before ³:

o The PUBLISH method passes the Python function greetings to the Python interpreter.

o The CALL method calls the greetings function.

o The results of calling the greetings function are stored in the SAS variable message .

- Finally, a RETURN ́statement is used to set the return value of greetings_from_python .

Once it's been defined in the PROC FCMP step, our brand-new SAS function is ready to be used in a
DATA step µ, as show in Figure 4.

USING A CALL ROUTINE TO RETURN MULTIPLE VALUES FROM PYTHON

Up until this point, each of our Python functions has only returned a single value, which has allowed us to
avoid thinking too closely about their docstrings (meaning the triple-quoted strings appearing as the first
line in a function's definition). To have a Python function return multiple values, we can extend our basic
template as follows:

proc fcmp ;

 declare object <object - name>(python('<optional - module - name>'));

 submit into <object - name>;

 def <python - function>(<input parameters list>):

 """Output: <key - 1>, <key - 2>, ..., <key - n>""" ¬

 <Python statements>

 return <value - 1>, <value - 2>, ..., <value - n> ­

 endsubmit ;

10

 rc=<object - name>.publish();

 rc=<object - name>.call(' <python - function >' ,<input parameters list>);

 <output - 1> = <object - name>.results['<key - 1>']; /* = <value - 1> */ ®

 <output - 2> = <object - name>.results['<key - 2>']; /* = <value - 2> */ ̄

 ...

 <output - n> = <object - name>.results['<key - n>']; /* = <value - n> */ °

 <additional SAS statements> ±

run ;

In this template, the docstring ¬ essentially says that we are defining a list of names <key - 1>, <key -

2>, ..., <key - n> , where n is a positive integer not exceeding six. In addition, we specify the actual

output values in the Python return statement ­ as the tuple15 <value - 1>, <value - 2>, ...,

<value - n>, where each output value can be a character value, a numeric value, an array (aka a list in

Python), or a hash object (aka a dictionary in Python).

In other words, the list of names <key - 1>, <key - 2>, ..., <key - n> needs to be the same length as

the tuple of return values because we are implicitly defining key-value pairs. We can then index
<object - name>.results with each key and store the corresponding value in a SAS variable ®-°,

and we can use these SAS variables in additional SAS statements ±.

To access multiple return values outside of PROC FCMP, we can additionally wrap our Python function
definition in a call routine, as in this example:

* SAS Code producing the output shown in Figure 5;

options cmplib =work.funcs;

proc fcmp outlib=work.funcs.python;

 subroutine personal_greetings_from_python(greeting $, name $); ¬

 outargs greeting, name; ­

 declare object py(python); ®

 submit into py; ®

 def personal_greetings():

 """Output: greeting_return_value, name_return_value""" ̄

 import random

 from faker import Faker

 greeting = random.choice(

 ['Hello,' , "What's up," , 'Ho w do you do,']

)

 fake = Faker()

 name = fake.name()

 return greeting, name °

 endsubmit ; ®

 rc = py.publish(); ±

 rc = py.call('personal_greetings'); ±

 greeting = py.results['greeting_return_value']; ²

 name = py.results['name_return_value']; ³

 endsub ; ¬

run ;

15 A Python tuple is essentially a fixed-length sequence of values [53]. Tuples can be defined as a comma-separated
sequence of values in parentheses; e.g., here's a tuple of length four: (1,2,3,4) . However, the parentheses are

optional, meaning the same tuple of length four could also be defined as follows: 1,2,3,4

11

Figure 5 . The log generated by a Python - driven hello - world call routine example .

data _null_ ; ́

 length greeting name $ 25 ;

 call personal_greetings_from_python(greeting, name);

 put greeting name;

run ;

A SUBROUTINE block ¬ is used to define call routine personal_greetings_from_python , with

OUTARGS statement ­ specifying which parameters can be modified to serve as return values. We then
define Python object py using a DECLARE statement and a SUBMIT block ®. Inside this SUBMIT block,

Python function personal_greetings is defined with docstring ̄specifying output values named

greeting_return_value and name_return_value . These output values are built using a

combination of random values obtained from standard-library module random and third-party module

faker [14] before being returned °. After publishing and calling our Python function ±, we place the

return values in SAS variables ²-³. Finally, we use our call routine ́to get the output in Figure 5.

