
1

PharmaSUG 2020 - Paper QT-253

Implementing a LEAD Function for Observations in a SAS® DATA Step
Timothy J. Harrington, Navitas Data Sciences, Inc.;

ABSTRACT
A common situation in DATA step processing is the need to reference the value of a variable (column) in
a prior or later observation. The SAS® system provides the functions LAG and DIFF to return the value of
the variable in the prior observation or the difference between the current value of the variable, in the
Program Data Vector (PDV), and the prior value. LAGn and DIFFn refer to the nth prior value, where
1<=n<=100 and must not refer to before the first observation (_N_=1) in the dataset. However, there is no
corresponding LEAD function which looks at values in observations still to be read into the PDV. This
paper demonstrates three different methods of implementing a LEAD function functionality. The modus
operandi of each method is illustrated with examples of SAS code and the advantages and
disadvantages of each method are discussed, as is the suitability of each method for specific types of
programming situations.

INTRODUCTION
The SAS system can only reference prior values of a variable by successively storing the value at each
observation in a queue which retains those prior values. Values farther down the dataset, not yet read
into the PDV, cannot yet be known unless they have been stored in some way from a earlier run.
Otherwise, the SAS system does not have any way of looking ahead at observations not yet read. The
three methods of such a LEAD function implementation described here are:

1. Inverting a data set and using LAG

2. Storing all the values of a column transposed as array elements to be referenced on the observation
in the PDV. All three of these methods pre-process the dataset and create new columns
concatenating the carried backwards values, which can now be referenced inside a SAS DATA step
or a SAS PROCedure (including PROC SQL).

3. A macro which uses _N_ to identify each observation and then performs a MERGE to a copy of the
observations using an observation identifier offset.

HOW A DATA STEP PROCESSES A DATASET
When the execution of a DATA Step begins a data structure called the Program Data Vector (PDV) is
created. This contains all of the variables in the dataset, which are all initially set to missing. The first
observation is then read into the PDV so now each variable contains its corresponding value in the first
observation. The system variable _N_ is set to 1. The contents of any item in the PDV may now be read
or modified until the end of the DATA step is reached, at which point the PDV contents are written to the
output dataset. (An OUTPUT statement performs such a write to the output dataset with the PDV content
values at that point in the DATA Step.) When execution returns to the beginning of the DATA step the
contents of the PDV are reset to missing before being loaded with the values of the corresponding
variables in the second observation and _N_ is incremented to 2. This process repeats until the last
observation has been processed. (A DELETE statement sets everything in the PDV to missing at
that point and the contents are not written to the output data set.) After each iteration of the DATA Step
the PDV contents are reset to missing, so prior values, even if output to the output data set, are lost in the
current DATA step. However, the RETAIN statement prevents the specified variable(s) from being reset
to missing at the start of the next iteration, though if that variable exists in the input dataset it will be
overwritten with the value in the current observation (including missing) in the input data set.

2

THE LAGN AND DIFN FUNCTIONS
The LAGn function retains the values from prior observations of the specified variable in a queue. For
example, if the variable is called X, LAG(X) (or LAG1(X)) will hold the prior value of X. LAG2(X) will hold
the value of X from two observations ago. The LAGn function refers to the nth prior value of a variable.
The DIFn function is the difference between the current value (currently in the PDV) and the nth prior
value. Using the example dataset below LAG(TIME) and LAG(AMT) would have the values shown in the
columns below:

PATIENT VISIT PCTPT TIME EVID AVALC AMT LAG

(TIME)

DIF

(TIME)

LAG

(AMT)

