
1

PharmaSUG 2023 - Paper AP-021

Have a Date with ISO®? Using PROC FCMP to Convert Dates to ISO 8601
Richann Watson, DataRich Consulting

ABSTRACT

Programmers frequently have to deal with dates and date formats. At times, determining whether a date
is in a day-month or month-day format can leave us confounded. Clinical Data Interchange Standards
Consortium (CDISC) has implemented the use of the International Organization for Standardization (ISO)
format, ISO® 8601, for datetimes in SDTM domains, to alleviate the confusion. However, converting
“datetimes” from the raw data source to the ISO 8601 format is no picnic. While SAS® has many
different functions and CALL subroutines, there is not a single magic function to take raw datetimes and
convert them to ISO 8601. Fortunately, SAS allows us to create our own custom functions and
subroutines. This paper illustrates the process of building a custom function with custom subroutines that
takes raw datetimes in various states of completeness and converts them to the proper ISO 8601 format.

INTRODUCTION
The goal is to convert the varying dates or datetimes in data sets which could originate from many
different countries in the world into the proper ISO 8601 format. CDISC Study Data Tabulation Model
(SDTM) standards ensure that all dates and datetimes are represented in a standard format, utilizing ISO
8601. This standard format is a way to represent the dates and times that is consistent regardless of
where you are in the world. (ISO 8601 Date and Time Format, n.d.)

WHAT IS ISO 8601 FORMAT?
It is easy to misread a date, especially if it is in the form of mm/dd/yyyy or dd/mm/yyyy. For example, the
date field 07/09/2021 could have different meanings depending on the format This date field could
represent either July 9, 2021, or September 7, 2021. The ISO 8601 format is a standard way of
representing dates and times so that they are correctly interpreted across the globe. The internationally
agreed way to represent dates is YYYY-MM-DD (ISO 8601 Date and Time Format, n.d.). Therefore, the
date July 9, 2021, is represented as 2021-07-09 in ISO 8601 format.

However, there is more to the ISO 8601 format than just having a standard way to represent a date. The
format specification also encompasses how the time component should be incorporated into datetimes.
The standard format for a datetime is YYYY-MM-DDTHH:MM:SS, where:

• YYYY is the four-digit year
• MM (first one in the format) is the two-digit month, 01 - 12
• DD is the two-digit day, 01 - 28, 29, 30 or 31 depending on the month and year
• T indicates that a time value follows
• HH is the two-digit hour, represented in 24-hour clock, 00 - 24
• MM (second one in the format) is the two-digit minutes, 00 - 59
• SS is the two-digit seconds, 00 - 59

Additionally, the ISO 8601 format indicates how to handle missing components. Each missing component
is represented by a single hyphen; but only components up to the last non-missing component are
displayed. For example, a start date for a medication is required, but a patient does not recall the month
they actually started taking the medication. A patient may only recall the year, day, and hour they started
taking the medication because it has been taken at the same time every month. The estimated start
datetime is 12 pm on the 9th in the year 2021. In this scenario, the month, minutes, and seconds are
missing. This estimated date would be represented as 2021---09T12 in the ISO 8601 format. Notice a
hyphen is used to represent the missing month. Convention dictates that hyphens are used to represent
the missing minutes and seconds. Since the hour a medication was taken is the last non-missing
component, the datetime is represented up to the hour’s component. Hyphens for the subsequent missing
minutes and seconds are left off, implying that minutes and seconds are missing.

2

SAMPLE DATA SET FOR PAPER
Now that you have an understanding what the ISO 8601 format is, the raw datetimes shown in Data
Display 1 need to be converted. Notice that in the sample data, there is a smattering of anomalies, and no
consistency in how the dates are recorded. However, they all need to be converted into the ISO 8601
format.

DAT DAT

09JUL2021 2021UNUN 12:15

09JUL2021T12:15 202107UNTUN:UN

09JUL2021:12:15 2021UN09 UN:UN

UNJUL2021 20210709 UN:UN

UNUNK2021 2021UNUN UN:UN

2021-UN-UN 2021UNUNTUN:UN

2021-07-09 2021-07-09 12:15:45

2021-07-09 12:15 2021-07-09 12:15:45

2021-07-09 12:15:45 2021-07-09T12:15:45

2021-07-09:12:15:45 2021-07-09:12:15:45

2021-07-09 UN:15 09JUL2021T12:15 AM

2021-07-09T9:15 09JUL2021:12:15 PM

2021-07-09T :15 09JUL2021:2:15 PM

09JUL2021 9:15 19-JUL-2021:2:15 PM

09JUL2021 :15 UN-UNK-2021T3:25 PM

09JUL2021 T9:15 UN-MOR-2021 T5:25 PM

UNJUL2021 TUN:UN 0729

UNJUL2021TUN:UN 0715 T5

2021-UN-09TUN:15 07/08

2021-UN-UNTUN:UN 07/19 5:12

20210709:12:15 T13:14

20210709 12:15 JUL 9, 2021:12:15

20210709T12:15

Data Display 1: Raw dates from various data sources captured in one field

ISO 8601 DATETIMES AND SAS
SAS has a myriad formats and informats to help us to display or read dates and durations utilizing the
ISO 8601 basic (without delimiters) and extended (with delimiters) formats. For example, E8601DTw.d is
a SAS format (and informat) that will write the numeric datetime in the appropriate ISO 8601 extended
format. While B8601DNw. writes (or reads) and the ISO 8601 datetime in the basic ISO 8601 notation.
(SAS Institute Inc., 2022)

Consider the example shown in Data Display 2. The dates are stored as character data type and are in
the ISO 8601 notation format. It is difficult to apply date calculations to these variables without some form
of transformation.