APPLYING A PYTHON FUNCTION TO EACH ROW IN A SAS DATASET

To execute a Python function in a data-driven fashion, we can pass parameters from an outer SAS
function (or call routine) so that a SAS dataset drives Python processing, as in the following example:

* SAS Code producing the output shown in Figure 6;

options cmplib =work.funcs;

proc fcmp outlib=work.funcs.python;

 function data_driven_hello_from_python(name $) $ 25 ; ¬

 length Message $ 25 ; ­

 declare object py(python); ®

 submit into py; ®

 def data_driven_hello(name):

 """Output: hello_return_value""" ̄

 return f 'Hello , {name}!' °

 endsubmit ; ®

 rc = py.publish(); ±

 rc = py.call('data_driven_hello' , name); ±

 Message = py.results['hello_return_value']; ±

 return (Message); ²

 endfunc ; ¬

run ;

12

Figure 6 . The first few rows of work.greetings , which was generated by applying

data_driven_hello_from_python to the column name in sashelp.class .

data greetings; ³

 set sashelp.class; ́

 message = data_driven_hello_from_python(name); ́

run ;

proc print data =greetings; µ

 var message;

run ;

A FUNCTION block ¬ is used to define function data_driven_hello_from_python with character

parameter name and a character return value, and a LENGTH statement ­ defines a SAS variable

Message to be used later. We then define Python object py using a DECLARE statement and a SUBMIT

block ®. Inside this SUBMIT block, Python function data_driven_hello is defined with a single input

parameter name, a single output value named hello_return_value ,̄ and a return statement

building this output value16 ° based on the value of the input parameter name. After publishing, calling,

and retrieving the return value of our Python function ±, we can set the return value for the outer SAS
function ². When called in a DATA step ³, we can apply our new SAS function to each value in a
column ,́ just like any other SAS function, with the results of this process µ shown in Figure 6.

PASSING SAS DATASETS INTO PYTHON

So far, we've seen how individual values can be passed into a Python function, but there's nothing
stopping us from using entire SAS dataset. The simplest option is to get the path to a SAS library with the
pathname function [42] and manually append a SAS dataset name. Here's an example code sketch:

proc fcmp ;

 length libpath file path $ 500 ; ¬

 libpath = pathname('sashelp'); ¬
 path_separator = ifc("&sysscp . " = 'WIN', ' \ ', '/'); ¬

 file path = catx(path_separator , libpath, 'fish.sas7bdat'); ¬

 declare object py(python); ­

 submit into py; ­

 def python_function_name(datasetpath): ­

 """Output: <output - key>""" ­

 import pandas ®

 df = pandas.read_sas(datasetpath) ̄

 <additional Python statements doing something with df > °

 return <output - value> ±

 endsubmit ; ­

 rc = py.publish(); ­

 rc = py.call(' python_function_name ' , file path); ²

 <output > = py.results['<output - key>']; /* = <output - value> */ ³

 <additional SAS statements> ́

16 Used to format string values, an f-string will insert the value of an object in curly braces {} into a string [13].

13

Two character variables are defined ¬, where libpath is the path to a SAS library (sashelp) and

filepath is the path to a SAS dataset file (sashelp.fish) living physically on disk in the directory

libpath 17 . Then, inside our usual formulation for defining a Python function ­, we pass filepath ²

as a parameter and use the third-party Python package pandas [23] ® to read the corresponding SAS

dataset file from disk into DataFrame df ,̄ where DataFrames can be thought of as the Python

equivalent of a SAS dataset. We then use additional Python statements ° to turn this DataFrame into a
return value ±. Finally, we retrieve the return value ³ and use it in additional SAS statements .́

