
Confessions of a

SAS® PROC SQL

Instructor

Course Notes

Confessions of a SAS® PROC SQL Instructor Course Notes was developed by Charu Shankar.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.

Confessions of a SAS® PROC SQL Instructor Course Notes

Copyright © 2019 SAS Institute Inc. Cary, NC, USA. All rights reserved. Printed in the United States of

America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in

any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written

permission of the publisher, SAS Institute Inc.

Book code E71361, course code UGCPSQL, prepared date 10May2019. UGCPSQL_001

For Your Information iii

Table of Contents

Chapter 1 PROC SQL Syntax Order: So Few Workers Go Home on Time 1-1

1.1 Overview of the SQL Procedure.. 1-3

Chapter 2 Know Thy Data: DICTIONARY Tables ... 2-1

2.1 DICTIONARY Tables and Views .. 2-3

Chapter 3 Two Ways to Stack Data Horizontally ... 3-1

3.1 SQL Joins: When Is a Cartesian Product Useful? ... 3-3

3.2 Subqueries: Best Practices, Dangers of Correlated ..3-16

Chapter 4 Where ANSI SQL Falls Short and PROC SQL Steps In 4-1

4.1 Making a View Portable .. 4-3

Chapter 5 Summarizing Data Using the Boolean Gate 5-1

5.1 Summarizing Data .. 5-3

iv For Your Information

To learn more…

For information about other courses in the curriculum, contact the SAS

Education Division at 1-800-333-7660, or send e-mail to training@sas.com.
You can also find this information on the web at http://support.sas.com/training/

as well as in the Training Course Catalog.

For a list of other SAS books that relate to the topics covered in this

course notes, USA customers can contact the SAS Publishing Department

at 1-800-727-3228 or send e-mail to sasbook@sas.com. Customers outside

the USA, please contact your local SAS office.

Also, see the SAS Bookstore on the web at http://support.sas.com/publishing/

for a complete list of books and a convenient order form.

For information about other courses in the curriculum, contact the SAS

Education Division at 1-800-333-7660, or send e-mail to training@sas.com.
You can also find this information on the web at http://support.sas.com/training/

as well as in the Training Course Catalog.

For a list of other SAS books that relate to the topics covered in this

course notes, USA customers can contact the SAS Publishing Department

at 1-800-727-3228 or send e-mail to sasbook@sas.com. Customers outside

the USA, please contact your local SAS office.

Also, see the SAS Bookstore on the web at http://support.sas.com/publishing/

for a complete list of books and a convenient order form.

http://support.sas.com/training/
http://support.sas.com/publishing/
http://support.sas.com/training/
http://support.sas.com/publishing/

Chapter 1 PROC SQL Syntax
Order: So Few Workers Go Home on
Time

1.1 Overview of the SQL Procedure.. 1-3

1-2 Chapter 1 PROC SQL Syntax Order: So Few Workers Go Home on Time

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.1 Overview of the SQL Procedure 1-3

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.1 Overview of the SQL Procedure

2

SQL Procedure

The SQL procedure is initiated with a PROC SQL

statement. It is terminated with a QUIT statement.

proc sql;

select Employee_ID, Employee_Gender,

Salary

from PHSUG.employee_information;

quit;

s102d01

PROC SQL <option(s)>;

statement(s);

QUIT;

3

SQL Procedure

◼ Multiple statements can be included in a PROC SQL

step.

◼ Each statement defines a process and is executed

immediately.

PROC SQL <option(s)>;

statement(s);

QUIT;

1-4 Chapter 1 PROC SQL Syntax Order: So Few Workers Go Home on Time

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

4

SELECT Statement

A SELECT statement is used to query one or more tables.

The results of the SELECT statement are written to the

default output destination.

proc sql;

select Employee_ID, Employee_Gender, Salary

from PHSUG.employee_information

where Employee_Gender='F'

order by Salary desc;

quit;

s102d01

5

SELECT Statement

A SELECT statement contains smaller building blocks

called clauses.

Note: Although it can contain multiple clauses, each

SELECT statement begins with the SELECT

keyword and ends with a semicolon.

proc sql;

select Employee_ID, Employee_Gender, Salary

from PHSUG.employee_information

where Employee_Gender='F'

order by Salary desc;

quit;

s102d01

clauses

1.1 Overview of the SQL Procedure 1-5

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

6

Viewing the Output

Partial PROC SQL Output

The SAS System

Employee
Employee Annual

Employee ID Gender Salary
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

120260 F $207,885
120719 F $87,420
120661 F $85,495
121144 F $83,505
120798 F $80,755

7

SELECT Statement: Required Clauses

Here are two things that SQL always needs:

1. What do you want?

The SELECT clause specifies the columns and

column order.

2. Where do you want it from?

The FROM clause specifies the data sources.

You can query from 1 to 256 tables.

SELECT object-item <, ...object-item>

FROM from-list;

1-6 Chapter 1 PROC SQL Syntax Order: So Few Workers Go Home on Time

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

8

SELECT Statement: Syntax Order Mnemonic

◼ The WHERE clause specifies data that meets certain

conditions.