DAT
2021-07-09
2021-07-09T12:15

Data Display 2: Character datetimes in ISO 8601 notation

3

SAS Program 1 illustrates how the B8601DN. and E8601DT. informats can be used to read in the
character ISO 8601 datetime notation. In addition, it shows how the same B8601DN. and E8601DT.
informats can be used to format the numeric datetimes to display in the basic (B8601DN.) or extended
(E8601DT.) notation but still be of numeric data type. The results from SAS Program 1 can be seen in
Data Display 3, which shows both the formatted numeric variables (DT and DTTM) as well as the
unformatted numeric variables (NF_DT and NF_DTTM). The unformatted variables show the number of
seconds from January 1, 1960 (SAS Institute Inc., 2019).

Data isodt2;
 set isodt;
 format DT b8601dn. DTTM e8601dt.;
 DT = input(DAT, b8601dn.);
 DTTM = input(DAT, e8601dt.);

 NF_DT = input(DAT, b8601dn.);
 NF_DTTM = input(DAT, e8601dt.);
run;

SAS Program 1: Read character datetime in ISO 8601 notation to numeric datetime

DAT DT DTTM NF_DT NF_DTTM

2021-07-09 20210709 . 1941408000 .

2021-07-09T12:15 20210709 2021-07-09T12:15:00 1941408000 1941452100

Data Display 3: Character datetimes in ISO 8601 notation converted to numeric datetime

In addition, SAS has a CALL subroutine, CALL IS8601_CONVERT, which converts the ISO 8601
intervals to datetime and duration values or vice versa. But this requires the datetime to already be in the
ISO 8601 format.

CALL IS8601_CONVERT(convert-from, convert-to, <from-variables>, <to-variables>,
 <date-time-replacements>);

SAS Program 2 demonstrates how the IS8601_CONVERT subroutine can be used. The dates can be
either numeric or character as shown with the use of DTTM (numeric) and DAT (character) in the two
separate calls. With the use of a character date, it allows for simple substitution, not a true imputation, as
seen with the population of DTDUR2 in Data Display 4 (Morgan D. , 2017). Note that for the example the
default substitution values are used, but user-specified values can be set. The unformatted values for
DTDUR and DTDUR2 (NF_DTDUR and NF_DTDUR2, respectively) are stored as character variables
and are the SAS internal representation of the ISO date (Morgan D. , 2017). For more details on CALL
IS8601_CONVERT, visit SAS Documentation on CALL IS8601_CONVERT. (SAS Institute Inc., 2022)

data isodt3;
 set isodt2 (drop = NF_:);
 format TRTSDT e8601da. TRTSDTM e8601dt. DTDUR DTDUR2 $N8601E.;
 TRTSDT = '08MAR2021'd;
 TRTSDTM = dhms(TRTSDT, 12, 13, 4);

 call IS8601_CONVERT('dt/dt', 'du', TRTSDTM, DTTM, DTDUR);
 call IS8601_CONVERT('dt/dt', 'du', TRTSDTM, DAT, DTDUR2);

 NF_DTDUR = DTDUR;
 NF_DTDUR2 = DTDUR2;
run;

SAS Program 2: Illustration of CALL IS8601_CONVERT subroutine

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.2/lefunctionsref/p0bhy7ndmdivmmn10b2okmbgiqmj.htm#p0h41lprw0az65n1tafhcnsqndru

4

DAT DT DTTM TRTSDT TRTSDTM

2021-07-09 20210709 . 2021-03-08 2021-03-08T12:13:04

2021-07-09T12:15 20210709 2021-07-09T12:15:00 2021-03-08 2021-03-08T12:13:04

DTDUR DTDUR2 NF_DTDUR NF_DTDUR2

 P4MT11H46M56S FFFFFFFFFFFFFFFF FFFF4FF114656FFC

P4M1DT1M56S P4M1DT1M56S FFFF401FF0156FFC FFFF401FF0156FFC

Data Display 4: Illustration of CALL IS8601_CONVERT Subroutine

However, the purpose of this paper is not to focus on the tools SAS has made available, but rather how to
create and use user-defined subroutines and functions to overcome missing functionality.

PROC FCMP BASICS
As noted, there is no SAS-provided function which will convert the values in Data Display 1 to the ISO
8601 format, so a user-defined function and subroutines must be created to handle this. The FCMP
procedure (PROC FCMP) provides the means by which user-defined functions and subroutines can be
created. There are a number of options and statements that can be used in PROC FCMP, but this paper
only focuses on a subset of this powerful procedure’s potential utility. The general syntax used to create
the custom subroutines and functions in this paper is shown in SAS Program 3.

PROC FCMP outlib = libname.dataset.package <options>;
 SUBROUTINE subroutine-name (argument-1 <, argument-2, …>);
 OUTARGS out- argument-1 <, out-argument-2, …>;
 <<< SAS STATEMENTS >>>
 ENDSUB;
 FUNCTION function-name (argument-1 <, argument-2, …>) <$>;
 OUTARGS out- argument-1 <, out-argument-2, …>;
 <<< SAS STATEMENTS >>>
 RETURN(expression)
 ENDFUNC;
QUIT;

SAS Program 3: PROC FCMP general syntax

On the PROC FCMP statement, you can specify several different options. A required option is OUTLIB =.
OUTLIB specifies a three-level name of an output data set where the compiled functions and subroutines
are written when PROC FCMP hits a step boundary (i.e., QUIT statement). An example of this option is
outlib = fcmp.funcs.ISO_date.

Both functions and subroutines must be defined, and these definitions begin with a declaration statement
and conclude with a termination statement. A user-defined function is declared with the FUNCTION
statement and is terminated with the ENDFUNC statement, and a user-defined subroutine is declared
with the SUBROUTINE statement and is terminated with the ENDSUB statement. In reality, however, the
ENDFUNC and ENDSUB statements are interchangeable and either can be used to terminate a function
or subroutine.