1000 DAY
1

PREDOSE 2020-02-24

T08:47:00

0 LTR . .

1000 DAY
1

 2020-02-24

T08:55:00

1 60mg 2020-02-24

T08:47:00

00:08:00

1000 DAY
1

30 MIN POST
DOSE

2020-02-24

T09:31:00

0 2.24 2020-02-24

T08:55:00

00:36:00 60mg

1000 DAY
1

4 HRS POST
DOSE

2020-02-24

T13:03:00

0 0.46 2020-02-24

T09:31:00

03:32:00

1000 DAY
2

PREDOSE 2020-02-25

T09:02:00

0 0.05 2020-02-24

T13:03:00

19:59:00

1000 DAY
2

 2020-02-25

T09:10:00

1 65mg 2020-02-25

T09:02:00

00:08:00

1000 DAY
2

30 MIN POST
DOSE

2020-02-25

T09:37:00

0 2.53 2020-02-25

T09:10:00

00:27:00 65mg

1000 DAY
2

4 HRS POST
DOSE

2020-02-25

T13:08:00

0 0.66 2020-02-25

T09:37:00

03:31:00

1000 DAY
3

PREDOSE 2020-02-26

T08:52:00

0 0.06 2020-02-25

T13:08:00

19:44:00

1000 DAY
3

 2020-02-26

T09:02:00

1 70mg 2020-02-26

T08:52:00

00:10:00

1000 DAY
3

30 MIN POST
DOSE

2020-02-26

T09:31:00

0 2.72 2020-02-26

T09:02:00

00:29:00 70mg

1000 DAY
3

4 HRS POST
DOSE

2020-02-26

T13:24:00

0 0.63 2020-02-26

T09:31:00

03:53:00

Example PK data (PKRES) showing dosing (EVID=1) and PK sampling (EVID=0) observations

PATNUM = Patient ID, VISIT = Visit Text, PCTPT = Visit Timepoint,, TIME = Actual Date and Time of Sample
Collection or Dose Administration (numeric with format is8601dt.). EVID=Event identifier (0=PK sample taken e.g.
blood draw, 1=dose given to patient). AVALC = Character Result from Sample (LTR=Less Than Readable),
AMT = Amount of Dose Administered

3

Points to note here are:
1. DIF only applies to numeric variables. DIF(TIME) is formatted as time8.

2. DIF is the subtraction of the prior value from the current value, since TIME is increasing the DIF values are

all positive

3. DIF is missing if either the current or prior observation value are missing, or if the prior value reference is
before the first observation (n in DIFn is less than _n_-1)

4. The default value of n is 1, but it can be any integer up to and including 100, but cannot be dynamically
changed during the execution of the DATA step.

5. Care must be taken when grouping observations by one or more sorted variables that 'rollover' into the next
group (in this example PATNUM and VISIT) is prevented. In the above example the TIME for the last VISIT
(PCTPT='4 HRS POST DOSE') is carried into the first observation for the next VISIT (and in some cases the
next PATNUM). Hence, when determining LAG1 at the first VISIT (and the first PATNUM) the LAG1 result
should be ignored and be set to missing.

EXAMPLE OF THE NEED FOR A LEAD
In some programming situations there is a requirement to be able to 'look ahead' to a variable's value in
the next or a 'future' observation. In above example there may be a need to determine the time the
PREDOSE sample was taken before the dose was administered at a given VISIT. (The predose 'trough'
prior to dosing). In this case the time the PREDOSE sample was taken at the DAY 2 visit would be
'lead1(time)-time, or 2020-02-25T09:02:00 - 2020-02-25T09:10:00 = 8 minutes earlier. Unfortunately
there is no such LEAD function, the reason being the next observation has not yet been read into the
PDV and hence cannot yet be known.

Below are described the three methods for implementing a LEAD function. All three methods require a
one-time set up for the data set, using additional variables and in some cases additional temporary
datasets, however once the set-up has been performed accessing the LEADn values is immediate and
convenient.

METHOD 1: USING AN INVERTED LAG
This method is to sort the dataset by the group variables (PATNUM and VISIT) and sort the variable to be
ordered for the carry forward (TIME) within the innermost group in reverse order and then use the LAG (or
DIF) function on the reversed data to store the carried forwards value in a new column. The observations
are then resorted back into the original order, so that 'carried forwards' has now become 'carried
backwards'. Once this set-up has been performed the created column(s) can now be referred to in a
current observation. An advantage of this method is no temporary datasets are needed to hold
intermediate values.

