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ABSTRACT 
More often than not, treatment effects cannot be evaluated by a single event. Therefore, composite 
endpoints have been frequently used for decision-making in clinical trials. However, conventional analysis 
of composite endpoints still treats each component as separate and equal. While with clinical relevance in 
mind, for instance, death may be seen as more important than other events such as stroke; thus, 
hierarchy ranking of component endpoint is desired. In 2012, Pocock et al. proposed the win ratio 
approach for composite endpoint analysis. In this approach, each component from the composite 
endpoint is ranked by its clinical importance in the study, and then analyzed by one component at a time 
in a hierarchical fashion between any two subjects. Since then, applications of win ratio approach have 
been steadily gaining momentum in clinical trial analysis. While more of those applications are observed 
at the hypothesis testing stage, fewer are focused on the early study design phase. This paper will 
present an easy-to-use SAS Macro that has the flexibility to customize component event rates and 
rankings based on clinical relevance to assist at the study design stage by simulating subject-level data 
with composite endpoints to derive the win ratio statistics and calculate power for a given sample size.  
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INTRODUCTION 
Composite endpoint design has been a commonly employed approach in clinical trials especially in the 
cardiovascular field (Ferreira et all., 2021). The utilization of composite endpoints has been well-accepted 
and practiced in the process of decision-making for determining the treatment effects in a clinical trial. 
Conventional statistical analysis approaches for composite endpoints include using the time-to-first-event 
model producing a hazard ratio and 95% Confidence Interval (Cox, 1972; Andersen & Gill, 1982; Wei et 
al., 1989; Wei & Glidden, 1997), or a simple log-rank test in a Kaplan Meier analysis (Kaplan & Meier, 
1958; Mantel, 1966). One potential shortcoming of these conventional statistical analysis approaches is 
that they consider all endpoint components as equal; while in real world clinical practice, that is not 
always the case. For instance, in conventional composite endpoint analysis, a non-fatal event carries the 
same clinical significance to one subject as a fatal event to another subject if both events happen at the 
same time-to-event point. This inability to differentiate clinical significance between composite endpoint 
events is, as Pocock et al. (2012) put it, “an inherent limitation” in the conventional statistical analysis 
methods for composite endpoints.  

Pocock and his colleagues therefore proposed a new approach, now termed as the “win ratio” approach, 
that considers both the clinical significance and the timing of an endpoint event. Under the win ratio 
approach, each component of the composite endpoints is ranked by their clinical significance and 
relevance, and subjects are evaluated head-to-head by comparing each component on a hierarchical 
order under the time-to-event construct. Take some common cardiovascular composite endpoint events 
for example, namely, death, myocardial infarction (MI), and hospitalization, under the win ratio approach, 
we assign death as the highest in clinical significance when we compare in any given pair of subjects, MI 
the second most important, and hospitalization the least important. Using this component ranking, for the 
head-to-head comparison, if one subject has died while the other subject has not, then regardless of 
whether the other subject experiences an MI or hospitalization, the subject who dies is a “loser”. If both 
have reported a death, one with a shorter time-to-event is the “loser”. If neither has a death event, we 
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move down to compare the second significant event we ranked among the components, which in this 
case, the MI. Following similar logic of comparing the death event, we then decide a “winner” or a “loser” 
based on MI incidences, and so on so forth. If we do not find a “winner” after we exhausted comparison 
with all composite endpoint events ranked, we have a “tie”. With all the comparison results, we can thus 
derive the ratio of winners to losers for the treatment group, that is, the “win ratio (Pocock et al., 2012). 

With its straightforwardness in methodology and its capacity to solve the “inherent limitation” in the 
conventional statistical analysis methods for composite endpoints, the win ratio approach has been 
gaining increasing interest and implementations in numerous clinical trial analysis (i.e., Rogers et al., 
2014; Bakal et al., 2015; Abdalla et al., 2016; Dong et al., 2018; Bebu & Lachin, 2018; Yosef, Khalatbari, 
& Hummel, 2019; Ferreira et all., 2021). However, the existing applications of win ratio approach usually 
are implemented in the study outcome analysis and hypothesis testing stage, while very limited attention 
has been shed at the early study design stage (Peng, 2020). Moreover, there are very limited SAS 
applications for win ratio approach implementation, let alone win ratio simulation for power calculation at 
study design stage. This paper tries to provide some implementations and discussions in the gap here by 
presenting a SAS macro that can help biostatisticians implement simulations and power calculation using 
the win ratio approach for composite endpoints study at the designing stage.  

