
1 

PharmaSUG 2021 - Paper AD-100 

A metadata driven approach to mock TFL generation 

Tobias Kröpelin, Anne Petersen, and Cristina Boschini, Novo Nordisk A/S 

ABSTRACT  

At Novo Nordisk A/S we developed a tool to create specifications for tables, figures, and listings (mock 
TFL) utilizing the same tools and metadata as when the actual tables, figures, and listings (TFL) are 
produced. The mock TFL generator consists of a repository of table, figure or listing templates in .txt or 
.png format (called unique shells) as well as output metadata, including instructions on content and layout 
for TFL programming. The mock TFL are created by combining the unique shells with output metadata, 
such as titles, footnotes and programming instructions through a SAS® script. The final mock TFL in 
.docx format are generated by the same tool used to generate the actual trial TFL. The main advantage of 
this tool is the single point of definition for the mock TFL and the actual trial TFL. This assures that the 
programmer only needs to maintain a single repository containing output and programming metadata. 
Additionally, the simple approach eases alignment across trials and constitutes a good starting point for 
the set-up of new trials. Finally, this ensures an easier review process, thereby increasing output quality 
and saving time during trial conduct. 

INTRODUCTION  

In Novo Nordisk A/S we use specifications for tables, figures, and listings as a tool to agree with our 
stakeholders on how trial results should be reported. Furthermore the specifications for TFL function as 
programming guidance and thus allow several programmers to work independently on the same trial. 
Having mock TFL is therefore valuable for both stakeholders and programmers. A downside, however, 
has been the considerable amount of time required to plan and produce the mock TFL, especially for new 
programmers. For each trial, the dedicated trial programmer creates the mock TFL documents. In these 
every planned output is represented through a template figure, table, or listing, with specific titles, 
footnotes and programming instructions. Despite the fact that this is a common task performed for most 
projects and trials, different approaches on how to create the mock TFL are used. Based on ideas from 
the different approaches we developed a tool that generates mock TFL in an easy and flexible way.  

The main benefit of this approach is the utilisation of the same tools and metadata, which are used when 
the actual TFL are produced for the final clinical trial report (CTR). This is enabled by the full integration 
with SECO, a collection of tools used in Novo Nordisk A/S to plan tasks, control programming review and 
to define output metadata including titles and footnotes. The latter are specifically controlled by an 
interface tool called PLACE.  

The mock TFL generator consists of three components; a repository of unique shells, a file containing 
metadata and programming instructions, a SAS® program which creates mock shells. Each component 
and the process of the mock TFL generator are described in more detail in the following section. 

METHODS  

OVERVIEW OF THE MOCK TFL GENERATOR 

The mock TFL generator consists of three components and integrates with two existing tools available to 
the statistical programmer in Novo Nordisk A/S and routinely utilised during planning and creation of the 
statistical input to the CTR. The first mock TFL generator component, the mocktfl_place_input.csv file, 
provides guidance on which mock shells to include, related metadata and programming instructions. The 
next component is a unique shell repository containing templates for tables, listings and figures each 
indexed with a unique name. The third component, the SAS® program makemocktfl.sas, is the heart of 
the mock TFL generator. It combines output metadata with unique shells to create mock shells for every 
single output planned in a trial.  

The interplay of these tools is depicted below (Display 1). First the unique shell references and 
programming instructions are copied into the in-house tool, PLACE. Afterwards the makemocktfl.sas 



 
 

2 

program is run, where output metadata and programming instructions are read and attached to specific 
mock tables, figures or listings. Finally the in-house tool, MKEOT, is utilized to concatenate all the 
individual tables, figures and listings to create the final human readable mock TFL documents. 

 

Display 1: Process of mock TFL generator 

INTEGRATION WITH EXISTING TOOLS 

PLACE is a planning tool for output creation built to specify the TFL required for the CTR and to organize 
programming reviews. Within this tool output metadata such as titles and footnotes are defined. MKEOT 
is a tool that assembles all single TFL to a concise document in .docx format.   