In the function and subroutine statements, a name (function-name or subroutine-name) should be
provided, and for most functions and subroutines at least one argument (argument-1, argument-2) should
also be provided. If the arguments are character, then they should have a dollar sign after the argument
name, for example, subroutine zfill(_comp $).

Both subroutine and function statements allow for use of general SAS language statements. A difference
between a subroutine and function is that a function will return one value. The RETURN statement is
used to do this. A function's definition can contain multiple RETURN statements; however, only one
RETURN statement will be executed during a function call, so only one value will be returned. If the return
value is a character value, then the function statement needs a dollar sign at the end, as seen in the

5

example function ISO_dttm(dattim $) $. The subroutine does not return a value and therefore
the RETURN statement is not included. However, both the function and subroutine statements allow for
multiple arguments to be modified within the function or subroutine, and they use OUTARGS to indicate
which arguments are to be changed in the calling program. (Hughes, 2022)

In order to use the custom subroutines and functions in a DATA step, stored subroutines and functions
need to be accessed via the use of the CMPLIB = option. In the CMPLIB = option, a two-level name is
specified indicating where the subroutines and functions are stored. The two-level name must match the
first two levels of the compiled subroutines and functions specified in the OUTLIB = option on the PROC
FCMP statement.

CUSTOM ISO 8601 CONVERSION FUNCTION
It is common to receive unclean data that is rarely properly formatted. With the basics of PROC FCMP in
your programming toolkit, custom function and subroutines can be constructed to help convert raw
date/times into the appropriate ISO 8601 format required by CDISC.

BUILDING ISO 8601 CUSTOM SUBROUTINES AND FUNCTION
Recall that the proper ISO 8601 notation has a four-digit year and two digits for months, days, hours,
minutes and seconds, and any missing component is represented by a single hyphen, ‘-’. Data can come
in a variety of formats as illustrated in Data Display 1, and requires cleaning to conform to standards. Two
subroutines can be constructed to do this cleaning. The first subroutine, ZFILL, checks to ensure that all
non-missing date and time components are two digits. If a date or time component is missing, then it is
represented with a single hyphen (SAS Program 4).

subroutine zfill(_comp $);
 outargs _comp;
 if not missing(_comp) and not(notdigit(cats(_comp)))
 then _comp = put(input(_comp, best.), Z2.);
 else _comp = '-';
endsub;

SAS Program 4: Subroutine to zero fill non-missing two-digit date and time components

The second subroutine (DTTMFMT, SAS Program 5) handles the year to make sure it is a four-digit value
if it is non-missing. If the year is a two-digit year, it is converted to four digits using 40 as the cutoff. If the
year is missing, it is represented by a single hyphen. In addition, this subroutine has a call to the first
subroutine created to ensure the other date and time components are formatted correctly.

subroutine dttmfmt(_year $, _month $, _day $,
 _hour $, _minute $, _second $);
 outargs _year, _month, _day, _hour, _minute, _second;

 /* SAS statements to handle two-digit years or missing years */

 /* need to 0 fill each non-missing month, day, hour, minute, second */
 call zfill(_month);
 call zfill(_day);
 call zfill(_hour);
 call zfill(_minute);
 call zfill(_second);
endsub;

SAS Program 5: Subroutine to format non-missing date and time components to correct number of digits

Now that you have two subroutines to help with the data cleaning (or as much of the data cleaning as
possible), you can now work to build a user-defined function (ISO_DTTM, SAS Program 6). ISO_DTTM
takes one argument (DATTIM) which is the datetime in its raw format. The function first extracts the

6

portion that is assumed to be the date by looking for a delimiter (i.e., a space, a ‘T’ or a colon). In addition,
it compresses any hyphens that may be in the data. Further processing of the date component takes
place in order to break the date into individual components so that each component can be checked for a
non-missing value and formatted accordingly. In addition, processing of the portion that is assumed to be
the time component takes place to break the time into its individual components. Once the DATTIM is
parsed to the individual pieces, the subroutine DTTMFMT is called to format each datetime part. Recall
DTTMFMT subroutine has calls to the ZFILL subroutine in order to zero fill any non-missing portion that is
to be a two-digit value. Now that all the individual components have been formatted per the requirements,
they can all be combined. The last bit of code in the function is to check for the last non-missing
component since any missing components after the last non-missing component will be left null and not
have the single hyphen. The final datetime in the proper ISO 8601 notation is then returned using the
RETURN statement.

For the full code refer to the Appendix A.

function ISO_DTTM(dattim $) $;
 length __dtc __dttm $20 iso_dtc $10 iso_tmc $8 year $4 month $2 day $2;

 /* extract the date portion; compress hyphens to determine format */
 __dtpart = compress(scan(dattim, 1, ' T:', 'm'), '-');
 if length(strip(__dtpart)) in (7 9) then do;
 /* SAS code to determine date format and extract date components */
 end;
 /* More SAS code to determine date formats and extract date components */
 else do;
 /* PUT statements to write to log if invalid/insufficient info */
 __dtc = '_ERROR_';
 return(__dtc);
 end;

 /* SAS code to extract time components */

 call dttmfmt(year, month, day, hour, minute, second);

 /* use new variables to build ISO 8601 dates in the proper format */
 iso_dtc = catx('-', year, month, day);
 iso_tmc = catx(':', hour, minute, second);

 /* SAS code to see if there is a time component */
 /* SAS code to create __dtc */

 return(__dtc);
endfunc;

SAS Program 6: User-defined function to convert raw date/times to proper ISO 8601 notation

COMPILED SUBROUTINES AND FUNCTIONS
After you have created the subroutines and functions, the information is stored in the indicated data set
as a package (i.e., the three-level output name specified on OUTLIB) when the PROC FCMP ends (i.e.,
reaches a QUIT statement). Note that if OUTLIB is not specified then the compiled subroutines and
function will not be saved.