 

METHODOLOGY 
In the Pocock et al. (2012) paper, two analysis methods for the win ratio approach were discussed: the 
matched pair method and the unmatched pair method.  

In the matched pair method, pairs of subjects are selected and determined by matching risk profile, 
usually a baseline risk scores and metrics. In practice, the matched pair method would require a careful 
and scientific evaluation of what risk profiling should be considered when looking for matching pairs. This 
method also always yields “unmatched” subjects where certain number of subjects would end up being 
excluded into the analysis, thus resulting in loss of information and data points.  

On the other hand, the unmatched pair method compares one patient with every other patient in the 
study, both from the same arm and the different arm, without restrictions of the subjects’ risk profile. This 
method was originally proposed and designed by Finkelstein and Schoenfeld (1999), Pocock et al. (2012) 
employed this concept and extended its application to win ratio composite endpoint analysis.  

For this paper, the unmatched pair method is employed. The primary reason is that, with the unmatched 
pair method, each subject can be compared with all other subjects in a fair comparison paradigm. In the 
meantime, it saves time and resources since unmatched pair method does not require correct matching 
variables to be identified beforehand, which is often difficult to know exactly what those variables should 
be in the early study designing stage. Although it is somewhat more complex to calculate the power and p 
values using unmatched pair method, it is more “unbiased” (Pocock et al., 2012). 

This Finkelstein-Schoenfeld (F-S) test formula (Finkelstein & Schoenfeld, 1999) is followed as the 
foundation to construct the macro in this paper:  

                                          F-S Score  = 𝑇𝑇
√𝑉𝑉

                          ① 

Specifically, a winner gets a score of 1 while the loser get a score of -1. If it is a tie, each subject gets a 
score of 0. After comparing subject i with other subjects in the study, we will be able to get a win-lose 
score 𝑈𝑈i. A subject with higher score implies that this subject is more likely to be a winner when compared 
to the other subjects in the study. 

                                      𝑈𝑈i = Σi≠j uij                                             ② 
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By summing all the win-lose scores for subjects in the treatment group, the T score in the F-S test ① 
above can be derived following the equation below (By default, Di = 1 in treatment group and Di = 0 in 
control group). 

                                  T = ∑ 𝑈𝑈𝑁𝑁
𝑖𝑖=1 iDi                            ③ 

With known number of subjects in treatment group n1 and number of subjects in control group n2, the 
variance of T can be obtained as the formula below. Note, N is the total number of sample size in the 
study, with  𝑁𝑁 =  𝑛𝑛1 + 𝑛𝑛2.  

                                   V = 𝑛𝑛1𝑛𝑛2
𝑁𝑁(𝑁𝑁−1)

∑ 𝑈𝑈𝑁𝑁
𝑖𝑖=1 i

2                ④ 

Once the F-S score is calculated, the power of the study per simulation can be computed by the following 
steps: 1) compare the F-S score to the standard normal distribution to determine the p value per each 
data replicate; 2) with α set to 0.05 in usual study designs, determine each data replicate as whether its p 
value is less or equal to 0.05; 3) derive the proportion of data replicates yielding p ≤ 0.05 based off all 
data replicates produced by the simulation. That proportion from step 3 is the power of the study.  For 
instance, if 2500 data replicates are generated per the simulation and 2000 data replicates yielded p ≤ 
0.05 while 500 data replicates with p above 0.05, then the power of the study is 2000/2500 = 0.80. If the 
goal of the desired study power is at least 80%, it can be thus determined that enough study power can 
be secured with the sample size per that simulation.  

 

THE WIN RATIO SIMULATION AND POWER CALCULATION MACRO 
With the methodology discussed above, the SAS macro to be presented and discussed below will provide 
more details to show how 1) subject-level data listing is simulated based on pre-specified component 
endpoint proportions, 2) the win ratio statistics are derived per simulated datasets, and 3) the power of 
the study is calculated based on a sufficiently large number of data replicates per the simulation.  

Note, in real practice, all simulation lists need to be verified on 1) if the component events are correlated 
within each data replicate, and 2) if the rates of events in simulation are consistent or very close to the 
pre-specified component endpoint proportions per design. However, as those verifications are relatively 
easy, this paper will not elaborate on correlation checking or frequency checking to save space for the 
demonstration of key components in the macro.  