Alternatively, we could instead use less direct means, as in this example:

%macro get_sas_dataset_path(dsn);

 %global __sas_dataset_filepath;

 ods exclude all;

 ods output EngineHost=__EngineHost;

 proc contents data=& dsn. ;

 run;

 ods output close;

 ods exclude none;

 proc sql noprint;

 select cValue1 into :__sas_dataset_filepath

 from __EngineHost

 where Label1= 'Filename' ;

 quit;

%mend;

%get_sas_dataset_path (sashelp.fish);

Using various ODS tricks [40][41], this macro creates a SAS dataset in the Work library called
__EngineHost , which contains output from the CONTENTS procedure. The exact filepath for our

chosen SAS dataset is extracted from this dataset and placed into the macro variable
__sas_dataset_filepath , which we could then access as follows:

proc fcmp ;

 length filepath $ 500 ;

 filepath=symget('__sas_dataset_filepath');

 <additional SAS statements using filepath >

run ;

GETTING SAS DATASETS OUT OF PYTHON

Getting Python to generate SAS datasets is somewhat more straightforward, as in this code sketch:

proc fcmp ;

 length workpath $ 500 ; ¬

 workpath = pathname('work'); ¬

 declare object py(python); ­

 submit into py; ­

 def python_function_name(sas_libpath): ­

 """Output: < output - key >""" ­

 i mport saspy ®

 <Python statements creating a DataFrame named df> ̄

 <Python statements with additional SASPy setup steps > °

 sas = saspy. SASsession() °

17 We've also used the &sysscp automatic macro variable [48] to determine the underlying operating system. This

allows us to set path_separator to the appropriate path separator, which will be a backslash (\) for Windows or a

forward slash (/) for Unix-like operating systems.

14

 sas.saslib(libref= 'out' ,path= sas_lib path) ±

 sas_dataset_object = sas.dataframe2sasdata(

 df=df,

 libref= 'out' ,

 table= '<new - sas - dataset - name>'

) ±

 sas.endsas() ²

 return sas_dataset_object.table ³

 endsubmit ; ­

 rc = py.publish(); ­

 rc = py.call(' python_function_name ' , workpath); ­

 <output> = py.results['<output - key>']; /* = < new- sas - dataset - name> */ ́

 <additional SAS statements> µ

run ;

A character variable workpath is defined with the path to the SAS Work library ¬. Then, inside our usual

formulation for defining a Python function and passing the value of workpath into it ­, we begin by

importing the third-party Python package SASPy ® and creating a DataFrame df .̄

We then use a somewhat counter-intuitive trick: We use the SASPy package to create a SAS session °
independent from the SAS session currently executing our PROC FCMP step! In other words, we've
created something like a Russian nesting doll (or a turducken, if you prefer), with SAS running inside
Python running inside SAS. This is why we need to create a SAS library out for our inner SAS session,

which points to the location of the Work library for our outer SAS session, before using SASPy to write the
contents of the DataFrame df into a SAS dataset ± in the outer SAS session's Work library. Finally, after

ending our inner SAS session ², our Python function can return the name of our new SAS dataset ³ so
that it can be retrieved in our outer SAS session ́and used in additional SAS statements µ.

PERSISTING STATE BETWEEN PYTHON FUNCTION CALLS

Many Python functions we might embed in PROC FCMP are stateless, meaning multiple calls to the
same function have no impact on each other18. However, using some more advanced Python tricks, it's
possible to keep track of information across multiple calls to the same Python function, as in this example:

* SAS Code producing the output shown in Figure 7;

options cmplib =work.funcs;

proc fcmp outlib=work. funcs . python ;

 function is_first_ occurrence (value $); ¬

 declare object py(python); ­

 submit into py; ­

 def track_first_occurrences (value): ­

 " "" Output: return_value" "" ­

 global values_already_encountered ®

 try: ̄

 values_already_encountered ̄

 except NameError: ̄

 values_already_encountered = [] ̄

 if value in values_already_encountered: °

 return False °

 else: °

 values_already_encountere d.append(value) °

 return True °

 endsubmit ; ­

18 Put another way, many of the Python functions in this paper have been written using a functional programming

paradigm, meaning the same set of inputs will result in the same set of (possibly randomly chosen) outputs, like
prepending 'Hello' to a string or returning a randomly chosen greeting.