Data Display 5 shows a snippet of the data set that is created once the subroutines and function are
compiled. The data set name is FUNCS which is saved in the FCMP library. The package name is

7

ISO_DATE. The ISO_DATE package is just a collection of the subroutines and function defined.

Data Display 5: Snippet of data set of compiled user-defined subroutines and function

USING CUSTOM SUBROUTINES AND FUNCTIONS
The user-defined subroutines and functions have been defined, compiled, and saved for future use. In
order to use them, you need to specify the CMPLIB option to point to the data set where the compiled
subroutines and function are saved. Once you have specified this option, then the subroutines and
functions could be used like any other SAS subroutine or function as shown in SAS Program 7. The
results from SAS Program 7 are shown in Data Display 6.

options cmplib = fcmp.funcs;

data outdsname;
 set indsname;
 DTC = ISO_DTTM(DAT);
run;

SAS Program 7: Using ISO_DTTM with a datetime captured in one field

DAT DTC DAT DTC

09JUL2021 2021-07-09 2021UNUN 12:15 2021----T12:15

09JUL2021T12:15 2021-07-09T12:15 202107UNTUN:UN 2021-07

09JUL2021:12:15 2021-07-09T12:15 2021UN09 UN:UN 2021---09

UNJUL2021 2021-07 20210709 UN:UN 2021-07-09

UNUNK2021 2021 2021UNUN UN:UN 2021

2021-UN-UN 2021 2021UNUNTUN:UN 2021

2021-07-09 2021-07-09 2021-07-09 12:15:45 2021-07-09T12:15:45

2021-07-09 12:15 2021-07-09T12:15 2021-07-09 12:15:45 2021-07-09T12:15:45

2021-07-09 12:15:45 2021-07-09T12:15:45 2021-07-09T12:15:45 2021-07-09T12:15:45

2021-07-09:12:15:45 2021-07-09T12:15:45 2021-07-09:12:15:45 2021-07-09T12:15:45

2021-07-09 UN:15 2021-07-09T-:15 09JUL2021T12:15 AM 2021-07-09T00:15

2021-07-09T9:15 2021-07-09T09:15 09JUL2021:12:15 PM 2021-07-09T12:15

Obs _Key_ Owner Sequence Type Subtype Name Continue NValue Encoded Value
5 F.ISO_DATE.DTTMFMT CMP 112 Statement Source Executable SUBROUTI 0 65 . subroutine dttmfmt(_year $, _month $, _day $, _hour $, _minute $, _second $);
6 F.ISO_DATE.DTTMFMT CMP 113 Statement Source Executable OUTARGS 0 14 . outargs _year, _month, _day, _hour, _minute, _second;
7 F.ISO_DATE.DTTMFMT CMP 114 Statement Source Comment CMT 0 101 . /* make sure year is a four-digit number */
8 F.ISO_DATE.DTTMFMT CMP 115 Statement Source Executable IF 0 2 . if not(notdigit(cats(_year))) then
9 F.ISO_DATE.DTTMFMT CMP 116 Statement Source Executable DO 0 3 . do;
10 F.ISO_DATE.DTTMFMT CMP 117 Statement Source Executable IF 0 2 . if length(strip(_year)) = 4 then
11 F.ISO_DATE.DTTMFMT CMP 118 Statement Source Executable ASSIGN 0 1 . _year = strip(_year);
12 F.ISO_DATE.DTTMFMT CMP 119 Statement Source Executable ELSE 0 9 . else
13 F.ISO_DATE.DTTMFMT CMP 120 Statement Source Executable IF 0 2 . if length(strip(_year)) = 2 then
14 F.ISO_DATE.DTTMFMT CMP 121 Statement Source Executable DO 0 3 . do;
15 F.ISO_DATE.DTTMFMT CMP 122 Statement Source Executable IF 0 2 . if input(_year, best.) <= 40 then
16 F.ISO_DATE.DTTMFMT CMP 123 Statement Source Executable ASSIGN 0 1 . _year = cats('20', _year);
17 F.ISO_DATE.DTTMFMT CMP 124 Statement Source Executable ELSE 0 9 . else
18 F.ISO_DATE.DTTMFMT CMP 125 Statement Source Executable ASSIGN 0 1 . _year = cats('19', _year);
19 F.ISO_DATE.DTTMFMT CMP 126 Statement Source Executable END 0 10 . end;
20 F.ISO_DATE.DTTMFMT CMP 127 Statement Source Executable END 0 10 . end;
21 F.ISO_DATE.DTTMFMT CMP 128 Statement Source Executable ELSE 0 9 . else
22 F.ISO_DATE.DTTMFMT CMP 129 Statement Source Executable ASSIGN 0 1 . _year = '-';
23 F.ISO_DATE.DTTMFMT CMP 130 Statement Source Comment CMT 0 101 . /* need to zero fill each non-missing month, day, hour, minute, second */
24 F.ISO_DATE.DTTMFMT CMP 131 Statement Source Executable CALL 0 4 . call zfill(_month);
25 F.ISO_DATE.DTTMFMT CMP 132 Statement Source Executable CALL 0 4 . call zfill(_day);
26 F.ISO_DATE.DTTMFMT CMP 133 Statement Source Executable CALL 0 4 . call zfill(_hour);
27 F.ISO_DATE.DTTMFMT CMP 134 Statement Source Executable CALL 0 4 . call zfill(_minute);
28 F.ISO_DATE.DTTMFMT CMP 135 Statement Source Executable CALL 0 4 . call zfill(_second);
29 F.ISO_DATE.DTTMFMT CMP 136 Statement Source Executable ENDSUB 0 14 . endsub;

