
1

PharmaSUG 2022 - Paper AD-145

Optimizing TLF Generation: Titles and Footnotes

Applying a New Idea to a Basic Approach
Jake Adler, PROMETRIKA, LLC;

Assir Abushouk, PROMETRIKA, LLC;

ABSTRACT

When receiving feedback from a sponsor on tables/listings one of the most frequent updates is
title/footnote changes. These updates can be very time consuming, so what if there was a way to take the
updated shells and automate that to the programs?

In this paper Excel Visual Basics for Applications (VBA) will be used to take the contents of

titles/footnotes from the shells of a Word document and import that into SAS® so titles and footnotes can

be read in automatically. To validate this process when the shells are updated Apache Subversion (SVN)
will be used to compare changes in old shells versus new shells.

INTRODUCTION

Title and footnote updates can take lots of time especially if there are many programs that need updating.
Footnote updates can vary in their complexity; sometimes a simple change in capitalization is needed,
while other times they need to be entirely rewritten. When writing Tables, Listings, and Figures (TLFs) we
want them to be as robust as possible - if the data we read in changes, our programs will account for that.
This is hard to do with titles and footnotes since these values are just text from a word document.
Footnotes are hardcoded in the programs and we set them to a definite value so they don’t change as
data is updated like the rest of the program. Visual Basics for Applications is an event-driven
programming language from Microsoft that is now primarily used with Microsoft office applications such as
MS-Excel and MS-Word. This allows for macros to be created within Excel and in this case create a
macro to read specific text in a word document and output into an excel sheet so we can read that into
SAS®.

TABLE/LISTING/FIGURE SHELL FORMATTING

In order to read in the shells to excel a standard shell is needed. This includes appropriate paragraph
markers as well as formatting. These paragraph markers can be visible by clicking the paragraph symbol
(¶) in the home tab of Microsoft Word.

LINE BREAK

Titles: Every line in the title section must include a line break (SHIFT+ENTER) this allows the entire title
to be one paragraph (Display 1).

Display 1. Table title with the highlighted portions showing the line breaks

Footnotes: Within the body of the table in our shells, the last 2 rows must be footnote and
PROGRAM:…. Those footer rows must also be included with the table contents not just by itself (Display
2). Line break is really useful for footnotes because the max number of footnotes that can be included in a
proc report is 10 but with using line break there will only be one footnote.

2

Display 2. Image on the right is virtually the same as the left however the left image is the one needed as it
includes footnote in same table as body text while right image separates it.

SECTION BREAK

The shells must be broken up by a section page break instead of a regular page break. These section
breaks will start right after the general programming notes and be included after each TLF in the shell
(Display 3).

Display 3. This shows a section break between table 2 and table 3.

3

REPEATS

For repeat TLFs if the footnotes remain the same as previous TLF then a table with 2 rows under the new
title will need to be added (Display 4).

Display 4. Example of a repeat table with same footnotes. Note: table 2.1 is a repeat table of table 2 in
Display 3 with a different title.

CREATING VBA CODE

In this section we will be describing the code that is used to read the TLF shell and output them into excel
columns. Column 1 will display the title and column 2 will display the footnotes for each table in the shell.
The Entire code is in Appendix 1.

 Sub TLFnew()

 Dim wd As New Word.Application

 Dim doc As Word.Document

 Dim Test As Word.Range

 Dim sh As Worksheet

 Dim r As Integer

 Dim wordTbl As Table

 wd.Visible = True

In the step below we will be entering the location of the shell along with the shell file name

 shellloc = InputBox("Please enter the shell location:")

 Set doc = wd.Documents.Open(shellloc)

Once the shells are open we can remove the first section since that will be the table of contents along
with the programming notes which isn’t necessary to read in. Following that we can count the total
number of sections which will be the total count of all TLFs.

 doc.Sections(1).Range.Delete

 nsect = doc.Sections.Count

4

Now we can create a loop to go through each section and extract the contents needed.

 For m = 1 To nsect

 Set Test = doc.Sections(m).Range

When looking at a section we need to count the number tables within it. If there is any tables less than 2
rows that table will be deleted because it is not necessary. Every row from the first table will then be
removed besides the last 2 rows. The first row of the last 2 rows that is kept will be assigned to column 2
which is the footnotes column.

 tabcount0 = Test.Tables.Count

 If tabcount0 > 0 Then

 For w = tabcount0 To 1 Step -1

 RowCount = Test.Tables(w).Rows.Count

 If RowCount < 2 Then Test.Tables(w).Delete

 Next w

 End If

 tabcount = Test.Tables.Count

 If tabcount > 0 Then

 For y = 1 To tabcount

 colcount = Test.Tables(1).Rows.Count

 For Z = colcount - 2 To 1 Step -1

 Test.Tables(y).Rows(Z).Delete

 colcount = Test.Tables(y).Rows.Count

 Next Z

 Next y

 Col2 = Test.Tables(1).Rows(1).Range.Text

 End If

 If tabcount = 0 Then

 Col2 = ""

 End If

Here we will be getting column 1 values so we will be looking to see if the key word Table, Figure, or
Listing will come up first within a section.