Using the example data shown above, stored as columns and observations in a dataset named PKRES,
the code below creates two new variables LEAD_DIF_TIME and LEAD_AMT. LEAD_DIF_TIME is used
for storing the difference between TIME in the current observation and TIME in the next observation.
LEAD_AMT will hold the amount of the dose about to occur. The AMT for the dose about to occur will be
carried back to be LEAD_AMT at each of PREDOSE observations.

The first step is to sort the data by the grouping variables, in this case PATNUM and VISIT, and also sort
TIME in reverse order within the innermost group (VISIT). Hence TIME is sorted using the keyword
DESCENDING.

proc sort data=pkres;
 by patnum visit descending time;
run;

4

If a variable being referenced is a character string, in this case AMT, the column being created,
LEAD_AMT, to hold the carried forward value must be declared with sufficient length to ensure the
longest string encountered is not truncated. A numeric variable OBSCOUNT is used to keep track of the
observation sequence number within each VISIT. The RETAIN statement prevents OBSCOUNT from
being reset to missing at the start of each DATA step iteration. OBSCOUNT is reset to 1 at FIRST.VISIT.
The LAGn or DIFn function is used to store the prior sorted backwards value (next value when sorted
forwards) in the applicable LEAD_ column. An important point to note is the LEAD_ variables are set as
missing on the first OBSCOUNT. If this were not done values would roll over into the next VISIT. The rule
is if the carry back is by N observations the values of the LEAD_ variables must be set to missing when
the observation counter is less than or equal to N. (obscount<=n).

data pkres(drop=obscount);
 set pkres;
 by patnum visit descending time;
 retain obscount 0;
 format lead_dif_time time8.;
 length lead_amt $20;
 obscount=obscount*(first.visit=0)+1;
 lead_dif_time=dif(time);
 lead_amt=lag(amt);
 if obscount=1 then do;
 lead_dif_time=.;
 lead_amt=' ';
 end;
run;

Once this DATA step is complete all that remains to be done is to drop OBSCOUNT and re-sort the
observations back into their original order, so 'LEAD_' will then refer to the next instead of prior
observation.

proc sort data=pkres;
 by patnum visit time;
run;

LEAD_DIF_TIME is now missing at the last observation for each VISIT and is otherwise negative
because of the reversed order of TIME resulting from a later time being subtracted from an earlier time
(The time is 'before' instead of 'after'). The PREDOSE 'trough' time until the next dose, and the amount of
the dose about to be administered are now LEAD_DIF_TIME and LEAD_AMT respectively on the
observations where PCTPT='PREDOSE'. Note: The assumption is being made that the data is
'clean', that is all the VISITs, EVID, PCTPT time-points, and TIME dates and times are all valid and
correctly sequenced with respect to each other.

Note: LEAD_DIF_TIME is formatted as time8. instead of is8601dt. so '1959-12-31:' is not shown in front
of the time

5

PATIENT VISIT PCTPT TIME EVID AVALC AMT LEAD_DIF_TIME LEAD_AMT

1000 DAY
1

PREDOSE 2020-02-24

T08:47:00

0 LTR -00:08:00 .60mg

1000 DAY
1

 2020-02-24

T08:55:00

1 60mg -00:36:00

1000 DAY
1

30 MIN POST
DOSE

2020-02-24

T09:31:00

0 2.24 -03:32:00

1000 DAY
1

4 HRS POST
DOSE

2020-02-24

T13:03:00

0 0.46 .

1000 DAY
2

PREDOSE 2020-02-25

T09:02:00

0 0.05 -00:08:00 65mg

1000 DAY
2

 2020-02-25

T09:10:00

1 65mg -00:27:00

1000 DAY
2

30 MIN POST
DOSE

2020-02-25

T09:37:00

0 2.53 -03:31:00

1000 DAY
2

4 HRS POST
DOSE

2020-02-25

T13:08:00

0 0.66 .