149 ISO_DATE CMP 0 Header Package 0 . . <L n="Header"><S n="Version"><![CDATA[1.1]]></S><N n="Datetime">
1969968854.286</N><S n="DatetimeStr"><![CDATA[04JUN22:13:34:14]]></S><S
n="SubType"><![CDATA[Package]]></S><N n="Obfuscate">0</N></L>

8

DAT DTC DAT DTC

2021-07-09T :15 2021-07-09T-:15 09JUL2021:2:15 PM 2021-07-09T14:15

09JUL2021 9:15 2021-07-09T09:15 19-JUL-2021:2:15 PM 2021-07-19T14:15

09JUL2021 :15 2021-07-09T-:15 UN-UNK-2021T3:25 PM 2021----T15:25

09JUL2021 T9:15 2021-07-09T-:09:15 UN-MOR-2021 T5:25 PM 2021----T-:05:25

UNJUL2021 TUN:UN 2021-07 0729 _ERROR_

UNJUL2021TUN:UN 2021-07 0715 T5 _ERROR_

2021-UN-09TUN:15 2021---09T-:15 07/08 _ERROR_

2021-UN-UNTUN:UN 2021 07/19 5:12 _ERROR_

20210709:12:15 2021-07-09T12:15 T13:14 ---T13:14

20210709 12:15 2021-07-09T12:15 JUL 9, 2021:12:15 _ERROR_

20210709T12:15 2021-07-09T12:15

Data Display 6: Datetime conversion using ISO_DTTM function with datetime in one field

Earlier it was mentioned that messages would be output to the log when the format was invalid, or there
was insufficient information to determine how to convert to the proper ISO 8601 notation. In the data the
value will display “_ERROR_” and one of the log messages shown below in SAS Log 1 will appear
depending on the circumstances. The ‘XXXXX’ will display the input value to the function as shown in
SAS Log 2.

WARNING: XXXXX insufficient to determine if date part represents YYYY or DDMM or MMDD.
WARNING: XXXXX insufficient to determine if date part represents DDMMM or YYYYM or YYMMDD
or YYYYMM or MMDDYY.
WARNING: XXXXX date part not in a usable format.

SAS Log 1: Sample log messages

WARNING: 0729 insufficient to determine if date part represents YYYY or DDMM or MMDD.
WARNING: 0715 T5 insufficient to determine if date part represents YYYY or DDMM or MMDD.
WARNING: 07/08 insufficient to determine if date part represents DDMMM or YYYYM or YYMMDD
or YYYYMM or MMDDYY.
WARNING: 07/19 5:12 insufficient to determine if date part represents DDMMM or YYYYM or
YYMMDD or YYYYMM or MMDDYY.
WARNING: JUL 9, 2021:12:15 date part not in a usable format.

SAS Log 2: Sample log messages from sample run

But what if the date and time are in separate fields in the data, such as shown in Data Display 7. The date
is captured in one field and the time is captured in a separate field.

Data Display 7: Raw dates from various data sources date captured in one field and time captured in separate field

DT TM DT TM DT TM DT TM

09JUL2021 2021UNUN 12:15 2021-07-09 :15 09JUL2021 2:15 PM

09JUL2021 12:15 202107UN UN:UN 09JUL2021 9:15 19-JUL-2021 2:15 PM

09JUL2021 12:15 2021UN09 UN:UN 09JUL2021 :15 UN-UNK-2021 3:25 PM

UNJUL2021 20210709 UN:UN 09JUL2021 T9:15 UN-MOR-2021 T5:25 PM

UNUNK2021 2021UNUN UN:UN UNJUL2021 TUN:UN 0729

2021-UN-UN 2021UNUN UN:UN UNJUL2021 UN:UN 0715 T5

2021-07-09 2021-07-09 12:15:45 2021-UN-09 UN:15 07/08

2021-07-09 12:15 2021-07-09 12:15:45 2021-UN-UN UN:UN 07/19 5:12

2021-07-09 12:15:45 2021-07-09 12:15:45 20210709 12:15 T13:14

2021-07-09 12:15:45 2021-07-09 12:15:45 20210709 12:15 JUL 9, 2021 12:15

2021-07-09 UN:15 09JUL2021 12:15 AM 20210709 12:15

2021-07-09 9:15 09JUL2021 12:15 PM

9

Even though the date and time are captured in two different fields, the user-defined function ISO_DTTM
can still be used. You still need to make sure you indicate where the compiled subroutines and functions
are stored if this has not already been done in the program. The difference with having the date and time
stored in two fields is that you will need to concatenate them together when you call the user-defined
function. The nice thing about SAS functions is that you can nest functions; therefore, you can use the
CATX function to concatenate the date and time. When concatenating the date and time you need to use
one of the following delimiters: space, T, or colon. The user-defined function is set up to look for one of
those specific delimiters. Refer to SAS Program 8 for an illustration of this technique. The results are
shown in Data Display 8 and are the same as Data Display 7 and yield the same warnings in the log.

options cmplib = fcmp.funcs;

data dateparts2;
 set dateparts;
 DTC = ISO_DTTM(catx('T', DT, TM));
run;

SAS Program 8: Using ISO_DTTM function with date captured in one field and time captured in separate field