◼ The GROUP BY clause groups data for processing.

◼ The HAVING clause specifies groups that meet certain

conditions.

◼ The ORDER BY clause specifies an order for the data.

SELECT object-item <, ...object-item>
FROM from-list

<WHERE sql-expression>

<GROUP BY object-item <, … object-item >>

<HAVING sql-expression>

<ORDER BY order-by-item <DESC>

<, …order-by-item>>;

SO

FEW

WORKERS

GO

HOME

ON TIME

9

SELECT Statement Syntax

Note: The specified order of the clauses within

the SELECT statement above is required.

PROC SQL;

SELECT object-item <, ...object-item>

FROM from-list
<WHERE sql-expression>

<GROUP BY object-item <, … object-item >>

<HAVING sql-expression>

<ORDER BY order-by-item <DESC>

<, …order-by-item>>;

QUIT;

 1.1 Overview of the SQL Procedure 1-7

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

10

Discussion

Is this code correct?

proc sql;

select Employee_ID, Employee_Gender,

Salary

from orion.employee_information

order by Employee_ID

where Employee_Gender='M';

quit;

11

Syntax Check with the NOEXEC Option

To explicitly check for syntax errors without submitting

the code for execution, include the NOEXEC option

in the PROC SQL statement. This option applies

to all statements in a PROC SQL step.

proc sql noexec;

select Employee_ID, Employee_Gender, Salary
from PHSUG.employee_information
where Employee_Gender='F'
order by Salary desc;

quit;

s102d03

PROC SQL <NOEXEC>;

1-8 Chapter 1 PROC SQL Syntax Order: So Few Workers Go Home on Time

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

12

Viewing the Log

Partial SAS Log

proc sql noexec;
select Employee_ID, Employee_Gender, Salary

from PHSUG.employee_information
where Employee_Gender='F'
order by Salary desc;

NOTE: Statement not executed due to NOEXEC option.
quit;

Chapter 2 Know Thy Data:
DICTIONARY Tables

2.1 DICTIONARY Tables and Views... 2-3

2-2 Chapter 2 Know Thy Data: DICTIONARY Tables

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

 2.1 DICTIONA RY Tables and View s 2-3

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

2.1 DICTIONARY Tables and Views

2

Objectives

◼ Use DICTIONARY tables and views to obtain

information about SAS files.

3

Business Scenario

You have inherited many different data tables and want

to become familiar with their content.

Orion

Sashelp

? ?

2-4 Chapter 2 Know Thy Data: DICTIONARY Tables

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

4

DICTIONARY Tables: Overview

DICTIONARY tables are Read-Only metadata views that

contain session metadata, such as information about

SAS libraries, data sets, and external files in use

or available in the current SAS session.

DICTIONARY tables are

◼ created at SAS session initialization

◼ updated automatically by SAS

◼ limited to Read-Only access.

You can query DICTIONARY tables with PROC SQL.

Note: Metadata is data that provides information about other data.

5

Querying Metadata about SAS Libraries

There can be more than 30 DICTIONARY tables. We will

focus on using data from three of the tables.

DICTIONARY.TABLES

– detailed information about tables

DICTIONARY.COLUMNS

– detailed information about all columns in all tables

DICTIONARY.MEMBERS

– general information about SAS library members

Note: SAS librefs are limited to eight characters. The libref dictionary is an automatically assigned

reserved libref that is accessible only from within PROC SQL.

 2.1 DICTIONA RY Tables and View s 2-5

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

6

Exploring DICTIONARY Tables

describe table dictionary.tables;

NOTE: SQL table DICTIONARY.TABLES was created like:

create table DICTIONARY.TABLES
(
libname char(8) label='Library Name',
memname char(32) label='Member Name',
...
crdate num format=DATETIME informat=DATETIME label='Date Created',
modate num format=DATETIME informat=DATETIME label='Date Modified',
nobs num label='Number of Physical Observations',
obslen num label='Observation Length',
nvar num label='Number of Variables', ...);

s108d01

You can use a DESCRIBE statement to explore the structure of

DICTIONARY tables:

Partial Log

The DESCRIBE TABLE statement is a good tool for exploring DICTIONARY tables. The complete log

notes from the DESCRIBE statement are shown below:

create table DICTIONARY.TABLES

 (

 libname char(8) label='Library Name',

 memname char(32) label='Member Name',

 memtype char(8) label='Member Type',

 dbms_memtype char(32) label='DBMS Member Type',

 memlabel char(256) label='Dataset Label',

 typemem char(8) label='Dataset Type',

 crdate num format=DATETIME informat=DATETIME label='Date Created',

 modate num format=DATETIME informat=DATETIME label='Date Modified',

 nobs num label='Number of Physical Observations',

 obslen num label='Observation Length',

 nvar num label='Number of Variables',

 protect char(3) label='Type of Password Protection',

 compress char(8) label='Compression Routine',

 encrypt char(8) label='Encryption',

 npage num label='Number of Pages',

 filesize num label='Size of File',

 pcompress num label='Percent Compression',

 reuse char(3) label='Reuse Space',

 bufsize num label='Bufsize',

 delobs num label='Number of Deleted Observations',

 nlobs num label='Number of Logical Observations',

 maxvar num label='Longest variable name',

 maxlabel num label='Longest label',

 maxgen num label='Maximum number of generations',

 gen num label='Generation number',

 attr char(3) label='Dataset Attributes',

 indxtype char(9) label='Type of Indexes',

 datarep char(32) label='Data Representation',

 sortname char(8) label='Name of Collating Sequence',

 sorttype char(4) label='Sorting Type',

2-6 Chapter 2 Know Thy Data: DICTIONARY Tables

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

 sortchar char(8) label='Charset Sorted By',

 reqvector char(24) format=$HEX48 informat=$HEX48 label='Requirements Vector',

 datarepname char(170) label='Data Representation Name',

 encoding char(256) label='Data Encoding',

 audit char(3) label='Audit Trail Active?',

 audit_before char(3) label='Audit Before Image?',

 audit_admin char(3) label='Audit Admin Image?',

 audit_error char(3) label='Audit Error Image?',

 audit_data char(3) label='Audit Data Image?'

);

7

Querying Dictionary Information

Display information about the tables in the SASHELP library.

title 'Tables in the SASHELP Library';

proc sql;

select memname 'Table Name',

nobs,nvar,crdate

from dictionary.tables

where libname='SASHELP';

quit;

s108d01

Library names are

stored in uppercase

in DICTIONARY tables.

Note: SAS library and table names are stored in uppercase in the DICTIONARY tables. Using SAS

functions, such as UPCASE() or LOWCASE(), when querying DICTIONARY tables

dramatically degrades query performance. For example, using upcase(libname)='SASHELP'
causes all librefs assigned to the SAS session to be opened to return this information. This

prevents the PROC SQL Query Optimizer from seeing many conditions that could be optimized.

This is especially apparent when librefs are assigned to a DBMS using a SAS/ACCESS engine.

When you query DICTIONARY tables, you supply values to the WHERE clause in the

appropriate case, and match the known case for library and table names (uppercase) and for

column names (mixed case). (Know your data!)

The PRESERVE_TAB_NAMES=YES and PRESERVE_COL_NAMES=YES options change

how some table and column names are seen by SAS in the DICTIONARY tables. These options

might require further investigation to maximize the efficiency of your queries.

 2.1 DICTIONA RY Tables and View s 2-7

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

8

Viewing the Output

Partial PROC SQL Output

Note: This report varies based on the tables created during the SAS session.

9

Querying Dictionary Information

Display information about the columns in sashelp.cars.

title 'Columns in the sashelp.cars Table';

proc sql;

select Name,Type,Length

from dictionary.columns

where libname='SASHELP'

and memname='CARS';

quit;

s108d01

Table names (memnames)

are also stored in uppercase
in DICTIONARY tables.

2-8 Chapter 2 Know Thy Data: DICTIONARY Tables

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

10

Viewing the Output
PROC SQL Output

Column names are stored in mixed case.

11

title 'Tables Containing an ID Column';

proc sql;
select memname 'Table Names', name

from dictionary.columns
where libname='SASHELP' and

upcase(name) contains 'ID';
quit;

Using Dictionary Information

Which tables contain an ID column?

s108d01

Because different tables might use different cases

for same-named columns, you can use the UPCASE

function for comparisons. However, this significantly

degrades the performance of the query.

 2.1 DICTIONA RY Tables and View s 2-9

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

12

Viewing the Output

All ID column names are stored in uniform uppercase, so

the UPCASE function is not needed the next time that a
query such as this is executed.

Note: The tables identified in this report vary depending on the files created in your SAS session.

13

Finding Common Column Names Dynamically

All of the previous techniques to explore DICTIONARY

tables work when you know the names of columns.

What happens if you do not know your data, and you want

SAS to retrieve all same-named columns in a library.

Use the following code

s108d01

title 'Common columns in SASHELP';

proc sql;

select name, type, length, memname

from dictionary.columns

where libname='SASHELP’

group by name

having count(name) > 1;

2-10 Chapter 2 Know Thy Data: DICTIONARY Tables

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

14

Viewing the Output

Joins are easier because the structure of each table does not have to be

examined before determining common columns. Let SAS bring common

columns dynamically by looking up DICTIONARY tables.

15

Using DICTIONARY Tables in Other SAS Code

SAS provides views based on the DICTIONARY tables

in the SASHELP library.

