
1

PharmaSUG 2019 - Paper AP-298

Automating SAS Program Table of Contents for Your FDA Submission
Package

Lingjiao Qi, Bharath Donthi, Statistics & Data Corporation

ABSTRACT

To submit a complete and compliant data package to the FDA for product approval, the submission must
include the SAS programs that generated the analysis datasets, tables, and figures. Including these
programs in the submission package helps the FDA data reviewers to understand the process by which
the variables for the respective analyses were created, and to confirm the analysis algorithms. Organizing
these SAS programs into a Table of Contents is highly recommended as it serves as an easy reference
for the FDA reviewers, verifies that each expected file is included in the submission, and provides the
FDA with easily-accessible details for each program.

The Table of Contents is usually compiled manually by reviewing each individual program and typing the
required information into a word processor. This time-consuming process is inefficient and error-prone. To
increase accuracy and efficiency, we have developed an in-house macro tool to automatically generate a
Table of Contents by reading each submitted SAS program and its associated files. This easy-to-use
macro tool can be fully executed within SAS, and it dramatically reduces documentation preparation time.

To produce a complete and detailed Table of Contents, the macro tool extracts from the submitted
programs: metadata (program name, size, descriptions, etc.), input datasets, output file names, and
macros. This paper will provide a detailed description of our time-saving macro tool to assist SAS users in
automatically generating the Table of Contents for their FDA data submission packages.

INTRODUCTION AND BACKGROUND

Over the last decades, the US Food and Drug Administration (FDA) has released a series of guidance
documents for statistical software packages. Specifically, the FDA Study Data Technical Conformance
Guide (Figure 1) requests that sponsors provide software programs as part of regulatory submissions.
Inclusion of these programs in the submission package facilitates the FDA data reviewersô understanding
of the statistical analyses and per the guidance below should be included.

Figure 1. FDA Study Data Technical Conformance Guide Requires Software Submission

2

Because electronic submissions can be complex and large, providing a comprehensive list of submitted
software programs helps ensure that all files that were intended to be sent were actually included. In
addition, by providing clear documentation of all software programs provided to the FDA, reviewers gain
road maps to the details of each program, allowing for a better understanding of the data flow. These
details might include software versions, output produced, global macros called, and source SAS datasets
utilized by each program. Thus, a detailed table of contents (TOC) providing descriptions of each program
to be submitted and the usage of all submitted data is strongly recommended for any electronic
submission.

Generating a detailed TOC is traditionally created through a labor-intensive manual process in which a
programmer opens and checks each line of SAS code in every submission-ready program, transcribes
the required information into a word processor, and finally composes a TOC. Examples of common
mistakes arising from manual compilation range from simple spelling errors to incorrect cross-referencing
of metadata, input datasets, global macro usage, or program outputs (tables, figures, etc.). Additionally,
reopening and manually scanning through each submission-ready program carries the risk of accidental
modification to the code requiring an extraneous round of validation. Revisiting each submission-ready
program to collate and present needed information can easily amount to a full weekôs worth of work or
longer depending on the complexity of the project. Additional quality control processes may create
several cycles of revisions thus increasing time needed to create submission-ready documents.

Thus, it is highly desirable to automate the process of creating the TOC by non-invasively extracting the
required information within existing submission-ready SAS programs and their associated materials. This
paper introduces a macro utility to automate the construction of a detailed TOC which is executed
completely within SAS, without reopening each SAS program. The logic behind the macro development is
illustrated step by step with corresponding outputs provided to the reader in the subsequent sections. The
macro is designed to track and extract metadata on SAS programs and their logs, determine the input
source SAS datasets, document any utilized global macros, identify corresponding outputs, and finally
create a completed TOC ready for FDA submission. The macro generated TOC identifies each program
and its location within the submission. It also serves as cross-referenced documentation associated with
all datasets, global macros, and outputs contained in an electronic submission. The macro generated
TOC is also imbedded with hyperlinks routing back to the original location of SAS programs, permanent
SAS datasets, and any utilized global macros to facilitate navigation to and review of outputs.

Beyond serving as an essential aid for FDA reviewers, programmers themselves may benefit from using
the TOC as an extra validation tool to verify the metadata of individual programs and to track source
dataset usage and corresponding outputs.