KEY PARAMETERS IN THE MACRO 
To ensure the macro function as designed, some key parameters need to be set up properly first. Below 
is an example as a quick reference:  

%winPower (event = death mi hosp,  
       ratio1 = 0.05|0.08|0.10, ratio2 = 0.09|0.12|0.20,  
           subn= 100, simnum = 2500); 
 

The first key parameter in the macro is the event variable.  This parameter denotes what events are to be 
included in the designed composite endpoints. The order of the events listed in this parameter has to be 
consistent with the descending hierarchical order of the composite endpoints by the clinical significance. 
Reusing the above-mentioned common cardiovascular trials’ composite endpoint events, death, MI, and 
hospitalization, as the example here, the configuration of event = death mi hosp means that death is the 
most clinically significant event, MI the second most significant event, while hospitalization is the least 
significant event. There is no “|” as divider in the event parameter, compared to the ratio parameters 
ratio1/ratio2. This is specifically designed so that the parameter event can be re-employed as 
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intermediate data set names when merging separate simulation listings per each component to produce 
the complete data replicate listing. This will be illustrated more in details in the steps below.  

The second set of key parameters are the ratio1/ratio2 variables. The parameter ratio1 corresponds to 
event rates in treatment arm, while ratio2 corresponds to event rates in control arm. It should be 
emphasized here that event ratios listed in ratio1/ratio2 always correspond to the pre-specified endpoint 
proportions, in treatment arm and control arm respectively, of the components listed in the hierarchical 
order as configured in the event parameter. Each proportion needs to be divided by “|” to be properly 
parsed and read in. Take the codes of ratio1 = 0.05|0.08|0.10 above as an example, this combination 
means that the event rate of death in treatment arm is expected to be about 5%, while the event rate of 
MI is expected to be 8%, and the event rate of hospitalization is expected to be around 10%. Similarly, 
ratio2 = 0.09|0.12|0.20 can be interpreted that, in control arm, a reasonable guess for event rate of death 
would be 9%, for event rate of MI would be 12%, while for event rate of hospitalization would be 20%.  

The last set of key parameters are the subn parameter to control the sample size per arm and the 
parameter simnum to determine how many data replicates will be generated per each simulation run. In 
each data replicate, the total number of subjects will always be subn*2 for the consideration of a balance 
design between treatment and control arm. Therefore, in the codes above, subn= 100 and simnum = 
2500 mean that one complete simulation run using this configuration in this macro will produce 2500 data 
replicates with 100 subjects per each arm in each simulated listing.  

STEP 1. PRODUCE SUBJECT-LEVEL LISTING 
With the parameters pre-defined above, the subject-level listings per pre-specified component endpoint 
proportions can be achieved by the following codes:  

%local i j k component proportion; 
%do k = 1 %to &simnum; 
%do m = 1 %to 2; 
%do i = 1 %to %sysfunc(countw(&event)); 
%let component = %scan(&event, &i); 
%let proportion = %scan(&&ratio&m, &i, '|');  
 
    data &component._temp; 
   do j = 1 to &subn; 
       if j le ROUND(&subn. * &proportion.) then &component = 1; 
       else &component = 0; 
       x1 = rand('normal',.5,.1);    
       output;  
  end; 
   run; 
 
   proc sort data = &component._temp; 
  by x1; 
   run; 
 
   data &component; 
     length SUBJID arm $20.; 
     format simn best.; 
     set &component._temp; 
     by x1; 
     retain SUBJID_; 
     if _n_ = 1 then SUBJID_ = &m. * &subn. + 1; 
     else SUBJID_ = SUBJID_ +1; 
 
     SUBJID = strip(put(SUBJID_, best.)); 
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     simn = &k; 
     if &m = 1 then arm = "treatment"; 
     if &m = 2 then arm = "control"; 
     
     keep SUBJID arm simn &component; 
   run; 
 
   proc sort data = &component; 
  by SUBJID; 
   run; 
%end; 
data arm_&k._&m; 
  merge &event; 
  by SUBJID; 

  run; 
   
%end;  
data simulist_&k; 
  set arm_&k.:; 
run; 