Most of the SASHELP library DICTIONARY view names

are similar to DICTIONARY table names, but they are

shortened to eight characters or less. They begin with the

letter v and do not end in s. For example:

dictionary.tables = sashelp.vtable

The following code executes successfully:

title 'Tables in the SASHELP Library';

proc print data=sashelp.vtable NOOBS ;

var memname nobs nvar;

where libname='SASHELP';

run;

s108d01

 2.1 DICTIONA RY Tables and View s 2-11

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

16

An Efficiency Question: PROC SQL or PRINT?

s108d01

options fullstimer;

proc sql;

select libname, memname, name, type, length

from dictionary.columns

where upcase(name) contains 'ID'

and libname='SASHELP' and type='num';

quit;

NOTE: PROCEDURE SQL used (Total process time):

real time 0.73 seconds

user cpu time 0.42 seconds

system cpu time 0.29 seconds

memory 5584.18k

OS Memory 24672.00k

Timestamp 05/22/2018 01:52:52 PM

Step Count 4 Switch Count 36

17

Statistic Description

Real Time The amount of real time (clock time) spent to process the SAS job. Real

time is also referred to as elapsed time.

User CPU Time The CPU time that is spent in the user program.

System CPU

Time

CPU time is spent to perform operating system tasks (system overhead

tasks) that support the execution of your SAS code.

Memory The amount of memory required to run a step.

OS Memory the largest amount of operating system memory that is available to SAS

during the step.

Timestamp The date and time that a step was executed.

Step Count Count of DATA steps or procedures that run in a SAS program.

Switch Count A count of task switches within a step—that is, within a DATA step
or procedure—in a SAS program. A task switch occurs when a step

requests service from another process. Another task switch occurs
when the step resumes. The number reported is for the last step

that runs.

An Efficiency Question: PROC SQL or PRINT?

What do these statistics mean?

2-12 Chapter 2 Know Thy Data: DICTIONARY Tables

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

18

options fullstimer;

proc print data=sashelp.vcolumn;

var libname memname name type length;

where upcase(name) contains 'ID' and

libname='SASHELP’ and type='num';

run;

NOTE: There were 34 observations read from the data set

SASHELP.VCOLUMN. WHERE UPCASE(name) contains 'ID' and

(libname='SASHELP') and (type='num');

NOTE: PROCEDURE PRINT used (Total process time):

real time 2.19 seconds

user cpu time 0.92 seconds

system cpu time 1.18 seconds

memory 6738.81k

OS Memory 25440.00k

Timestamp 05/22/2018 02:22:29 PM

Step Count 10 Switch Count 44

An Efficiency Question: PROC SQL or PRINT?
Can I use PROC PRINT instead?

19

An Efficiency Question: PROC SQL or PRINT?
Why Is PROC SQL More Efficient?
While querying a DICTIONARY table, SAS launches a discovery
process. Depending on the DICTIONARY table being queried, this
discovery process can search libraries, open tables, and execute
views.

The PROC SQL step runs much faster than other SAS procedures
and the DATA step. This is because PROC SQL can optimize the
query before the discovery process is launched. It has to do with the
processing order. The PROC SQL step runs much faster because the
WHERE clause is processed before the tables referenced by the
SASHELP.VCOLUMN view are opened. Therefore, it is more efficient
to use PROC SQL instead of the DATA step or SAS procedures to
query DICTIONARY tables.

Try it out for yourself. Both programs above produce the same result, But the SAS PROC step might have

you wringing your hands because it can seem to take forever to execute. By now you know why: it has to

search libraries, open tables, and so on. On the other hand, PROC SQL optimized the query due to the

WHERE clause and returns you results quickly.

Chapter 3 Two Ways to Stack Data
Horizontally

3.1 SQL Joins: When Is a Cartesian Product Useful? .. 3-3

3.2 Subqueries: Best Practices, Dangers of Correlated... 3-16

3-2 Chapter 3 Tw o Ways to Stack Data Horizontally

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

 3.1 SQL Joins: When Is a Cartesian Product Useful? 3-3

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

3.1 SQL Joins: When Is a Cartesian

Product Useful?

3

Objectives

◼ Identify different ways to combine data horizontally

from multiple tables.

◼ Understand the Cartesian product.

4

Business Scenario

Management has requested multiple reports. You have

to understand how to combine the data from the tables

to complete these requests.

customers transactions

3-4 Chapter 3 Tw o Ways to Stack Data Horizontally

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

5

Exploring the Data

The customers table is representative of a customer

dimension table. There would be additional columns

with data about our customers, including address, age,

and so on.

The transactions table is representative of a fact table.

There would be columns holding all the key column data,

Product_ID, Employee_ID, and so on.

customers
ID Name

101 Smith

104 Jones

102 Blank

transactions
ID Action Amount

102 Purchase $100

103 Return $52

105 Return $212

6

Combining Data from Multiple Tables

SQL uses joins to combine tables horizontally. Requesting

a join involves matching data from one row in one table

with a corresponding row in a second table. Matching

is typically performed on one or more columns in the two

tables.

customers transactions

 3.1 SQL Joins: When Is a Cartesian Product Useful? 3-5

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

7

Types of Joins

PROC SQL supports two types of joins:

Inner joins return only matching rows.

Outer joins return all matching rows, plus nonmatching

rows from one or both tables.

RightLeft Full

8

Cartesian Product

A query that lists multiple tables in the FROM clause

without a WHERE clause produces all possible

combinations of rows from all tables. This result

is called a Cartesian product.