AN ACCURATE, NON-INVASIVE, AND AUTOMATIC METHOD TO GENERATE
TABLE OF CONTENTS FOR SAS PROGRAMS: %PROGTOC

To eliminate the time-consuming and error-prone process mentioned above, we developed an easy-to-
use macro to automatically produce a detailed TOC for all submitted SAS programs. The macro we
propose requires minimal updates from users and only utilizes common base SAS procedures and base
macro processing. Though study datasets and programs should be organized into a specific file directory
structure when submitted in the eCTD (electronic common technical document) format to FDA (Figure 2
and Figure 3), we developed the macro to offer the flexibility to specify file pathways of physical SAS
programs, outputs, etc. so that the macro can be used at any stage of programming activities where
clinical datasets and programs might reside in a different location than the datasets and programs within
the submission. Thus, the location of the macro relative to the location of the generated TOC is irrelevant.
Besides helping the e-submission process, the generated TOC can also be used for tabulation purposes
to link programs to the corresponding source datasets and associated outputs, as well as to detail
ongoing metadata at any programming stage.

3

Figure 2. Folder Structure for Study Datasets and Programs Required by FDA Study Data
Technical Conformance Guide

Figure 3. Example of a List of SAS Programs Submitted to FDA (including ADAM, Global Macro,
Table, and Figure Programs)

4

The macro call is shown as follows:

%macro PROGTOC (TXTPATH=,

 TLFPATH=,

 ADPATH=,

 MACPATH=,

 ADOUT=)

Parameters:

TXTPATH= pathway of submitted SAS programs in TXT format

TLFPATH= pathway of TLF program log

ADPATH = pathway of ADAM program log

MACPATH= pat hway of global macro library

ADOUT = pathway of submitted ADAM datasets in XPT format

The macro generates a detailed TOC that lists all SAS program names, file size, physical location, output
name, source datasets used, and global macros called within each program (Figure 4). The generated
TOC displays multiple rows where each row represents one unique program for one unique output:
Analysis Data Model (ADaM) dataset or Table/Figure output used in a clinical study report. If needed, this
macro may be updated to include more metadata (e.g., Creation Date/Time and Last Modified Date/Time)
and input/output information.

Figure 4. Example of TOC Output Generated by %PROGTOC

The cells in columns (1st, 4th, 5th, 6th) of the TOC output are imbedded with hyperlinks which route to the
original file destination (Figure 5). This automated and detailed TOC ensures faster program
documentation while maintaining a high level of accuracy with regard to traceability, reliability, and
searchability. Thus, this macro utility helps achieve high-quality submissions in a cost-effective and
efficient manner.

5

Figure 5: Hyperlinks Imbedded in TOC Generated by %PROGTOC

LOGIC BEHIND THE SCENES

STEP 1: RETRIEVE METADATA OF SUBMITTED PROGRAMS

Per the FDA Study Data Technical Conformance Guide, submitted software programs should be in ASCII
text formats and all submitted programs (ADaM programs, table and figure programs, and submitted
global macros) should be located in the same folder. While there are multiple possible methods to extract
metadata for each program, we used several straightforward SAS functions to obtain metadata on each
SAS program.

Retrieve All SAS Program Names

In the example code below, the DOPEN function opens a directory and returns a directory identifier value
that is used to identify the open directory in other SAS external file access functions. As our macro
%PROCTOC specifies the macro parameter &TXTPATH as the directory of all SAS programs, DOPEN
(óFOLDERô) returns a value (which is greater than 0) and assigns it to the variable LIST. The following DO
LOOP outputs each SAS file name to the temporary dataset FILESINFOLDER. In the DO LOOP section,
DNUM is used to return the number of members in the SAS program folder and the DREAD function
returns the name of a directory member and assigns it to the variable FILE.

/* Making a list of all txt files in the program folder */

filename folder " &TXTPATH" ;

data FILESINFOLDER;

 length LINE 8 FILE $300 ;

 LIST = dopen('folder');

6

 do LINE = 1 to dnum(LIST);

 FILE = trim(dread(LIST,LINE));

 if index(File , '.txt')> 0 then output ;

 end ;

 drop LIST LINE ;

run ;

Retrieve Metadata for Each SAS Program

Given the possibility of hundreds of SAS programs, a DO LOOP iterating over all SAS files to obtain and
output corresponding metadata is an attractive option. In order to utilize the DO LOOP to repeat the same
programming assignment for various values of parameters, each SAS programôs name needs to be
coded into a macro variable and the total number of SAS programs needs to be counted and passed to
the DO LOOP as well. As shown below, a simple data _NULL_ step is utilized where the CALL SYMPUT
statement translates each SAS name into a dynamic macro variable and CALL SYMPUTX generates a
dynamic macro variable óTOTALô for the count of all SAS files.