1000 DAY
3

PREDOSE 2020-02-26

T08:52:00

0 0.06 -00:10:00 70mg

1000 DAY
3

 2020-02-26

T09:02:00

1 70mg -00:29:00

1000 DAY
3

30 MIN POST
DOSE

2020-02-26

T09:31:00

0 2.72 -03:53:00

1000 DAY
3

4 HRS POST
DOSE

2020-02-26

T13:24:00

0 0.63 .

PKRES data after evaluating the time before the next dose or sample time, and the next dose
amount

METHOD 2: USING AN ARRAY OF TRANSPOSED VALUES
This method is most suitable for data sets with a large number occurrences of group variables (e.g. the
patient ID) and a small number of occurrences of the data items to be referenced within each group. First,
the data is sorted by the group variable(s) and the variable to be carried backwards, then, using PROC
TRANSPOSE, the variables are stored as columns for each group. The first value becomes the first
created column, the second value becomes the second column, and so on. These created columns are
then referenced by number (or could be stored in an array). An advantage of this method is there is no
need to declare lengths for character holding variables, since PROC TRANSPOSE creates columns of an
applicable length.

Using the above PKRES data as a simple example, the first step is to sort the observations into the
appropriate order:

6

proc sort data=pkres;
 by patnum visit time;
run;

The next step is to create a data set with the column to be carried backwards transposed so the data is
now in a horizontal format. In this case there will be four columns produced, corresponding to each of the
four times at each VISIT. If the number of observations for the innermost BY variable varies, any excess
column values would be set to missing. The PREFIX option names the transposed times as t1 – t4
(instead of col1-col4) and the transposed dose amounts as a1 - a4.

proc transpose data=pkres out=_t01 prefix=t;
 by patnum visit;
 var time;
run;

PATNUM VISIT _NAME_ T1 T2 T3 T4

1000 DAY 1 TIME 2010-02-24
T08:47:00

2010-02-24
T08:55:00

2010-02-24
T09:31:00

2010-02-24T
13:03:00

1000 DAY 2 TIME 2010-02-25
T09:02:00

2010-02-25
T09:10:00

2010-02-25
T09:37:00

2010-02-25
T13:08:00

1000 DAY 3 TIME 2010-02-26
T08:52:00

2010-02-26
T09:02:00

2010-02-26
T09:31:00

2010-02-26
T13:24:00

proc transpose data=pkres out=_t02 prefix=a;
 by patnum visit;
 var amt;
run;

PATNUM VISIT _NAME_ A1 A2 A3 A4

1000 DAY 1 AMT 60mg

1000 DAY 2 AMT 65mg

1000 DAY 3 AMT 70mg

These PROC TRANSPOSE functions arrange the time and amount values as sequentially ordered
columns which can now be joined back with the original data using a MERGE with the group identifiers,
PATNUM and VISIT, as the BY variables.

data _t02;
 merge pkres(in=a) _t01(in=b) _t02(in=c);
 by patnum visit;
 if a and b and c;
run;

This next DATA step now sets LEAD_AMT and LEAD_DIF_TIME at the PCTPT=’PREDOSE’
observations by referencing the second column of transposed data. This second column is from the
second observation in each VISIT, that is the dose taken (EVID=1), assuming all the values are valid and
correctly ordered in the original data.

7

data _t03(drop=_name_ a1-a4 t1-t4);
 set _t02;
 length lead_amt $20;
 format lead_dif_time time8..;
 if pctpt='PREDOSE' then do;
 lead_amt=a2;
 lead_dif_time=time-t2;
 end;
run;

PATIENT VISIT PCTPT TIME EVID AVALC AMT LEAD_DIF_TIME LEAD_AMT

1000 DAY
1

PREDOSE 2020-02-24

T08:47:00

0 LTR -00:08:00 .60mg

1000 DAY
1

 2020-02-24

T08:55:00

1 60mg .