15

Figure 7 . The dataset work.first_fish , which was generated by applying

is _first_ occurrence to the column species in sashelp.fish .

 rc = py.publish(); ­

 rc = py.call("track_first_ occurrences " , value); ±

 return_value = py.results["return_value"]; ²

 return(return_value); ²

 endfunc ; ¬

run ;

data first_fish; ³

 set sashelp.fish; ³

 if is_first_ occ ur r ence(species) then output ; ́

run ;

proc print data =first_fish; µ

run ;

A SAS function is_first_ occurrence is defined with a single character19 argument value ¬. Then,

inside our usual formulation for defining a Python function and passing value into it ­, we begin by

declaring a global variable values_already_encountered ®, which will persist across multiple calls

of the Python function track_first_occurrences 20. We then provide initialization information for

values_already_encountered using a try /except structure21 ,̄ setting its value to be an empty

list (an ordered sequence of values) only when the global variable hasn't already been defined. Using an
if/else structure °, we can then check whether we've encountered value by seeing if it's already an

element of the list values_already_encountered . If it is already an element, we return the Boolean

value False , indicating this is not the first time the Python function has encountered value . Otherwise,

we add value to the list values_already_encountered and return True , indicating is it the first time

we've seen value . Finally, we can call our Python function ± and get its return value ².

Our new SAS function can then be used inside a DATA step ³, where we read an unsorted dataset
(sashelp.fish) and use an if statement ́to only output to a new dataset when a new value is

encountered in a column (species), generating the output µ shown in Figure 7.

19 As before, if we left out the dollar sign, a numeric argument would instead be assumed.
20 In other words, without the global statement, a new variable named values_already_encountered would be

created each time the Python function is called and would only exist inside the scope of a single function call. Based
on our experiments with PROC FCMP, global variables can only be persisted within a single step, like a DATA step.
21 The code in the try: block is executed first, here just to check whether values_already_encountered is

already the name of a variable by trying to access its value. If the variable exists, the except: block is ignored.

However, if the variable doesn't already exist, a NameError occurs, and the code in the except: block is executed,

initializing values_already_encountered as an empty list. See [29] for more information.

16

Figure 8 . The first few rows of the file privateschools2122.xlsx .

PRACTICAL EXAMPLES OF EMBEDDING PYTHON IN SAS PROGRAMS

The first three example use cases below are based on a publicly available dataset from the California
Department of Education22. We can import this dataset (and apply some light data cleaning to mailing
addresses and the unique id column CDS Code) as follows:

filename outxlsx ' [PUT YOUR PATH HERE FOR privatesc hools2122.xlsx] ' ;

proc http

 url ='https://www.cde.ca.gov/ds/si/ps/documents/privateschools2122.xlsx'

 method ='get'

 out =outxlsx

;

run ; quit ;

libname schools xlsx ' [PUT YOUR PATH HERE FOR privateschools2122.xlsx] ' ;

data schools_sds(rename =(cds_code_char=cds_code));

 length cds_code_char $ 14 ;

 set schools.'2021 - 22 Private School Data$A3:0'n;

 full_address = catx(', ' , street, city, state, zip);

 cds_code_char = put(cds_code, z14.);

 drop cds_code;

run ;

libname schools clear ;

To get a sense of the type of information in the file privateschools2122.xlsx , see Figure 8.

EXAMPLE USE CASE 1: VALIDATING EMAIL ADDRESSES

The email_validator package (AKA email-validator on PyPI [54]) provides a convenient way to check

email address syntax and deliverability. It might be possible to code an email syntax checker in SAS
using regular expressions and/or SAS character functions, but the RFC standards are surprisingly
nuanced, per the summary in [59]. Since a Python package already exists, why not take advantage of it?