To understand how SQL processes a join, it is helpful

to understand the concept of the Cartesian product.

s104d01

proc sql;

select *
from customers, transactions;

quit;
SELECT …

FROM table-name, table-name

<, …,table-name>;

3-6 Chapter 3 Tw o Ways to Stack Data Horizontally

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

9

Building the Cartesian Product

...

ID Name ID Action Amount
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
101 Smith 102 Purchase $100

customers
ID Name

101 Smith

104 Jones

102 Blank

transactions
ID Action Amount

102 Purchase $100

103 Return $52

105 Return $212

Result Set

10

Building the Cartesian Product

...

ID Name ID Action Amount
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
101 Smith 102 Purchase $100
101 Smith 103 Return $52

customers
ID Name

101 Smith

104 Jones

102 Blank

transactions
ID Action Amount

102 Purchase $100

103 Return $52

105 Return $212

Result Set

 3.1 SQL Joins: When Is a Cartesian Product Useful? 3-7

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

11

Building the Cartesian Product

...

ID Name ID Action Amount
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
101 Smith 102 Purchase $100
101 Smith 103 Return $52
101 Smith 105 Return $212

customers
ID Name

101 Smith

104 Jones

102 Blank

transactions
ID Action Amount

102 Purchase $100

103 Return $52

105 Return $212

Result Set

12

Building the Cartesian Product

...

ID Name ID Action Amount
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
101 Smith 102 Purchase $100
101 Smith 103 Return $52
101 Smith 105 Return $212
104 Jones 102 Purchase $100

customers
ID Name

101 Smith

104 Jones

102 Blank

transactions
ID Action Amount

102 Purchase $100

103 Return $52

105 Return $212

Result Set

3-8 Chapter 3 Tw o Ways to Stack Data Horizontally

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

13

Building the Cartesian Product

...

customers
ID Name

101 Smith

104 Jones

102 Blank

transactions
ID Action Amount

102 Purchase $100

103 Return $52

105 Return $212

ID Name ID Action Amount
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
101 Smith 102 Purchase $100
101 Smith 103 Return $52
101 Smith 105 Return $212
104 Jones 102 Purchase $100
104 Jones 103 Return $52

Result Set

14

Building the Cartesian Product

...

customers
ID Name

101 Smith

104 Jones

102 Blank

transactions
ID Action Amount

102 Purchase $100

103 Return $52

105 Return $212

ID Name ID Action Amount
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
101 Smith 102 Purchase $100
101 Smith 103 Return $52
101 Smith 105 Return $212
104 Jones 102 Purchase $100
104 Jones 103 Return $52
104 Jones 105 Return $212

Result Set

 3.1 SQL Joins: When Is a Cartesian Product Useful? 3-9

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

15

Building the Cartesian Product

...

customers
ID Name

101 Smith

104 Jones

102 Blank

transactions
ID Action Amount

102 Purchase $100

103 Return $52

105 Return $212

ID Name ID Action Amount
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
101 Smith 102 Purchase $100
101 Smith 103 Return $52
101 Smith 105 Return $212
104 Jones 102 Purchase $100
104 Jones 103 Return $52
104 Jones 105 Return $212
102 Blank 102 Purchase $100

Result Set

16

Building the Cartesian Product

...

customers
ID Name

101 Smith

104 Jones

102 Blank

transactions
ID Action Amount

102 Purchase $100

103 Return $52

105 Return $212

ID Name ID Action Amount
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
101 Smith 102 Purchase $100
101 Smith 103 Return $52
101 Smith 105 Return $212
104 Jones 102 Purchase $100
104 Jones 103 Return $52
104 Jones 105 Return $212
102 Blank 102 Purchase $100
102 Blank 103 Return $52

Result Set

3-10 Chapter 3 Tw o Ways to Stack Data Horizontally

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

17

Building the Cartesian Product

...

customers
ID Name

101 Smith

104 Jones

102 Blank

transactions
ID Action Amount

102 Purchase $100

103 Return $52

105 Return $212

ID Name ID Action Amount
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
101 Smith 102 Purchase $100
101 Smith 103 Return $52
101 Smith 105 Return $212
104 Jones 102 Purchase $100
104 Jones 103 Return $52
104 Jones 105 Return $212
102 Blank 102 Purchase $100
102 Blank 103 Return $52
102 Blank 105 Return $212

Result Set

18

Building the Cartesian Product

customers
ID Name

101 Smith

104 Jones

102 Blank

transactions
ID Action Amount

102 Purchase $100

103 Return $52

105 Return $212

ID Name ID Action Amount
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
101 Smith 102 Purchase $100
101 Smith 103 Return $52
101 Smith 105 Return $212
104 Jones 102 Purchase $100
104 Jones 103 Return $52
104 Jones 105 Return $212
102 Blank 102 Purchase $100
102 Blank 103 Return $52
102 Blank 105 Return $212

Result Set

The Cartesian product

is rarely the desired result

of a query.