/* Creating global macro variables */

data _NULL_;

 set FILESINFOLDER end=final;

 call symput(cats(' FILE ' , _N_), trim(FILE));

 if final then call symputx(trim(' TOTAL'), _N_);

run ;

Next, the %do i =1 %to &TOTAL loop increments the value of i by one and sets ñ&TXTPATH\&&FILE&Iò
to a specific individual SAS program. Once the macro variables encoding each SAS program name are
assigned and resolved, the next objective is to collect the metadata for each SAS file by using the FINFO
function in conjunction with the FOPEN and FCLOSE functions, which are used to retrieve system
information about each SAS file. To display all available attributes, we also use FOPTNUM and
FOPTNAME where the FOPTNUM function returns the number of available information attributes for a
specific SAS file and the FOPTNAME function returns the name of each of those information attributes.
Figure 6 presents a simple example of available information attributes and their values retrieved from
individual SAS files.

/*get metadata of each txt file*/

%macro loop ;

data INFO;

 length INFONAME INFOVAL FILENNAMEX $600 ;

 %do i = 1 %to &TOTAL;

 rc=filename(" TEMP" , "& TXTPATH\ &&FILE&I ");

 FID =fopen(" TEMP");

 INFONUM=foptnum(FID);

 do K= 1 to INFONUM;

 FILENNAMEX= "&&FILE&I " ;

 INFONAME=foptname(FID ,K);

 INFOVAL=finfo (FID,INFONAME);

 output;

 end;

 close=fclose(FID);

 %end;

run;

%mend loop;

%loop

7

Figure 6: Metadata Retrieved for Each SAS Program

As demonstrated above, file attributes such as physical file location, file size, last modified time, etc. are
extracted from each SAS file and set together in a temporary dataset called INFO. A simple PROC
TRANSPOSE can convert the vertical structure to a horizontal TOC which displays file attributes per SAS
file per row (Figure 7).

proc sort data =INFO;

 by FILENNAMEX;

run ;

proc transpose data =INFO out =SEC1(drop=_ NAME_ RECFM LRECL);

 by FILENNAMEX;

 id INFONAME;

 var INFOVAL;

run ;

8

Figure 7: Metadata Listed per Row per SAS Program

STEP 2: DETERMINE INPUT DATASETS AND GLOBAL MACROS USED

Multiple resources exist for extracting information on source datasets and global macro usage as well as
associated output files for each submitted SAS program. One such resource is a study programming
tracker, which initially may seem to be an easy option. A study programming tracker is a document used
to track programming status for a deliverable, often implemented as an Excel file. It contains a list of all
items required for a clinical study/project with multiple columns indicating corresponding SAS programs,
their associated validation status, program creation time, last run time, and so on. Extra columns can also
be added into a study programming tracker to include information on source datasets and global macro
usage for each program and each unique output. One drawback of directly importing information from a
study programming tracker into a TOC is the potential inconsistency between the information listed on the
tracker and the actual source datasets and global macros used in the submitted program.

A second option is to list all source datasets and utilized global macros in a header for each SAS program
and then extract them using keywords. However, this option also carries the possibility of inconsistency
between the header and the actual program body.

Another option is to programmatically scan through the entire program body and extract source dataset(s)
and utilized global macros. However, it is difficult to distinguish multi-line comments from actual
programming codes and actual macro calls from free text.

Since the SAS log is a record of everything done in a SAS program, it might be the most reliable and
straightforward way to extract source datasets and used global macros. Original program statements
(including comments) are identified by line numbers while messages from SAS begin with the keywords
NOTE, INFO, WARNING, or ERROR. Of particular interest, messages starting with NOTE are
informational messages that indicate how SAS processes the program which contains information such
as the source dataset name and the number of records inputted from an external file. Thus, we can easily
distinguish the datasets imbedded in a multi-line comment versus actual usage of source datasets by
using the keyword NOTE to identify the desired information (example code shown below).

In order to distinguish actual macro calls versus free text, we can easily extract log lines starting with the
keyword MPRINT. MPRINT displays the SAS statements that are generated by macro execution, so a
macro name following the keyword MPRINT is the actual macro call in the SAS program. Since internal
macro code are already imbedded in the individual program, the list of macro names extracted using the

9

MPRINT keyword should be a subset of the userôs central macro library. Only the utilized central macros
are listed in the TOC (Figure 8).