Notice, to facilitate the simulation list per kth data replicate, two local macro parameters are introduced 
(component, proportion) and three temporary data sets (&component._temp, &component, and 
arm_&k._&m) are created. The local macro variable component is parsed from the event parameter 
configured above, to denote what endpoint event is being simulated for. While the other local macro 
variable proportion is translated from parameters ratio1/ratio2, depending on which treatment arm the 
data replicate is at, to denote what event rate is for the endpoint event being simulated for. With these two 
local macro variables, temporary data set &component._temp is produced to control for each event per 
arm with the designed proportion with a simple rand function, x1 = rand('normal',.5,.1). The step with 
temporary data set &component is to further add on study related accessary variables (subject identifier 
SUBJID, and treatment names “treatment” or “control”, and data replicate identifier simn) to facilitate 
further analysis in next steps. The temporary data set arm_&k._&m is the bridging data set for the 
treatment or control arm in the kth data replicate. With these data sets per arm available, the combined list 
per kth data replicate can be obtained in the last step above shown as simulist_&k. 

STEP 2. DERIVE WIN RATIO STATISTICS 
The next step of the macro is to derive the win ratio statistics per each data replicate. To achieve that, an 
innovative yet straightforward approach is proposed: with a numeric "composite score” based on the 
hierarchical order of the events, this composite score will serve as the intermediate “bridge” before the 
final comparison to determine who is the winner in any given pair of subjects. Specifically, the pre-defined 
hierarchical order per the clinical significance of a composite endpoint event is translated into an 
exponent of 10, eventually producing a score for composite endpoint event on the scale of 1 to 10n-r with 
n as the highest rank of an event can get among all components and r is the ranking of the particular 
event among all components. For instance, among the three events of death, MI, hospitalization in this 
order of clinical significance, the highest-ranking place one event can get is 3; for the death event, it is 
ranked as No.1, r = 1, thus a death event will get a score of 103-1 = 100. Similarly, the event of MI will yield 
a score of 103-2 = 10, while hospitalization will have a score of 103-3 = 1. Whenever a subject has an 
individual endpoint event, that subject gets the corresponding score per that event as discussed above. 
Otherwise, that subject gets a 0 score. The final composite score for each subject is the sum of individual 
event scores from all components. For example, if one subject has reported a death and a MI in the 
study, that subject will get a final composite score of 100+10 = 110. The following codes demonstrate 
how to derive this composite score:  
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data compscore_&k; 
  set simulist_&k; 
  %do i=1 %to %sysfunc(countw(&event)); 
  %let component = %scan(&event, &i);  
  compscore_&i = &component. * (10 ** (%sysfunc(countw(&event)) - &i.));  
  %end; 
 
  compscore = sum (of compscore_:); 
  keep subjid arm simn &event compscore; 
run; 

With the intermediate composite score derived as above, a comparison for each pair of subjects to 
determine a winner or a loser or a tie can be readily available as 1) if Subject A’s composite score is 
greater than the Subject B’s composite score in an given pair, then that Subject A is a loser and gets a 
score of -1; 2) if Subject A’s composite score is equal to the Subject B’s composite score in an given pair, 
then that Subject A is tied and gets a score of 0; 3) if Subject A’s composite score is less than the Subject 
B’s composite score in an given pair, then that Subject A is a winner and gets a score of 1. Through a N x 
N matrix, the final win ratio scores can be obtained in the following codes:  

proc sort data = compscore_&k; 
    by SUBJID; 
run; 
 
proc transpose data = compscore_&k out = compscore_wide_&k prefix = SUBJID; 
    id SUBJID; 
    var compscore; 
run; 
 
proc sql; 
 create table compscore_matrix_&k as 
 select  
 * 
 from compscore_&k, compscore_wide_&k 
 ; 
quit; 
 
proc sql noprint; select COMPRESS("SCORE_"||SUBJID) into: SUBJIDlist 
separated by ' ' from compscore_&k; quit; 
 
data winscore_&k; 
  set compscore_matrix_&k; 
  array comp(%sysevalf(2 * &subn)) SUBJID_: ; 
  array score(%sysevalf(2 * &subn)) &SUBJIDlist; 
 
  do x = 1 to %sysevalf(2 * &subn); 
 if COMPSCORE > comp(x) then score(x) = -1; 
 if COMPSCORE = comp(x) then score(x) = 0; 
 if COMPSCORE < comp(x) then score(x) = 1;  
 if _n_ = x then score(x) = .; 
  end; 
 