 3.1 SQL Joins: When Is a Cartesian Product Useful? 3-11

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

19

customers
ID Name

101 Smith

104 Jones

102 Blank

Nonmatching Data in the Cartesian Product

ID Name ID Action Amount
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
101 Smith 102 Purchase $100
101 Smith 103 Return $52
101 Smith 105 Return $212
104 Jones 102 Purchase $100
104 Jones 103 Return $52
104 Jones 105 Return $212
102 Blank 102 Purchase $100
102 Blank 103 Return $52
102 Blank 105 Return $212

Result Set

transactions
ID Action Amount

102 Purchase $100

103 Return $52

105 Return $212

Non-

matching

IDs

20

customers
ID Name

101 Smith

104 Jones

102 Blank

Size of the Cartesian Product

Result Set

transactions
ID Action Amount

102 Purchase $100

103 Return $52

105 Return $212

9 rows

ID Name ID Action Amount
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
101 Smith 102 Purchase $100
101 Smith 103 Return $52
101 Smith 105 Return $212
104 Jones 102 Purchase $100
104 Jones 103 Return $52
104 Jones 105 Return $212
102 Blank 102 Purchase $100
102 Blank 103 Return $52
102 Blank 105 Return $212

3-12 Chapter 3 Tw o Ways to Stack Data Horizontally

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

21

Size of the Cartesian Product

The number of rows in a Cartesian product is the product

of the number of rows in the contributing tables.

3 x 3 = 9

1,000 x 1,000 = 1,000,000

100,000 x 100,000 = 10,000,000,000

Partial SAS Log

NOTE: The execution of this query involves performing one or more
Cartesian product joins that cannot be optimized.

22

3.01 Short Answer Poll

How many rows and columns are returned from this

query?

select *

from customer2, transaction2;

customer2
ID Name

101 Jones

101 Jones

102 Kent

102 Kent

104 Avery

transaction2
ID Action Amount

102 Purchase $376

102 Return $119

103 Purchase $57

105 Purchase $98

 3.1 SQL Joins: When Is a Cartesian Product Useful? 3-13

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

23

When Is a Cartesian Product Useful?

Consider a table with as single summary row. If you want

to combine with detail rows in another table to get

percentages, a Cartesian product might be useful there.

24

Business Scenario

Calculate each male employee’s salary as a percentage

of all male employees’ salaries.

PROC SQL

Partial Results

PHSUG.employee_information

Male Employee Salaries

Employee_ID Salary
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

120259 433,800 5.9%
120262 268,455 3.7%
120261 243,190 3.3%

3-14 Chapter 3 Tw o Ways to Stack Data Horizontally

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

25

Using Remerged Summary Statistics

Calculate each male employee’s salary as a percentage

of all male employees’ salaries. Display Employee_ID,

Salary, and percentage in decreasing order of

percentage.

proc sql;

title "Male Employee Salaries";

select Employee_ID, Salary format=comma12.,
Salary / sum(Salary)

'PCT of Total' format=percent6.2

from PHSUG.employee_information

where Employee_Gender="M"

and Employee_Term_Date is missing

order by 3 desc;

quit;
title;

Select only the group

of rows that you want

to analyze.

...

26

Using Remerged Summary Statistics

Calculate each male employee’s salary as a percentage

of all male employees’ salaries. Display Employee_ID,

Salary, and percentage in decreasing order of

percentage.

.proc sql;
title "Male Employee Salaries";

select Employee_ID, Salary format=comma12.,
Salary / sum(Salary)

'PCT of Total' format=percent6.2

from PHSUG.employee_information

where Employee_Gender="M"

and Employee_Term_Date is missing

order by 3 desc;

quit;
title;

s103d09

individual salary

value for each row

divided by a remerged

summary value

(sum of all salaries)

 3.1 SQL Joins: When Is a Cartesian Product Useful? 3-15

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

27

Viewing the Output

Partial PROC SQL Output

Partial SAS Log

Male Employee Salaries

Employee
Annual PCT of

Employee_ID Salary Total
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
120259 433,800 5.9%
120262 268,455 3.7%
120261 243,190 3.3%
121141 194,885 2.7%
120101 163,040 2.2%

NOTE: The query requires remerging summary statistics back
with the original data.

3-16 Chapter 3 Tw o Ways to Stack Data Horizontally

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

3.2 Subqueries: Best Practices, Dangers

of Correlated

30

Objectives

◼ Define PROC SQL subqueries.

◼ Differentiate between correlated and noncorrelated

subqueries.

◼ Subset data based on values returned from

a subquery.

31

Business Scenario

HR and Payroll managers requested a report that

displays Job_Title for job groups with an average salary

greater than the average salary of the company

as a whole.

Employee Job Title MeanSalary
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
Account Manager 46090
Administration Manager 47415
Applications Developer I 42760
...

orion.staff
PROC SQL

 3.2 Subqueries: Best Practices, Dangers of Correlated 3-17

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

32

Step 1

Calculate the company's average salary.

s105d01

Company
MeanSalary
ƒƒƒƒƒƒƒƒƒƒ
38041.51

proc sql;

select avg(Salary) as CompanyMeanSalary
from PHSUG.staff;

quit;

33

proc sql;

select Job_Title,
avg(Salary) as MeanSalary

from PHSUG.staff
group by Job_Title

having MeanSalary>38041.51;
quit;

Step 2

Determine the job titles whose average salary exceeds

the company’s average salary.