1000 DAY
1

30 MIN POST
DOSE

2020-02-24

T09:31:00

0 2.24 .

1000 DAY
1

4 HRS POST
DOSE

2020-02-24

T13:03:00

0 0.46 .

1000 DAY
2

PREDOSE 2020-02-25

T09:02:00

0 0.05 -00:08:00 65mg

1000 DAY
2

 2020-02-25

T09:10:00

1 65mg .

1000 DAY
2

30 MIN POST
DOSE

2020-02-25

T09:37:00

0 2.53 .

1000 DAY
2

4 HRS POST
DOSE

2020-02-25

T13:08:00

0 0.66 .

1000 DAY
3

PREDOSE 2020-02-26

T08:52:00

0 0.06 -00:10:00 70mg

1000 DAY
3

 2020-02-26

T09:02:00

1 70mg .

1000 DAY
3

30 MIN POST
DOSE

2020-02-26

T09:31:00

0 2.72 .

1000 DAY
3

4 HRS POST
DOSE

2020-02-26

T13:24:00

0 0.63 .

PKRES data after taking the second column of the transposed time and amount, ie: from the dose
(EVID=1) observation, and joining to the PREDOSE observation

8

OBSERVATION OFFSET PAIRING
This method uses the _N_ variable, provided by SAS to identify the observation number in a DATA step.
Each observation is matched to a copy of the dataset's key columns and the variable(s) to be carried
backwards. The matching is performed using an offset of the key values so each column value to be
carried backwards is displaced back by the offset. The detailed steps of this process are:

1. The observations are sorted by specified BY variables, one of these BY variables is defined as the
group variable, the carry backwards will take place within each distinct value of this group variable.

2. If the data is not to be sorted, ie: the carry backward is for the entire dataset as one group, a dummy
group variable is created with the same value (e.g. 1) on all observations.

3. A numeric group key, GRPKEY, is assigned to each block of observations with the same group variable
value.

4. A numeric key, KEY0, is incrementally assigned to each observation within each group, reset to 1 at
FIRST.GRPKEY

5. An offset key, KEYN, is created by subtracting the observation displacement (n) from KEY0

6. The data is sorted by GRPKEY and KEY0 and these output to a temporary dataset, A.

7. The original dataset is now sorted by GRPKEY and the offset key KEYN. These two key variables and
the variable being carried backwards (VAR) are output to a second temporary dataset, B. KEYN is to
KEY0.

8. The datasets A and B are now joined using a MERGE with GRPKEY and KEY0 as the BY variables,
keeping only matching observations in dataset A. When the match is in A and B, VAR is overwritten
with the new carried backwards value (or output to another specified column). When in A only, the
absence of a matching value in B results in VAR being set to missing, this is for the last N observations
in each grouping, where there would be no following VAR value to carry backwards from. Key values in
B only are dropped, these would be the 'lost' values of VAR pushed back to before the beginning of
each group.

9. The dataset created in the prior step is now the output dataset, which is resorted by the original BY
variables. The temporary keys GRPKEY, KEY0, and KEYN are dropped.

The following illustration shows KEY0 being added as a sequential key for each value of GRPKEY in
dataset A, To carry the value of X backwards by one observation a second dataset (B) is created and 1 is
subtracted from KEY0 and the result stored in KEYN. In dataset B KEY0 is dropped, KEYN is renamed to
KEY0, and X is renamed as LEAD_X. The two datasets are now MERGED by GRPKEY and KEY0. The
last observation for each GRPKEY will have LEAD_X missing (NXTGRP1 in this example) because there
is no matching value of GRPKEY and KEY0.