  Ui = sum (of SCORE_:); 
  if arm = "treatment" then Di = 1; 
  if arm = "control" then Di = 0; 
  UiDi = Ui * Di; 
  Ui2 = Ui * Ui; 
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  keep subjid arm &event score_: Ui Di UiDi Ui2; 
run; 

 
Up till this point, the win-lose score Ui  in formula ② is derived. With the score Ui  ready, the UiDi  required 
for further imputation in formula ③ and Ui2 needed in formula ④ can also be imputed for the calculation 
of the win ratio statistics per formula ① above. The algorithms in the formulas ① ③ ④ can be translated 
into the SAS codes below where T and V respectively corresponds to the T score and variance while 
FS_test is the final F-S score (Finkelstein & Schoenfeld, 1999). 

 
proc sql noprint; 
 create table winstatistics_&k as 
 select 
 &k as simn 
 , sum(UiDi) as T 
 ,((&subn*&subn)/(%sysevalf(2 * &subn)*(%sysevalf(2 * &subn)-1))) * 
(sum(UI2)) as V 
 ,calculated T / sqrt(calculated V) as FS_test 
 from winscore_&k 
 ; 
quit; 

%end;  

STEP 3. CALCULATE THE POWER  
Before introducing the codes for power calculations, it is necessary to remind again that up to this time 
point, in real world practice, all simulation lists need to be verified on 1) if the frequency of composite 
events in each simulated listing reflects the pre-specified event proportions, and 2) if correlations among 
components within each simulated listing are reasonably low. The first verification can be analyzed 
through a simple proc freq statement, while the second can be done by a quick proc corr statement. 
This paper will not elaborate on these two relatively easy tasks to save space here.  

As mentioned above, when the F-S score per each data replicate is calculated, the power of the study 
can be imputed by the following steps: 1) compare the F-S score to the standard normal distribution to 
determine the p value in each data replicate; 2) with α set to 0.05 in usual study designs, determine each 
simulation as whether its p value is on or below the threshold of 0.05; 3) derive the proportion of data 
replicates with p-values that are equal or below 0.05 based off all data replicates. The first two steps can 
be completed in one cdf function below:  

data winstatistics_all; 
  set winstatistics_:; 
  p = 2 *(1- cdf('NORMAL',FS_test)); 
run; 

 
Finally, by calculating the proportion of data replicates with p ≤ 0.05 from all simulated data replicates, the 
power of the study can be obtained as:  
 

proc sql; 
   create table win_power as 
   select 
   sum(case when p le 0.05 then 1 else 0 end) as p05_sum 
   , count (simn) as total 
   , (calculated p05_sum / calculated total) as power 
   from winstatistics_all 
  ; 
quit;  
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CONCLUSION 
The win ratio approach in composite endpoint analysis is gaining steady momentum in cardiovascular 
trials. While more of those attention has been paid toward the final statistical analysis and hypothesis 
testing stage after study data are collected, this paper is among the first few to implement the win ratio 
approach at the early study design stage. By proposing this easy-to-use macro, the authors of this paper 
hope to make an once complex and challenging task now easy for biostatisticians who want to explore 
the win ratio approach in study design or potentially even in adapting to study analysis and hypothesis 
testing. 
 
Of course, estimating the power of a study per simulation is usually not the only goal in study designing. 
There are many more questions to be answered and discussed. In the meantime, there are still limitations 
in this macro. For instance, this macro addresses only binary outcome events as they are most common 
composite endpoints in cardiovascular trials. However, in more complex scenarios and applications, 
multinominal events and/or continuous events could also be integrated into composite endpoint designs. 
Those complex scenarios are not in the capacity of this SAS macro at this point yet. Second, this macro 
does not take time-to-event into account when both subjects in a given pair have the same event for 
simplification purpose as this macro was originally designed to facilitate exploratory purpose for study 
designing. Thus, future research and discussions are necessary to extend and improve this macro to 
accommodate for more complex study designs.  
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APPENDIX 
%macro winPower (event =, ratio1 =, ratio2 =, subn =, simnum = ); 
%local i j k component proportion; 
%do k = 1 %to &simnum; 
 %do m = 1 %to 2; 
  %do i = 1 %to %sysfunc(countw(&event)); 
  %let component = %scan(&event, &i); 
  %let proportion = %scan(&&ratio&m, &i, '|');  
 