Partial PROC SQL Output

Employee Job Title MeanSalary

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
Account Manager 46090

Administration Manager 47415
Applications Developer I 42760

s105d01

3-18 Chapter 3 Tw o Ways to Stack Data Horizontally

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

34

proc sql;

select Job_Title,
avg(Salary) as MeanSalary

from PHSUG.staff
group by Job_Title

having MeanSalary >
(select avg(salary)

from PHSUG.staff);

quit;

Step 3

Write the program as a single step using a subquery.

A subquery is a query that resides within an outer

query.

Note: The subquery must be resolved before the outer

query can be resolved

subquery

outer query

s105do1

35

SELECT ...>

FROM ...

<WHERE ...>

<GROUP BY ...>

<HAVING ...>

<ORDER BY ...>;

Subqueries

A subquery

◼ returns values to be used in the outer query’s WHERE

or HAVING clause

…(select Employee_ID

from PHSUG.staff
where …)…

...

 3.2 Subqueries: Best Practices, Dangers of Correlated 3-19

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

36

Subqueries: Noncorrelated

There are two types of subqueries:

◼ A noncorrelated subquery is a self-contained query.

It executes independently of the outer query.

proc sql;

select Job_Title, avg(Salary) as MeanSalary
from PHSUG.staff
group by Job_Title
having avg(Salary) >

(select avg(Salary)
from PHSUG.staff);

quit;
This query is a stand-alone query.

37

Subqueries: Correlated

◼ A correlated subquery requires a value or values

to be passed to it by the outer (main) query before

it can be successfully resolved.

proc sql;

select Employee_ID, avg(Salary) as MeanSalary
from PHSUG.employee_addresses
where 'AU'=

(select Country

from work.supervisors
where employee_addresses.Employee_ID=

supervisors.Employee_ID);

quit;

3-20 Chapter 3 Tw o Ways to Stack Data Horizontally

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

38

Correlated Subqueries

Correlated subqueries

◼ cannot be evaluated independently

◼ require values to be passed to the inner query from the

outer query

◼ are evaluated for each row in the outer query.

39

Business Scenario
Use a correlated subquery to create a report listing the employee

identifier and name for all managers in Australia.

Outer Query

PROC SQL

PHSUG.employee_addresses

Inner Query

where employee_addresses.Employee_ID=supervisors.Employee_ID

work.supervisors

Considerations:

◼ You have a temporary table, Supervisors, containing Employee_ID and
Country for all managers.

◼ The table wuss.Employee_Addresses contains Employee_Name for
all employees

 3.2 Subqueries: Best Practices, Dangers of Correlated 3-21

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

40

Correlated Subqueries

In a correlated subquery, the outer query provides

information so that the subquery resolves successfully.

proc sql;

select Employee_ID,

Employee_name

from PHSUG.Employee_Addresses

where 'AU'=

(select Country

from Work.Supervisors

where Employee_Addresses.Employee_ID=

Supervisors.Employee_ID);

quit;

You must qualify each column with a table name.

s1aad01

This query is not stand-alone.

It needs additional information

from the main query.

41

Correlated Subqueries

Work.Supervisors
Employe

e_ID
Country

120798 US

120800 US

120104 AU

120735 US

121141 US

… …

120262 US

120679 US

120103 AU

120668 US

121143 US

120260 US

120672 AU

...

proc sql;

select

Employee_ID,Employee_name

from PHSUG.Employee_Addresses

where 'AU'=

(select Country

from Work.Supervisors

where

Employee_Addresses.Employee_ID

=

Supervisors.Employee_ID) ;

quit;

Partial Listing of

orion.Employee_Addresses

Employee

_ID
Employee_Name

120145 Aisbitt, Sandy

120798
Ardskin,

Elizabeth

120656 Amos, Salley

120104
Billington,

Kareen

121035 Blackley, James

121141 Bleu, Henri Le

120679 Cutucache, Chrisy

120103 Dawes, Wilson

120672 Guscott, Verne

Step 1: The outer query takes the first row in

wuss.employee_addresses and finds

Employee_ID and Employee_Name.

Wuss.employee_addresses.