This illustrates one of the main benefits of working in Python: Because the language has a large userbase
embracing its open-source ethos, it's common for developers to "give back" by publishing new packages
on sites like GitHub (https://github.com/) and the Python Package Index (https://pypi.org/).

Often, these packages attempt to abstract away details so that a single function call can handle
something as complex as checking email deliverability, as illustrated in this example:

* SAS Code producing the output shown in Figure 9 ;

options cmplib =work.funcs;

proc fcmp outlib=work.funcs.python;

 function get_normalized_email(email $) $ 100 ; ¬

 length normalized_email $ 100 Exception_Encountered $ 500 ; ­

 declare object py(python); ®

22 This file contains contact information for all private Kï12 schools in the state of California during academic year

2021-2022. For more information, https://www.cde.ca.gov/ds/si/ps/

https://github.com/
https://pypi.org/
https://www.cde.ca.gov/ds/si/ps/

17

 submit into py; ®

 def normalize_email(e): ̄

 """Output: normalize_email_return_value, exception""" ̄

 from email_validator import (

 validate_email, EmailNotValidError

)

 try: °

 normalized_email = validate_email(

 e, check_deliverability=False

)

 return normalized_email.email, ' ' ±

 except EmailNotValidError: °

 return ' ' , repr(e) ±

 endsubmit ; ®

 rc = py.publish(); ²

 rc = py.call('normalize_email' , email); ²

 Exception_Encountered = py.results['exception']; ³

 if not missing(Exception_Encountered) then

 put Exception_Encountered=;

 normalized_email = py.results['normalize_email_return_value']; ³

 return (normalized_email) ; ́

 endfunc ; ¬

run ;

data normalized_emails; µ

 set schools_sds;

 normalized_email = get_normalized_email(primary_email);

run ;

proc print data =normalized_emails; µ

 var primary_email normalized_email;

 where primary_email NE normalized_email;

run ;

A FUNCTION block ¬ defines the function get_normalized_email with character parameter email

and a character return value, and a LENGTH statement ­ defines two SAS variables
normalized_email and Exception_Encountered to be used later. We then define Python object py

using a DECLARE statement and a SUBMIT block ®. Inside this SUBMIT block, Python function
normalize_email is defined with a single input parameter e (representing an email address) and two

output values named normalize_email_return_value and exception .̄

To build these output values, we use the validate_email function from the email_validator

package inside of a try /except structure23 °. In other words, we expect one of two things to happen: If

e is a valid email address, then validate_email(e) will return a normalized version of the address.

Otherwise, if e is not a valid email address, then validate_email(e) will raise an exception, meaning

an attempt to stop code execution24. Depending on the scenario, one of the two return statements ±

will be used to set the values returned by normalize_email .

23 The code in the try: block is executed first. If no exceptions are raised, the except: block is ignored. Otherwise,

if an exception is raised in the try: block, program execution is returned to the state it had before the try: block,

and the code in the except: block is executed instead. See [29] for more information.
24 This is a fairly common pattern in Python: Functions raising exceptions as a means of communicating with the

caller, and they expect the caller to be ready to handle the exception appropriately.

18

Figure 9 . The first few rows of work. normalized_emails , which was generated by

applying get_normalized_email to the column primary_email in work.schools_sds .

Then, after publishing and calling our Python function ², we can retrieve its two return values ³. The
exception return value of normalize_email is put into the SAS variable Exception_Encountered ,

giving us information about whether an exception was raised by the validate_email function. If so, we

write the invalid value to the SAS log.

The other return value of normalize_email is put into the SAS variable normalized_email . The

value of normalized_email will either be the normalized version of an email address or an empty

string, depending on whether an exception was raised by the validate_email function. Either way, we

use normalized_email as the return value for get_normalized_email .́

The results of using get_normalized_email µ can be seen in Figure 9.