DT TM DTC DT TM DTC
09JUL2021 2021-07-09 2021UNUN 12:15 2021----T12:15
09JUL2021 12:15 2021-07-09T12:15 202107UN UN:UN 2021-07
09JUL2021 12:15 2021-07-09T12:15 2021UN09 UN:UN 2021---09
UNJUL2021 2021-07 20210709 UN:UN 2021-07-09
UNUNK2021 2021 2021UNUN UN:UN 2021
2021-UN-UN 2021 2021UNUN UN:UN 2021
2021-07-09 2021-07-09 2021-07-09 12:15:45 2021-07-09T12:15:45
2021-07-09 12:15 2021-07-09T12:15 2021-07-09 12:15:45 2021-07-09T12:15:45
2021-07-09 12:15:45 2021-07-09T12:15:45 2021-07-09 12:15:45 2021-07-09T12:15:45
2021-07-09 12:15:45 2021-07-09T12:15:45 2021-07-09 12:15:45 2021-07-09T12:15:45
2021-07-09 UN:15 2021-07-09T-:15 09JUL2021 12:15 AM 2021-07-09T00:15
2021-07-09 9:15 2021-07-09T09:15 09JUL2021 12:15 PM 2021-07-09T12:15
2021-07-09 :15 2021-07-09T-:15 09JUL2021 2:15 PM 2021-07-09T14:15
09JUL2021 9:15 2021-07-09T09:15 19-JUL-2021 2:15 PM 2021-07-19T14:15
09JUL2021 :15 2021-07-09T-:15 UN-UNK-2021 3:25 PM 2021----T15:25
09JUL2021 T9:15 2021-07-09T-:09:15 UN-MOR-2021 T5:25 PM 2021----T-:05:25
UNJUL2021 TUN:UN 2021-07 0729 _ERROR_
UNJUL2021 UN:UN 2021-07 0715 T5 _ERROR_
2021-UN-09 UN:15 2021---09T-:15 07/08 _ERROR_
2021-UN-UN UN:UN 2021 07/19 5:12 _ERROR_
20210709 12:15 2021-07-09T12:15 T13:14 ---T13:14
20210709 12:15 2021-07-09T12:15 JUL 9, 2021 12:15 _ERROR_
20210709 12:15 2021-07-09T12:15

Data Display 8: Datetime conversion using ISO_DTTM function with date captured in one field and time captured in
separate field

In case you are wondering, the subroutines can be used outside of the user-defined ISO_DTTM function.
They can be used directly in a DATA step. If the data comes in with each date and time broken out into
individual components (Data Display 9), you can use the DTTMFMT format without using the ISO_DTTM
function. This will allow you to convert the components to the proper format and then you can either add
additional SAS statements to combine and ensure that only the last non-missing component is displayed,
or you can build a separate function (see Appendix B) to handle this logic.

10

MO DY YR HR MN SC

JUL 9 2021

JUL 9 2021 12 15

JUL UN 2021

UNK UN 2021

07 09 2021 9 15 1

07 9 21 12 5

JUL UN 21 UN Un

Data Display 9: Date and time components captured as individual fields with unknowns indicated with UN or UNK

SAS Program 9 illustrates the use of the DTTMFMT subroutine directly in a DATA step without the
ISO_DTTM function. The results are displayed in Data Display 10. Recall that a subroutine overwrites any
argument that is indicated in the OUTARGS statement. Therefore, all the variables are replaced with the
appropriately formatted value and no new variables are created.

options cmplib = fcmp.funcs;

data ind_comp_dt2;
 set ind_comp_dt;
 call dttmfmt(YR, MO, DY, HR, MN, SC);
run;

SAS Program 9: Using DTTMFMT subroutine without ISO_DTTM function

Recall that a subroutine does not return a value; instead it modifies the values that are indicated in the
OUTARGS statement.

MO DY YR HR MN SC

- 09 2021 - - -

- 09 2021 12 15 -

- - 2021 - - -

- - 2021 - - -

07 09 2021 09 15 01

07 09 2021 12 05 -

- - 2021 - - -

Data Display 10: Date and time components modified using DTTMFMT subroutine

Furthermore, you can even use the ZFILL subroutine as a stand-alone subroutine. It does not need to be
used with the DTTMFMT subroutine or the ISO_DTTM function. For example, if date and time
components are captured as individual numeric fields stored as character values but the unknown values
are left null then the ZFILL subroutine can be used to ensure that the values have the appropriate format.
Note that for the ZFILL subroutine to work it is expecting a character value. If the individual components
are not character fields, they would need to be converted to character values since a subroutine will
update the existing value, and if it is missing it will attempt to update with a ‘-’ (i.e., a non-numeric
character). Data Display 11 illustrates a data set where the values are numeric but stored as character
and unknowns are left null.

MO DY YR HR MN SC

7 9 2021 1 1 1

7 09 2021 1 10 07

 2021 7 20

Data Display 11: Date and time components captured as individual fields unknown values are left null

11

SAS Program 10: Using ZFILL subroutine without DTTMFMT subroutine and ISO_DTTM function takes
the data in Data Display 11 and converts all the two-digit fields to the proper format as seen in Data
Display 12. For the sake of this example, it is assumed that YR is in the proper format and does not need
to be updated. Notice that ZFILL is called for each of the individual components and each component is
replaced with the proper format. As with the example illustrated in SAS Program 9: Using DTTMFMT
subroutine without ISO_DTTM function. you can add additional programming logic to combine the fields
and ensure the only up the last non-missing component is displayed, or you can use a second user-
defined function to perform these steps (Appendix B).

options cmplib = fcmp.funcs;

data dt_zero2;
 set dt_zero;
 call zfill(MO);
 call zfill(DY);
 call zfill(HR);
 call zfill(MN);
 call zfill(SC);
run;

SAS Program 10: Using ZFILL subroutine without DTTMFMT subroutine and ISO_DTTM function

MO DY YR HR MN SC

07 09 2021 01 01 01

07 09 2021 01 10 07

- - 2021 07 - 20

Data Display 12: Date and time components modified using ZFILL subroutine

CONCLUSION
While SAS provides a plethora of functions and subroutines, there are times you need to have something
that is user specific to meet your needs. With PROC FCMP, programmers can build their own functions
and subroutines. Users can build a subroutine and/or function that can stand-alone (i.e., called directly
from a DATA step) or that can be utilized within another subroutine/function. With the ability to create
custom subroutines and functions, developers can control what values are returned or modified. Adding
PROC FCMP to your programming toolkit can expand your repertoire of useful SAS functions.