GRPKEY KEY0 X GRPKEY KEYN (KEY0-1)
(Renamed to
KEY0 before
merge)

KEY0
(Dropped
before
merge)

LEAD_X

999 4 PRIGRP4 1000 0 1 FIRST

1000 1 FIRST 1000 1 2 SECOND

1000 2 SECOND 1000 2 3 THIRD

1000 3 THIRD 1000 3 4 FOURTH

1000 4 FOURTH 1001 0 1 NXTGRP1

 Dataset A Dataset B

9

Below is a macro LEADN, which performs these functions, and an example call using the dataset from
the prior examples. The parameters are:
 INDS: Name of the input dataset

 OUTDS: Name of the output dataset, if left blank the created carried backwards variable is added to INDS.

 BYVARS: The BY variables to sort the dataset by. If none specified, the whole dataset is taken as one group.

 GRPVAR: BYVARS column to be used for grouping (carry backward within the observations with a distinct value)

 N: Number of observations to carry backwards, default is 1.

 VAR: Name of the column to be carried backwards

 NXTVARCB: Name of a new variable to contain the carried backward values of VAR (defaults to &var._cb)

Existing columns in the input dataset are unchanged.

%macro leadn(inds=&syslast, /*** Macro to simulate a LEADn function ***/

 outds=,
 byvars=,
 grpvar=,
 n=1,
 var=,
 nxtvarcb=);

%if &outds= %then %do;
 %let outds=&inds;/*If no out data set, add &nxtvarcb to input data set*/
%end;

%if &nxtvarcb= %then %do; /* If no variable specified to hold the lead */
 %let nxtvarcb=&var._cb; /* value create a column named as &VAR with */
%end; /* suffix _cb */

%local sortkey;
%let sortkey=bvar1 &byvars; /* Define the sortkey */
%if &sortkey=bvar1 %then %do; /* If no BY variables specified use one */
 %let grpvar=&sortkey; /* dummy sort-key for the whole dataset */
%end;

 data _t1;
 set &inds;
 bvar1=1;
 run;

 proc sort data=_t1;
 by &sortkey;
 run;

 data _t2;
 set _t1;
 by &sortkey;
 retain grpkey key0 0;
 grpkey=grpkey+first.&grpvar; /* Group of distinct values key */
 key0=key0*(first.&grpvar=0)+1; /* Obs. count within each group */
 key&n=key0-&n; /* Key with the N obs. offset */
 run;

10

 proc sort data=_t2 out=_t3(drop=key&n); /* Create a copy of the */
 by grpkey key0; /* data set sorted by the group */
 run; /* observation key */

 proc sort data=_t2(keep=grpkey key&n &var)
 out=_t4(rename=(key&n=key0 &var=&nxtvarcb));
 by grpkey key&n; /* Create an index dataset of the */
 run; /* key and offset key and the new VAR */

 data _t5;
 merge _t3(in=a) _t4(in=b); /* Join by the group and the */
 by grpkey key0; /* corresponding observation keys */
 if a;
 run;

 proc sort data=_t5 out=&outds(drop=bvar1 grpkey key0);
 by &sortkey; /* Resort by original BY variables */
 run; /* drop the temporary key variables */

 proc datasets nolist; /* Remove the temporary data sets */
 delete _t1-_t5;
 run;

%mend leadn;

The following macro calls create a column NEXTTIME with LEAD1(TIME) within each VISIT and a
column NEXT_AMT with LEAD1(AMT) within each VISIT. Subtracting NEXTTIME from TIME would yield
the difference, the equivalent of DIF(TIME) but using the next instead of the prior observation:

%leadn(inds=pkres,
 outds=pk1,
 byvars=patnum visit time,
 grpvar=visit,
 n=1,
 var=time,
 nxtvarcb=nxttime);

%leadn(inds=pkres,
 outds=pk1,
 byvars=patnum visit time,
 grpvar=visit,
 n=1,
 var=time,
 nxtvarcb=nxttime);

11

PATIENT VISIT PCTPT TIME EVID AVALC AMT NEXTTIME NEXT_AMT

1000 DAY
1

PREDOSE 2020-02-24

T08:47:00

0 LTR 2020-02-24

T08:55:00

.60mg

1000 DAY
1

 2020-02-24

T08:55:00

1 60mg 2020-02-24

T09:31:00

1000 DAY
1

30 MIN POST
DOSE

2020-02-24

T09:31:00

0 2.24 . 2020-02-24

T13:03:00

1000 DAY
1

4 HRS POST
DOSE

2020-02-24

T13:03:00

0 0.46 .