EXAMPLE USE CASE 2: GEOCODING

Geocoding a mailing address (i.e., mapping it to a set of physical coordinates like latitude and longitude)
is often a prerequisite for any kind of geographic analysis. While SAS provides the GEOCODE procedure,
this PROC requires access to an extensive collection of well-maintained, local lookup tables [36].

In order to get instant, up-to-date geocoding information, Python programmers tend to prefer querying a
web API using a package like geocoder [4], which provides a straightforward interface for popular

geocoding services like MapQuest25. We illustrate this in the following example, where we use a call
routine to return separate values for latitude and longitude:

* SAS Code producing the output shown in Figure 10 ;

%let MAPQUEST_API_KEY = '[PUT YOUR MAPQUEST API KEY HERE]' ;

options cmplib =work.funcs;

proc fcmp outlib=work.funcs.python;

 subroutine get_lat_long(address $, key $, lat, long); ¬

 outargs lat, long; ­

 declare object py(python); ®

 submit into py; ®

 def geocode(a, k):

 """Output: latitude_return_value, longitude_return_value"""

 import geocoder

 g = geocoder.mapquest(a, key = k) ̄

 lat = g.latlng[0] ̄

 long = g.latlng[1] ̄

25 We chose MapQuest because an API Key can quickly be obtained by completing a web form [18].

19

Figure 10 . The first few rows of work.lat_lng , which was generated by applying

get_lat_long to the column full_address in work.schools_sds .

 return lat, long °

 endsubmit ; ®

 rc = py.publish(); ±

 rc = py.call('geocode' , address, key); ±

 lat = py.results['latitude_return_value']; ²

 long = py.results['longitude_return_value']; ³

 endsub ;

run ;

data lat_lng; ́

 set schools_sds(obs= 10);

 call get_lat_long(full_address, &MAPQUEST_API_KEY, lat, long);

run ;

proc print data =lat_lng; µ

 var full_address lat long;

run ;

A SUBROUTINE block ¬ is used to define call routine get_lat_long , with OUTARGS statement ­

specifying which parameters can be modified to serve as return values. We then define Python object py

using a DECLARE statement and a SUBMIT block ®. Inside this SUBMIT block, Python function
geocode is defined with two input parameters. The first input parameter a represents a full street

address, and the second input parameter k is an API key. In addition, geocode has a docstring

specifying output values named latitude_return_value and longitude_return_value .

In order to build these output values, we use the method geocoder.mapquest , supplying both the

address a and the MapQuest API key k .̄ The resulting object g has an attribute called latlng , which

is a list that lat and long can be extracted from26. We can then use lat and long as the return values

of the Python function geocode °.

After publishing and calling our Python call routine ±, we can place its return values in SAS variables ²-
³. Finally, we use our call routine ́and print the results µ to get the output in Figure 10.

EXAMPLE USE CASE 3: CREATING FORMATTED EXCEL FILES FROM SAS DATASETS

Because they're an excellent tool for data exploration and reporting, SAS programmers regularly export
SAS datasets and reports as Excel workbook files. While itôs possible to create custom Excel files in SAS
using ODS [25], various Python packages provide extensive options with a potentially more intuitive
interface. This example demonstrates how to use the popular Python package XlsxWriter [19] to

transform an entire SAS dataset into a highly formatted Excel file:

26 In Python, lists are indexed starting with zero, and elements can be accessed using square-bracket notation [53]. In
other words, g.latlng[0] is the initial element in the list, and g.latlng[1] is the subsequent element.