/** since ADAM and TLF logs are stored in different folder pathway in our

organization, we created a macro %SCANLOG to scan through ADAM logs or TLF

logs ï users can modify as needed **/

%macro SCANLOG (PATH=,TYPE=);

filename pfolder "&path." ;

/ * * making a list of all log files in the folder * */

/ * * logic thoroughly explained in STEP 1 * */

Data LISTFILE ;

 length LINE 8 FILE $300 ;

 LIST = dopen('pfolder');

 do LINE = 1 to dnum(LIST);

 FILE = trim(dread(LIST,LINE));

 FNAME=compress(tranwrd(FILE , '.log' , ''));

 if index(FILE , '.log')> 0 then output;

 end;

run;

/**get each log file into a macro variable**/

/ * * logic thoroughly explained in STEP 1 * */

data _null_;

 set LISTFILE end=eof;

 call symput("fname" ||compress(put(_N_, 8.)),compress(FNAME));

 if eof then call symput(" COUNT" , compress(put(_N_, 8.)));

run;

/**scan each log file**/

/ * * DO LOOP logic thoroughly explained in STEP 1 * */

%do i= 1 %to %eval (& COUNT);

 data INTEXT&I . ;

 length TEXT FNAME $ 600 ;

 infile "&&PATH.. \ &&FNAME&I...LOG" end=eof truncover;

 input @ 1 TEXT $ 600. ;

 if (index(upcase(TEXT), 'ADATA.') and index(upcase(TEXT), 'NOTE:')) or

 (index(upcase(TEXT), 'SDTM.') and index(upcase(TEXT), 'NOTE:')) or

 index(upcase(TEXT), 'MPRINT') or

 index(upcase(TEXT), '%LET TABNUM');

 if index(upcase(TEXT), 'MPRINT') then

TEXT=scan(scan(TEXT, 1, ")"), 2, "(");

 ORD=_N_;

 FNAME="&&FNAME&I.." ;

 run;

/ * * the complete code is not shown for length considerations of this paper * */

é

é

é

%end;

%mend;

10

Figure 8: Source Datasets, Global Macro Usage, and Corresponding Output for Each SAS
Program

STEP 3: CREATE HYPERLINK TO ROUTE TOC TO PHYSICAL FILES

Tie Together Metadata and Program Input Information

A PROC SQL step shown below ties together retrieved metadata information on each SAS program with
their dataset and any macro used and their produced output. Since FINFO function grabs and displays
file size in bytes by default, we convert it to kilobytes for easy review. Now the merged dataset is one
PROC REPORT away from the desired detailed TOC output (Figure 9).

proc sql ;

 create table SEC3 as

 select a. *, b. *,strip(put(ceil(input(FILE_SIZE __BYTES_, 8.)/ 1024), best.)) as

KB

 from SEC2 as a join SEC1 as b

 on a. FILENNAMEX=b. FILENNAMEX

 order by FILENNAMEX, OFNAME;

quit ;

Figure 9: Temporary Dataset Containing Program Metadata and Input Information

Hyperlink Creation

Hyperlinks or hypertext links provide direct access to a different section of the same document or provide
direct access to a different folder or file location. Hypertext links that open a folder or document are set to
open the linked folder or document in a new window. The output TOC with working hypertext links serves
as a central location to open multiple related submission-based documents while displaying the related
documents in one row.

While there are numerous techniques to build and maintain hyperlinks within SAS, we use the CALL
DEFINE statement with the URL attribute in PROC REPORT to create a dynamic link based on a relative
file to column values (example code shown below). First, we assign three temporary variables to store the

11

physical location of SAS programs: RPNAME, RDTNAME, and ROUTNAME. RPNAME presents the
physical location of each submitted SAS program: table and figure programs, ADaM programs, or global
macros that are in TXT format and placed in one folder per FDA eCDT requirement. RDTNAME points to
an input dataset folder ï either an ADaM or SDTM dataset folder where ADaM and SDTM are stored in
XPT format. ROUTNAME points to the output location. In an e-submission, since the outputs for clinical
study reports are not included in the folder structure defined by the eCTD technical conformance guide,
we only link the output column to the ADaM or SDTM dataset folder. Users can update the code to link to
any PDF outputs if needed. A relative path specifies the location of a file from the current directory
downward and does not include the specific drive letter or parent directories above the current location.
Using relative paths when creating hypertext links minimizes the loss of hyperlink functionality when
submissions are loaded onto network servers.