12

REFERENCES AND RECOMMENDED READINGS
Carpenter, A. (2013). Using PROC FCMP to the Fullest: Getting Started and Doing More. SAS Global Forum. San

Francisco. Retrieved Apr 2022, from https://support.sas.com/resources/papers/proceedings13/139-2013.pdf
Eberhardt, P. (2011). A Cup of Coffee and Proc FCMP: I Cannot Function Without Them. PharmaSUG. Nashville:

PharmaSUG. Retrieved Apr 2022, from https://www.lexjansen.com/pharmasug/2011/TU/PharmaSUG-2011-
TU07.pdf

Hughes, T. M. (2022). SAS® Data-Driven Development: from abstract design to dynamic functionality, second
edition. Troy Martin Hughes.

ISO 8601 Date and Time Format. (n.d.). Retrieved Apr 2022, from International Organization for Standardization:
https://www.iso.org/iso-8601-date-and-time-format.html

Morgan, D. (2017). ISO 8601 and SAS®: A Practical Approach. MWSUG. St. Louis: MWSUG. Retrieved Jun 2022,
from https://www.mwsug.org/proceedings/2017/PH/MWSUG-2017-PH02.pdf

Morgan, D. P. (2014). The Essential Guide to SAS® Dates and Times; Second Edition. Cary, NC: SAS Institute Inc.

SAS Institute Inc. (2019, 11 Apr). About SAS Date, Time, and Datetime Values. Retrieved Jun 2022, from SAS® 9.4
and SAS® Viya® 3.5 Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lrcon/p1wj0wt2ebe2a0n1lv4lem9hdc0v.htm

SAS Institute Inc. (2022, Apr 14). CALL IS8601_CONVERT Routine. Retrieved Jun 2022, from SAS® 9.4 and SAS®
Viya® 3.2 Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.2/lefunctionsref/p0bhy7ndmdivmmn10b2okmbgiqm
j.htm#p0h41lprw0az65n1tafhcnsqndru

SAS Institute Inc. (2022, May 24). FCMP Procedure. Retrieved Jun 2022, from SAS® 9.4 and SAS® Viya® 3.2
Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/proc/p10b4qouzgi6sqn154ipglazix2q.htm

SAS Institute Inc. (2022, May 13). Working with Dates and Times by Using the ISO 8601 Basic and Extended
Notations. Retrieved Jun 2022, from SAS® 9.4 and SAS® Viya® 3.5 Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/leforinforref/p1a0qt18rxydrkn1b0rtdfh2t8zs.htm

Watson, R., & Hadden, L. (2022). Functions (and More!) on CALL! PharmaSUG. PharmaSUG. Retrieved Jun, from
https://www.pharmasug.org/proceedings/2022/AP/PharmaSUG-2022-AP-111.pdf

Wilson, K. (2012). Harnessing the Power of SAS ISO 8601 Informats, Formats, and the CALL IS8601_CONVERT
Routine. PhramaSUG. San Francisco: PharmaSUG. Retrieved Jun 2022, from
https://www.lexjansen.com/pharmasug/2012/DS/PharmaSUG-2012-DS22-SAS.pdf

ACKNOWLEDGMENTS
Thanks to Louise Hadden and Josh Horstman helping me come up with ‘perfect’ way to phrase my thoughts so that I
was able to adequately convey a concept.

Thanks to Troy Martin Hughes for being so patient with me as I sent him copious text messages asking for his advice
and input and for reviewing this paper to ensure that I was not misstating anything.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Richann Watson
DataRich Consulting
richann.watson@datarichconsulting.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

13

APPENDIX A: USER-DEFINED SUBROUTINES AND FUNCTIONS FOR CREATING
ISO 8601 DATETIMES
libname fcmp 'C:\Users\gonza\Desktop\Conferences\FCMP';

proc fcmp outlib = fcmp.funcs.ISO_date;
 /* need to zero fill each non-missing month, day, hour, minute, second */
 subroutine zfill(_comp $);
 outargs _comp;
 if not missing(_comp) and not(notdigit(cats(_comp)))
 then _comp = put(input(_comp, best.), Z2.);
 else _comp = '-';
 endsub;

 /* input values are character so need $ for each */
 subroutine dttmfmt(_year $, _month $, _day $,
 _hour $, _minute $, _second $);
 outargs _year, _month, _day, _hour, _minute, _second;
 /* make sure year is a four-digit number */
 if not(notdigit(cats(_year))) then do;
 if length(strip(_year)) = 4 then _year = strip(_year);
 else if length(strip(_year)) = 2 then do;
 if input(_year, best.) <= 40 then _year = cats('20', _year);
 else _year = cats('19', _year);
 end;
 end;
 else _year = '-';

 /* need to 0 fill each non-missing month, day, hour, minute, second */
 call zfill(_month);
 call zfill(_day);
 call zfill(_hour);
 call zfill(_minute);
 call zfill(_second);
 endsub;

 function ISO_DTTM(dattim $) $;
 length __dtc __dttm $20 iso_dtc $10 iso_tmc $8
 year $4 month $2 day $2;

 /* extract the date portion; compress hyphens to determine format */
 __dtpart = compress(scan(dattim, 1, ' T:', 'm'), '-');