20

* SAS Code producing the output shown in Figure 11 ;

options cmplib =work.funcs;

proc fcmp ;

 length libpath path outfile $ 500 ; ¬

 libpath = pathname('work'); ¬
 path_separator = ifc("&sysscp . " = 'WIN', ' \ ', '/'); ¬

 path = catx(path_separator , libpath, 'schools_sds.sas7bdat'); ¬

 file log; ¬

 declare object py(python); ­

 submit into py; ­

 def format_excel(datasetpath): ®

 """Output: output_file""" ̄

 import pandas

 import pathlib

 import xlsxwriter

 # read a SAS dataset

 schools_df = pandas.read_sas(datasetpath, encoding= 'latin1') °

 # output an Excel file

 file_path = pathlib.Path(' [PUT YOUR LOCAL PATH HERE] ') ±

 file_name = 'example_excel_export.xlsx' ±

 sheet_name = 'Augmented CDE Data' ±

 # setup Excel file writer

 with pandas.ExcelWriter(²

 pathlib.Path(file_path, file_name), engine= 'xlsxwriter'

) as writer:

 schools_df.to_excel(

 writ er,

 sheet_name=sheet_name,

 index=False,

 startrow= 1,

 header=False,

)

 max_column_index = schools_df.shape[1] - 1

 # setup formatting to be applied below

 workbook = writer.book

 text_format = workbook.add_format({ 'num_format' : '@' })

 header_format = workbook.add_format({

 'bold' : True,

 'text_wrap' : True,

 'valign' : 'center' ,

 'num_format' : '@' ,

 'fg_color' : '#FFE552' , # Light Gold

 'border' : 1,

 })

 # write header row values with formattin g

 worksheet = writer.sheets[sheet_name]

 for col_num, value in enumerate(schools_df.columns.values):

 worksheet.write(0, col_num, value, header_format)

21

Figure 11 . The first few rows of the Excel workbook file generated by applying the

Python package XlsxWriter to work.schools_sds .

 # use fixed column width and use a universal text format

 worksheet.set_column(0, max_column_index, 20 , text_for mat)

 # turn on filtering for top row

 worksheet.autofilter(

 0, 0, schools_df.shape[0], max_column_index

)

 # turn on freeze panes for top row

 worksheet.freeze_panes(1, 0)

 return str(pathlib.Path(file_path, file_name)) ³

 endsubmit ; ­

 rc = py.publish(); ́

 rc = py.call('format_excel' , path); ́

 outfile = py.results['output_file']; ́

 put 'Output file: ' outfile; µ

run ;

Because this is a more involved example, we've embedded our Python code inside a PROC FCMP step
without an outer SAS function or call routine. Instead, we use several setup steps ¬ to create some
character variables, get the path for the SAS dataset work.schools_sds , and set the output destination

to the SAS log (instead of whatever the default output destination might have already been set to). We
then define Python object py using a DECLARE statement and a SUBMIT block ­. Inside this SUBMIT

block, Python function format_excel is defined with a single input parameter representing the path on

disk to a SAS dataset ®. In addition, format_excel has a docstring ̄specifying a single output value

named output_file , which will be the path on disk to an Excel workbook file.

In order to begin the process of creating this Excel file, we use the read_sas method of the pandas

package [23] °, including specifying a character encoding value27. We then set the path, filename, and
sheet name for the Excel file ± before using a collection of features from the XlsxWriter package to

write values to the worksheet Augmented CDE Data in the file example_excel_export.xlsx inside

of a context manager28 ². In addition, at the start of the context manager, we use the pathlib package

to combine the file path and filename into a single path on disk to the Excel file we intend to create.

Once we've finished building the Excel file inside the context manager, we use its path on disk as the
return value for format_excel ³. At this point, we can publish and call our Python function ́before

printing the path on disk to the SAS log µ. A few rows of the resulting Excel file are shown in Figure 11.

27 It's necessary to specify the encoding when reading SAS character variables into Python from a single-byte
character encoding like 'latin1' . For maximum compatibility with Python, it's also possible to use 'utf - 8' .
28 The with: statement is the start of the context manager, and everything indented underneath the with:

statement is the body of the context manager. At the start of the context manager, the specified file is automatically
opened, and this file is then automatically closed as soon as we exit the context manager. Because this saves us
from needing to manually keep track of when files are opened and closed, context managers tend to be the safest
way of creating files in Python. See [30] for more information.