After the physical paths are assigned and location variables are created, a compute block in PROC
REPORT is utilized to initialize the CALL DEFINE (code shown below). The COMPUTE block establishes
the variable to which we want to assign the link. In our case, they are FILENAMEX (Program Name),
OFNAME (Output Name), DTUSED_WRP (Dataset Used), and MACUSED_WRP (Macro Used). Their
corresponding variables are RPNAME, ROUTNAME, RDTNAME, and RMACNAME which store the
physical location for individual files or folders. Using FILENAMEX and RPNAME as an example (Figure
10), the location stored in the variable RPNAME is a URL attribute value for FILENAMEX. This allows us
to link individual cells of our TOC to another file or a specific folder. When creating links in tables of
contents and throughout submission documents, we do not assign any border or color to minimize any
confusion, but the users can adjust the style of the hyperlink in the 2nd CALL DEFINE statement with
STYLE option.

The TOC with hyperlinks provides a convenient way to open and display a document as it exists (Figure
11). It enables reviewers to click and direct to a point of interest. The link will only be available if there is
something for it to attach to in the cell. Since there is nothing assigned for TLF output in our example,
there is no hyperlink for it. Nevertheless, code could be adapted to link each program with their
corresponding PDF output.

/ * * the complete code is not shown for length considerations of this paper * */

data REPORT;

length RPNAME RDTNAME ROUTNAME $500 ;

 set SEC3;

é

é

é

 RPNAME="& TXTPATH." ||strip(FILENNAMEX);

 RDTNAME="& ADOUT." ;

 RMACNAME="& TXTPATH." ;

run ;

option orientation =landscape;

ods listing close ;

ods pdf file ="& TXTPATH. \ TOC.pdf" style =styles.pdftemp notoc ;

title4 J=C "Programs Submitted" ;

title5 j =c "Table of Contents" ;

proc report data =REPORT missing nowd headskip split ="~" ;

 column RPNAME FILENNAMEX é;

é

 define RPNAME / noprint style (header)=[just=c] style (column)=[just=c

cellwidth= .4 in];

 define FILENNAMEX / "Program Name" style (header)=[just=l]

style (column)=[just= left cellwidth= 1.3 in asis=on];

 é

 é

12

 compute FILENNAMEX;

 call define (_col_, "URL" ,RPNAME);

 call define (_col_, 'STYLE' , 'STYLE=[color=blue linkcolor=white] ');

 endcomp;

 compute ofname;

 call define (_col_, "URL" , ROUTNAME);

 call define (_col_, 'STYLE' , 'STYLE=[color=blue linkcolor=white] ');

 endcomp;

é

é

run ;

ods pdf close ;

ods listing ;

Figure 10: Temporary Dataset Containing Program Metadata and Physical Location Information

13

Figure 11: Hyperlinks in TOC Generated by %PROGTOC

CONCLUSION

The latest study data technical conformance guide specifically requires sponsors to include program code
in the submission. A Table of Contents is expected to accompany these SAS programs for easy
reference. In contrast to labor-intensive manual creation, this paper presents an efficient approach to
extract metadata and input/output information of submitted programs to generate a detailed TOC report
which helps enhance the quality of submission and enables the reviewer to navigate the document and
access files easily. This automated process has great potential to help clinical trial sponsors save time
and money while ensuring a high level of detail and accuracy.

REFERENCES

US Food & Drug Administration. Oct. 2018. ñStudy Data Technical Conformance Guide V4.2. Accessed
Nov. 15, 2018.

US Food & Drug Administration. September 1998. ñGuidance for Industry: E9 Statistical Principles for
Clinical Trialsò. Accessed Dec. 15, 2018.

US Food & Drug Administration. May 2007. ñGuidance for Industry: Computerized Systems Used in
Clinical Investigationsò. Accessed Dec. 12, 2018.

US Food & Drug Administration. Jan. 2002. ñGeneral Principles of Software Validation; Final Guidance for
Industry and FDA Staffò. Accessed Dec. 15, 2018.

US Food & Drug Administration. May 2015. ñStatistical Software Clarifying Statementò. Accessed Dec. 15,
2018.