 /* need to convert all dates to the yymmdd10 format so that further */
 /* processing can proceed – if not then need to get out */
 if length(strip(__dtpart)) in (7 9) then do;
 year = strip(substr(__dtpart, 6));
 if strip(substr(__dtpart, 3, 3)) in ('JAN', 'FEB', 'MAR', 'APR',
'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC')
 then month = put(whichc(strip(substr(__dtpart, 3, 3)), 'JAN',
'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT', 'NOV',
'DEC'), Z2.);
 else month = substr(__dtpart, 3, 2);
 day = strip(substr(__dtpart, 1, 2));
 end;
 else if length(strip(__dtpart)) = 8 then do;
 year = strip(substr(__dtpart, 1, 4));

14

 month = strip(substr(__dtpart, 5, 2));
 day = strip(substr(__dtpart, 7, 2));
 end;
 else if lengthn(strip(__dtpart)) = 0
 then call missing(year, month, day);
 else do;
 if length(strip(__dtpart)) = 4 then
 put %sysfunc(compress("WARN ING:")) dattim "insufficient to
determine if date part represents YYYY or DDMM or MMDD.";
 else if length(strip(__dtpart)) in (5 6) then
 put %sysfunc(compress("WARN ING:")) dattim "insufficient to
determine if date part represents DDMMM or YYYYM or YYMMDD or YYYYMM or
MMDDYY.";
 else
 put %sysfunc(compress("WARN ING:")) dattim "date part not in a
usable format.";
 __dtc = '_ERROR_';
 return(__dtc);
 end;

 /* extract time portion to see if hh:mm:ss (assume 24-hr clock) */
 /* or if HH:MM:SS AM/PM (12-hr clock) */
 __tmpart = substr(dattim, prxmatch('/T|:| /i', dattim));
 if first(__tmpart) in ('T' ':') then __tmpart = substr(__tmpart, 2);

 if prxmatch('/AM|PM/i', __tmpart) then __tmpart2 =
 transtrn(transtrn(__tmpart, 'AM', trimn('')), 'PM', trimn(''));
 else __tmpart2 = __tmpart;

 /* split the time components */
 array tm_c (3) $ hour minute second;
 Io i = 1 to 3;
 tm_c[i] = scan(strip(__tmpart2), i, 'T:', 'm');
 if strip(tm_c[i]) in ('' '.') then tm_c[i] = '-';
 end;

 if find(__tmpart, 'PM') and strip(hour) ne '12' and
 not(notdigit(strip(hour))) then
 hour = put(input(hour, best.) + 12, Z2.);
 else if find(__tmpart, 'AM') and strip(hour) = '12' then hour = '00';

 call dttmfmt(year, month, day, hour, minute, second);

 /* use new variables to build ISO 8601 dates in the proper format */
 iso_dtc = catx('-', year, month, day);
 iso_tmc = catx(':', hour, minute, second);

 /* if time is nothing but '-' and ':' then default to blank */
 /* if there is at least one number portion then need to keep*/
 /* up through the last time element that has a numeric part */
 if notpunct(strip(iso_tmc)) > 0 then _iso_tmc =
 substr(iso_tmc, 1, notpunct(strip(iso_tmc), -length(iso_tmc)));
 else call missing(_iso_tmc);

 /* combine time with date to build ISO datetime */
 __dttm = catx('T', iso_dtc, _iso_tmc);

15

 /* if no time portion keep only up to last numeric portion of date */
 if anyalpha(strip(__dttm)) > 0 then __dtc = __dttm;
 else if notpunct(strip(__dttm)) > 0 then __dtc =
 substr(__dttm, 1, notpunct(strip(__dttm), -length(__dttm)));
 else call missing(__dtc);

 return(__dtc);
 endfunc;
quit;

APPENDIX B: USER-DEFINED FUNCTION USING INDIVIDUAL COMPONENTS FOR
CREATING ISO 8601 DATETIMES
User-defined function that combines the individual components into the proper ISO 8601 notation.

proc fcmp outlib = fcmp.funcs.ISO_DATES_PT;
 function dtisopt(mn $, dy $, yr $, hr $, mi $, sc $) $;
 length NEWDTC newdttm $20 isodt $10 isotm $8;

 /* use new variables to be build ISO 8601 date time */
 isodt = catx("-", yr, mn, dy);
 isotm = catx(":", hr, mi, sc);

 /* if time is nothing but '-' and ':' then default to blank */
 /* if it there is so numeric portion of the time then keep */
 /* up through the last time element that had a numeric part */
 if notpunct(strip(isotm)) > 0 then
 _isotm = substr(isotm, 1, notpunct(strip(isotm), -length(isotm)));
 else _isotm = ' ';

 /* combine time with date to build ISO datetime */
 newdttm = catx("T", isodt, _isotm);

 /* if there is no time portion then keep only up */
 /* through last numeric portion of date */
 if anyalpha(strip(newdttm)) > 0 then NEWDTC = newdttm;
 else if notpunct(strip(newdttm)) > 0 then NEWDTC =
 substr(newdttm, 1, notpunct(strip(newdttm), -length(newdttm)));
 else NEWDTC = ' ';

 return(NEWDTC);
 endfunc;
quit;

	Abstract
	Introduction
	What is ISO 8601 Format?
	Sample Data Set for Paper
	ISO 8601 Datetimes and SAS
	PROC FCMP Basics
	Custom ISO 8601 Conversion Function
	Building ISO 8601 Custom Subroutines and Function
	Compiled Subroutines and Functions
	Using Custom Subroutines and Functions

	Conclusion
	References and Recommended Readings
	Acknowledgments
	Contact Information
	Appendix A: User-defined Subroutines and Functions for Creating ISO 8601 Datetimes
	Appendix B: User-defined Function Using Individual Components for Creating ISO 8601 Datetimes