INPUT FOR THE MOCK TFL GENERATOR 

The mocktfl_place_input.csv contains the same columns (Display 2) as required for PLACE and is 
prefilled with output metadata and programming instructions. These instructions can be tailored to every 
planned table, figure or listing. This enables the trial team to select only the relevant TFL and populate 
PLACE with their respective metadata and programming instruction. After the initial selection of TFL from 
the input data file PLACE becomes the single point of definition for all output metadata and programming 
instructions. In that way PLACE is an efficient tool to define and change output metadata while at the 
same time ensuring these metadata are applied to mock shells as well as the final TFL deliverables. 

 

Display 2: mocktfl_place_input.csv example of five outputs (the lower part is an extension to the right of 
the upper part) 

The unique shell repository is a collection of template tables (Display 3), figures  (Display 4) and listings 
(Display 5) to present in the CTR. All unique shells are either in .txt or .png format. Having this repository 



 
 

3 

enables the trial team to easily select and adjust templates according to the trial design e.g. by changing 
the number of treatment arms or the presented parameters.  

 

Display 3: Example of a unique shell for a table 

 

Display 4: Example of a unique shell for a figure 

 

Display 5: Example of a unique shell for a listing 

A unique shell combined with associated metadata and programming instructions constitutes a single 
mock shell. Detaching the unique shells from metadata and programming instructions makes them 
reusable within and across trials. For example the unique shell depicted above (Display 3) can be used 
for several outputs of similar content and layout. The utilisation of the same unique shell for different 
mock shells is shown below (Display 6). 



 
 

4 

 

Display 6: Example of two different mock shells using the same unique shell combined with different 
metadata and programming instructions 

The program, makemocktfl.sas, is the core of the mock TFL generator. It combines output metadata, 
programming instructions and unique shells to produce every single mock shell. In the next step an in-
house tool assembles these single mock shells into a concise document presented like the actual TFL 
appendices for the CTR. 

If needed the computed mock TFL can be easily updated by modifying the programming instructions or 
unique shells and rerunning the makemocktfl.sas program. When creating and updating the trial mock 
TFL it is important to keep the audience of the mock TFL in mind and accordingly balance the level of 
detail of the mock shells with the time spent on the process. 

CONCLUSION 

The functional integration with existing tools used to produce the actual TFL allows for a single point of 
definition for the mock TFL and the actual TFL for the CTR. This ensures that programmers only need to 
maintain a single document containing output and programming metadata. The flexible way the unique 
shells and programming instructions are handled makes it easy to align across projects and to efficiently 
get started on new trials. The resulting, highly detailed mock TFL both improve the output quality and 
enable an efficient collaboration with stakeholders.  

Despite the obvious benefits of the mock TFL generator, we have identified some areas for improvement. 
Implementing updates or corrections to the mock TFL can be time-consuming, because modifications to 
the unique shell or the metadata requires re-running the SAS® program and re-creating the mock TFL 
documents. In the future we aim to expand the unique shell repository to include templates for more trial 
phases, designs or investigational products. Ideally having a predefined list of outputs and unique shells 
based on the trial design could further speed up the process of creating trial specific mock TFL.  

ACKNOWLEDGMENTS 

We would like to acknowledge the work of present and former colleagues who before us worked on 
streamlining the creation of mock TFL and aligning across projects and trials. This tool was created 
considering their input and ideas. 



 
 

5 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the authors at: 

Tobias Kröpelin 
Novo Nordisk A/S  
+45 3079 1142  
tkp@novonordisk.com 
  
Anne Petersen 
Novo Nordisk A/S  
+45 3075 0846 
zapt@novonordisk.com 
 
Cristina Boschini 
Novo Nordisk A/S  
+45 3075 0070  
cbcn@novonordisk.com 

 

mailto:tkp@novonordisk.com
mailto:zapt@novonordisk.com
mailto:cbcn@novonordisk.com