1000 DAY
2

PREDOSE 2020-02-25

T09:02:00

0 0.05 2020-02-25

T09:10:00

65mg

1000 DAY
2

 2020-02-25

T09:10:00

1 65mg 2020-02-25

T09:37:00

1000 DAY
2

30 MIN POST
DOSE

2020-02-25

T09:37:00

0 2.53 2020-02-25

T13:08:00

1000 DAY
2

4 HRS POST
DOSE

2020-02-25

T13:08:00

0 0.66 .

1000 DAY
3

PREDOSE 2020-02-26

T08:52:00

0 0.06 2020-02-26

T09:02:00

70mg

1000 DAY
3

 2020-02-26

T09:02:00

1 70mg . 2020-02-26

T09:31:00

1000 DAY
3

30 MIN POST
DOSE

2020-02-26

T09:31:00

0 2.72 2020-02-26

T13:24:00

1000 DAY
3

4 HRS POST
DOSE

2020-02-26

T13:24:00

0 0.63 .

PKRES data with lead times and dose amounts after using the LEADN macro

CONCLUSION
This paper has introduced and discussed three techniques to simulate a LEAD function, corresponding to
the LAG function. The three methods described are not exhaustive but are methods that can be
conveniently incorporated into an application program. Programmers should consider which approach is
most appropriate for the data being handled and the given programming situation. Other methods not
mentioned in this paper are also available to simulate a LEAD function. The 'Recommended Further
Reading' section below contains references to methods both similar to and different from this paper
content.

12

ACKNOWLEDGMENTS
Navitas data Sciences, Inc.

Pharmasug 2020 paper Selection Committee.

RECOMMENDED READING
• Techniques to Perform the Lead Function Through Data Manipulation Kruti Pandya, Independent

Consultant Niraj J. Pandya,eClinical Solutions, A Division of Eliassen Group

https://www.lexjansen.com/nesug/nesug09/cc/CC26.pdf

• Paper 3699-2019Calculating Leads (and Lags) inSAS®: One Problem, Many SolutionsAndrew
Gannon, The Financial Risk Group, Cary NC

 https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3699-2019.pdf

• LEADS AND LAGS IN SAS®Mark Keintz, Wharton Research Data Services, University of
Pennsylvania

 https://www.lexjansen.com/nesug/nesug13/113_Final_Paper.pdf

• USER GROUP 2019 Leads and Lags:Static and Dynamic Queues in the SAS® DATA STEP, 2nd
edMark KeintzWharton Research Data ServicesTA S S: 08FEB2019. Copyright © SAS Institute Inc.
All rights reserved.

http://torsas.ca/attachments/File/20190208/1_m_k_leads_and_lags.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Please feel free to contact the author at:

Timothy J. Harrington
Professional Services,
Navitas Data Sciences, Inc, 1610 medical Drive, Suite 300, Pottstown, PA 19464
610-970-2333

timothy.harrington@navitaslifesciences.com

www.navitaslifesciences.com

Any brand and product names are trademarks of their respective companies.

	Abstract
	Introduction
	HOW A DATA STEP PROCESSES A DATASET
	THE LAGn and DIFn FUNCTIONS
	EXAMPLE OF THE NEED FOR A LEAD
	METHOD 1: Using an Inverted LAG
	METHOD 2: USING AN ARRAY OF TRANSPOSED VALUES
	OBSERVATION OFFSET PAIRING

	Conclusion
	Acknowledgments
	Recommended Reading
	Contact Information