 For c = r To lastsection

 Set col1 = doc.Paragraphs(c).Range

 positionofSubstring = InStr(col1.Text, "Table ")

 positionofSubstring2 = InStr(col1.Text, "Figure ")

 positionofSubstring3 = InStr(col1.Text, "Listing ")

 If positionofSubstring <> 0 And positionofRepeat = 0 Then

5

 Tabnum = col1.Text

 Exit For

 End If

 If positionofSubstring2 <> 0 And positionofRepeat = 0 Then

 Tabnum = col1.Text

 Exit For

 End If

 If positionofSubstring3 <> 0 And positionofRepeat = 0 Then

 Tabnum = col1.Text

 Exit For

 End If

 Next c

Finally, we assign the column 1 and column 2 values to the excel sheet and repeat the process for the
rest of the sections (Display 5).

 sh.Cells(j, 1).Value = Tabnum

 sh.Cells(j, 2).Value = Col2

 End Sub

Display 5. Here are the extracted shells with titles in left column and footnotes in right column.

6

IMPORT TO SAS AND PROC REPORT

Now that we have an excel sheet will all titles and footnotes from the shell we can export this into SAS®
and create macro variables (&TITLE1., &FOOTNOTE1.) for the title and footnote depending on which

TLF we are working on. The Entire code is in Appendix 2.

 %macro TitleFoot(tlfnum=);

 %global title1 footnote1;

 proc import datafile="U:\TLFmacro\svn_excel.csv"

 out=shells_all

 dbms=csv

 replace;

 getnames=no;

 run;

 data Final(where=(VAR3=&tlfnum.) keep=VAR:);

 length VAR1 VAR2 $2000;

 set shells_all;

 format VAR1 VAR2;

 informat VAR1 VAR2;

 VAR1=compress(VAR1,,'kw');

 VAR2=compress(VAR2,,'kw');

 if index(VAR1,' \line ') gt 0 then

 tnum0=find(VAR1,' \line ');

 if tnum0 ne . then

 VAR3=strip(substr(VAR1,1,tnum0));

 run;

 proc sql noprint;

 select VAR1 into :TITLE1 - from Final;

 select VAR2 into :FOOTNOTE1 - from Final;

 quit;

 %mend;

 %TitleFoot(tlfnum="Table 2");

7

This method is much easier to input titles and footnotes in the SAS® program and allows for less human
error. Both methods below produce the same solution

 title1 j=l "&company" j=r "Page !{pageof}";

 title2 j=l "&protocol" ;

 title3 "&TITLE1.";

 footnote1 j=l "&linetop &FOOTNOTE1.";

 footnote3 j=l "Program: &srcfile..sas" j=r "Run date: &actdate &acttime";

 Vs.

 title1 j=l "&company" j=r "Page !{pageof}";

 title2 j=l "&protocol" ;

 title3 "Table 2";

 title4 "Demographics and Baseline Characteristics";

 title5 "Safety Analysis Set";

 footnote1 j=l "&linetop Footnote1";

 footnote2 j=l "Footnote2";

 footnote3 j=l " Footnote3";

 footnote5 j=l "Program: &srcfile..sas" j=r "Run date: &actdate &acttime";

VALIDATION METHOD

Throughout the study footnotes will be updated and we need to rerun the VBA code to account for
updated titles and footnotes. We want to make sure that what changed within the shell also changed in
the spreadsheet that we read into SAS®. Our method to validate footnote updates was to use the
compare feature in Apache Subversion (SVN). This feature produces a side-by-side comparison between
the excel versions highlighting changes between the base and working copy. It also calculates for any
additions or subtractions in TLF titles/footnotes and doesn’t consider it a new TLF. SVN is not the only
tool that can be used to validate footnote changes, other compare tools include but are not limited to,
Beyond Compare, Kaleidoscope, ExamDiff, and even web based compare tools found by using a quick

google search.

Display 6. Side by side display in SVN of old shell(left) versus new shell(right).

CONCLUSION

Having the ability to programmatically get titles and footnotes will greatly decrease the time it takes to
make TLF updates. It will also reduce in possible error of inputting manually. Through this paper we have
realized how beneficial a tool like VBA can be and how it can be applied to many other tasks to help save
time.

8

REFERENCES

Thierry Jegoux, Maud Garnier. 2008. "Titles and footnotes management from the TLF shell to the final
outputs" Proceedings of PhUSE 2008 Conference, Paper CS04.

Ajay Gupta. 2011. “Reading Title and Footnote from RTF Output into SAS™ utilizing Microsoft Excel”
Proceedings of the PharmaSUG 2011 Conference, Paper CC11.

Dongsun Cao. 2012. “Automation of Comparing ODS RTF Outputs in Batch using VBA and SAS™.”

Proceedings of the PharmaSUG 2012 Conference, Paper CC08.

Tony Cardozo. 2017. “Automating Title and Footnote Extraction Using Visual Basic for Applications (VBA)

and SAS™.” Proceedings of the PharmaSUG 2017 Conference, Paper BB20.