/**************STEP 1. PRODUCE SUBJECT-LEVEL LISTING*************/ 
 
   data &component._temp; 
       do j = 1 to &subn; 
     if j le ROUND(&subn. * &proportion.) then &component = 1; 
     else &component = 0; 
     x1 = rand('normal',.5,.1);    
     output;  
    end; 
     run; 
 
   proc sort data = &component._temp; 
    by x1; 
   run; 
 
   data &component; 
    length SUBJID arm $20.; 
    format simn best.; 
    set &component._temp; 
    by x1; 
    retain SUBJID_; 
    if _n_ = 1 then SUBJID_ = &m. * &subn. + 1; 
    else SUBJID_ = SUBJID_ +1; 
 
    SUBJID = strip(put(SUBJID_, best.)); 
    simn = &k; 
    if &m = 1 then arm = "treatment"; 
    if &m = 2 then arm = "control"; 
     
    keep SUBJID arm simn &component; 
   run; 
 
   proc sort data = &component; 
    by SUBJID; 
   run; 
  %end; 
  data arm_&k._&m; 
   merge &event; 
   by SUBJID; 
  run; 
   
 %end;  
 data simulist_&k; 
  set arm_&k.:; 
 run; 
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/**************STEP 2. DERIVE WIN RATIO STATISTICS**********************/ 
 
data compscore_&k; 
 set simulist_&k; 
 %do i = 1 %to %sysfunc(countw(&event)); 
  %let component = %scan(&event, &i);  
  compscore_&i =  &component. * (10 ** (%sysfunc(countw(&event)) - 
&i.));   
 %end; 
 
 compscore = sum (of compscore_:); 
 keep subjid arm simn &event compscore; 
run; 
 
proc sort data = compscore_&k; 
 by SUBJID; 
run; 
 
proc transpose data=compscore_&k out=compscore_wide_&k prefix=SUBJID_; 
    id SUBJID; 
    var compscore; 
run; 
 
proc sql; 
 create table compscore_matrix_&k as 
 select  
 * 
 from compscore_&k, compscore_wide_&k 
 ; 
quit; 
 
proc sql noprint; select COMPRESS("SCORE_"||SUBJID) into: SUBJIDlist 
separated by ' ' from compscore_&k; quit; 
 
data winscore_&k; 
 set compscore_matrix_&k; 
 array comp(%sysevalf(2 * &subn)) SUBJID_: ; 
 array score(%sysevalf(2 * &subn)) &SUBJIDlist; 
 
 do x = 1 to %sysevalf(2 * &subn); 
  if COMPSCORE > comp(x) then score(x) = -1; 
  if COMPSCORE = comp(x) then score(x) = 0; 
  if COMPSCORE < comp(x) then score(x) = 1;  
  if _n_ = x then score(x) = .; 
 end; 
 
 Ui = sum (of SCORE_:); 
 if arm = "treatment" then Di = 1; 
 if arm = "control" then Di = 0; 
 UiDi = Ui* Di; 
 Ui2 = Ui * Ui; 
 
 keep subjid arm &event score_: Ui Di UiDi Ui2; 
run; 
 
proc sql noprint; 
 create table winstatistics_&k as 
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 select 
 &k as simn 
 , sum(UiDi) as T 
 ,((&subn*&subn)/(%sysevalf(2 * &subn)*(%sysevalf(2 * &subn)-1))) * 
(sum(UI2)) as V 
 ,calculated T / sqrt(calculated V) as FS_test 
 from winscore_&k 
 ; 
quit; 
 
%end; 
 
/****CODES FREQUENCY AND CORRELATION CHECKING OMMITTED HERE***/ 
 
 
/*******STEP 3. CALCULATE THE POWER *******************************/ 
data winstatistics_all; 
 set winstatistics_:; 
 p = 2 *(1- cdf('NORMAL',FS_test)); 
run; 
 
proc sql; 
 create table win_power as 
 select 
 sum(case when p le 0.05 then 1 else 0 end) as p05_sum 
 , count (simn) as total 
 , (calculated p05_sum / calculated total) as power 
 from winstatistics_all 
 ; 
quit; 
 
/****CODES FOR OUTPUTTING DATA SETS TO LOCAL FOLDERS OMMITTED HERE******/ 
 
%mend; 
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Name: Chih-Chieh Chang 
Enterprise: Inari Medical 
Address: 6001 Oak Canyon, Irvine, CA 92618 
Email: roger.chang@inarimedical.com 
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