Shuai Wu, Sean Yan. 2019. “Title and footnote automation, VBA helps you out.” Proceedings of the

PharmaSUG China 2019 Conference, Paper AD029.

Igor Goldfarb, Ella Zelichonok. 2021. “Macro to Compare Titles and Footnotes in Produced TLF and
Corresponding Shells.” Proceedings of the PharmaSUG 2021 Conference, Paper AD179.

Frolov, Alexander. “How to remove carriage returns (line breaks) from cells in Excel.” Accessed March
14,2021. https://www.ablebits.com/office-addins-blog/2013/12/03/remove-carriage-returns-excel/

Gipson, Susan. “VBA in Excel: What is Visual Basic for Applications, How to Use.” Accessed March
14,2021. https://www.guru99.com/creating-your-first-visual-basic-for-applications-vba-in-excel.html

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Jake Adler
E-mail: jadler@prometrika.com

Name: Assir Abushouk
E-mail: aabushouk@prometrika.com

APPENDICES

Appendix 1: VBA Code for output Titles and Footnotes to Excel sheet

 Sub TLFnew()

 Dim wd As New Word.Application

 Dim doc As Word.Document

 Dim Test As Word.Range

 Dim sh As Worksheet

 Dim r As Integer

 Dim wordTbl As Table

https://www.ablebits.com/office-addins-blog/2013/12/03/remove-carriage-returns-excel/
https://www.guru99.com/creating-your-first-visual-basic-for-applications-vba-in-excel.html
mailto:jadler@prometrika.com
mailto:aabushouk@prometrika.com

9

 wd.Visible = True

 shellloc = InputBox("Please enter the shell location:")

 Set doc = wd.Documents.Open(shellloc)

 doc.Sections(1).Range.Delete

 nsect = doc.Sections.Count

 r = 1

 rr = 0

 j = 1

 For m = 1 To nsect

 Set Test = doc.Sections(m).Range

 tabcount0 = Test.Tables.Count

 If tabcount0 > 0 Then

 For w = tabcount0 To 1 Step -1

 RowCount = Test.Tables(w).Rows.Count

 If RowCount < 2 Then Test.Tables(w).Delete

 Next w

 End If

 tabcount = Test.Tables.Count

 If tabcount > 0 Then

 For y = 1 To tabcount

 colcount = Test.Tables(1).Rows.Count

 For Z = colcount - 2 To 1 Step -1

 Test.Tables(y).Rows(Z).Delete

 colcount = Test.Tables(y).Rows.Count

 Next Z

 Next y

 Col2 = Test.Tables(1).Rows(1).Range.Text

 End If

 If tabcount = 0 Then

 Col2 = ""

 End If

10

 Set sh = ActiveSheet

 nSections = Test.Paragraphs.Count

 lastsection = nSections + rr

 Tabnum = ""

 repeatval = ""

 For c = r To lastsection

 Set col1 = doc.Paragraphs(c).Range

 positionofSubstring = InStr(col1.Text, "Table ")

 positionofSubstring2 = InStr(col1.Text, "Figure ")

 positionofSubstring3 = InStr(col1.Text, "Listing ")

 If positionofSubstring <> 0 And positionofRepeat = 0 Then

 Tabnum = col1.Text

 Exit For

 End If

 If positionofSubstring2 <> 0 And positionofRepeat = 0 Then

 Tabnum = col1.Text

 Exit For

 End If

 If positionofSubstring3 <> 0 And positionofRepeat = 0 Then

 Tabnum = col1.Text

 Exit For

 End If

 Next c

 sh.Cells(j, 1).Value = Tabnum

 sh.Cells(j, 2).Value = Col2

 j = j + 1

 nnSections = lastsection

 r = nnSections + 1

 rr = nnSections

11

 Next m

 Dim MyRange As Range

 Application.ScreenUpdating = False

 Application.Calculation = xlCalculationManual

 For Each MyRange In ActiveSheet.UsedRange

 If 0 < InStr(MyRange, Chr(11)) Then

 MyRange = Replace(MyRange, Chr(11), " \line ")

 End If

 Next

 Application.ScreenUpdating = True

 Application.Calculation = xlCalculationAutomatic

 End Sub

Appendix 2: SAS® Code to extract contents from excel sheet

 %macro TitleFoot(tlfnum=);

 %global title1 footnote1;

 proc import datafile="U:\TLFmacro\svn_excel.csv"

 out=shells_all

 dbms=csv

 replace;

 getnames=no;

 run;

 data Final(where=(VAR3=&tlfnum.) keep=VAR:);

 length VAR1 VAR2 $2000;

 set shells_all;

 format VAR1 VAR2;

 informat VAR1 VAR2;

 VAR1=compress(VAR1,,'kw');

 VAR2=compress(VAR2,,'kw');

 if index(VAR1,' \line ') gt 0 then

12

 tnum0=find(VAR1,' \line ');

 if tnum0 ne . then

 VAR3=strip(substr(VAR1,1,tnum0));

 run;

 proc sql noprint;

 select VAR1 into :TITLE1 - from Final;

 select VAR2 into :FOOTNOTE1 - from Final;

 quit;

 %mend;

 %TitleFoot(tlfnum="Table 2");