3-22 Chapter 3 Tw o Ways to Stack Data Horizontally

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

42

Correlated Subqueries

...

proc sql;

select Employee_ID,

Employee_name from

PHSUG.Employee_Addresses

where 'AU'=

(select Country from

Work.Supervisors

where

Employee_Addresses.Employee_ID=

Supervisors.Employee_ID) ;

quit;

orion.Employee_Addresses

Employee

_ID
Employee_Name

120145 Aisbitt, Sandy

120798
Ardskin,

Elizabeth

120656 Amos, Salley

120104
Billington,

Kareen

121035 Blackley, James

121141 Bleu, Henri Le

120679 Cutucache, Chrisy

120103 Dawes, Wilson

120672 Guscott, Verne

Partial Listing of

NO MATCH

Work.Supervisors

Employee_ID Country

120798 US

120800 US

120104 AU

120735 US

121141 US

… …

120262 US

120679 US

120103 AU

120668 US

121143 US

120260 US

120672 AU

Step 2: In the subquery, try to match an

employee_addresses.Employee_ID

value of 120145 w ith the value of

supervisors.Employee_ID to f ind a

qualifying row in work.supervisors.

Wuss.employee_addresses.

43

Correlated Subqueries

Work.Supervisors
Employe

e_ID
Country

120798 US

120800 US

120104 AU

120735 US

121141 US

… …

120262 US

120679 US

120103 AU

120668 US

121143 US

120260 US

120672 AU ...

proc sql;

select Employee_ID,Employee_Name

from PHSUG.Employee_Addresses

where 'AU’=

(select Country from

Work.Supervisors

Where

Employee_Addresses.Employee_ID=S

upervisors.Employee_ID) ;

quit;

orion.Employee_Addresses

Employee_

ID
Employee_Name

120145 Aisbitt, Sandy

120798 Ardskin, Elizabeth

120656 Amos, Salley

120104 Billington, Kareen

121035 Blackley, James

121141 Bleu, Henri Le

120679 Cutucache, Chrisy

120103 Dawes, Wilson

120672 Guscott, Verne

MATCH

Partial Listing of
Wuss.employee_addresses.

Steps 1

and 2

(Repeat):

Read the next row from

wuss.employee_addresses and pass

the corresponding employee ID to the

subquery to look for a matching

employee ID in work.supervisors.

There is a match.

 3.2 Subqueries: Best Practices, Dangers of Correlated 3-23

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

44

Correlated Subqueries

Work.Supervisors
Employe

e_ID
Country

120798 US

120800 US

120104 AU

120735 US

121141 US

… …

120262 US

120679 US

120103 AU

120668 US

121143 US

120260 US

120672 AU

Resolves
to FALSE

...

proc sql;

select Employee_ID,Employee_Name

from PHSUG.Employee_Addresses

where 'AU'=

(select Country

from Work.Supervisors

Where Employee_Addresses.Employee_ID

=Supervisors.Employee_ID) ;

quit; FALSE

Subquery

returns 'US'

Step 3: The subquery passes the value of Country
from the selected row in work.supervisors
back to the outer query, where the = operator
compares this value to 'AU' for selection in the
main query. In this case, the main query
WHERE expression (where 'AU'='US')
resolves to FALSE.

Employee_

ID
Employee_Name

120145 Aisbitt, Sandy

120798 Ardskin, Elizabeth

120656 Amos, Salley

120104 Billington, Kareen

121035 Blackley, James

121141 Bleu, Henri Le

120679 Cutucache, Chrisy

120103 Dawes, Wilson

120672 Guscott, Verne

Partial Listing of
Wuss.employee_addresses.

45

3.02 Quiz

Given the following query, subquery, and data in

Work.Supervisors, what is the maximum number of rows

that will be selected by the outer query?

proc sql;

select Employee_ID, Employee_Name

from PHSUG.Employee_Addresses

where 'AU'=

(select Country

from Work.Supervisors

where Employee_Addresses.Employee_ID=

Supervisors.Employee_ID) ;

quit;

Work.Supervisors

Employee_ID Country

120798 US

120800 US

120104 AU

120735 US

121141 US

… …

120262 US

120679 US

120103 AU

120668 US

121143 US

120260 US

120672 AU

3-24 Chapter 3 Tw o Ways to Stack Data Horizontally

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

46

3.02 Quiz – Correct Answer

Given the following query, subquery, and data in

Work.Supervisors, what is the maximum number of rows

that will be selected by the outer query?

Only the three managers where Country='AU' would

be selected.

proc sql;

select Employee_ID,Employee_Name

from PHSUG.Employee_Addresses

where 'AU'=

(select Country

from Work.Supervisors

where Employee_Addresses.Employee_ID=

Supervisors.Employee_ID) ;

quit;

Work.Supervisors

Employee_ID Country

120798 US

120800 US

120104 AU

120735 US

121141 US

… …

120262 US

120679 US

120103 AU

120668 US

121143 US

120260 US

120672 AU

47

The Outer Query Controls the Result Set

The outer query determines which rows cause the inner

query to resolve successfully.

Work.Supervisors
Employe

e_ID
Country

120798 US

120800 US

120104 AU

120735 US

121141 US

… …

120262 US

120679 US

120103 AU

120668 US

121143 US

120260 US

120672 AU

proc sql;

select Employee_ID,Employee_Name

from PHSUG.Employee_Addresses

where 'AU'=

(select Country

from Work.Supervisors

where

Employee_Addresses.Employee_ID=

Supervisors.Employee_ID) ;

quit;

 3.2 Subqueries: Best Practices, Dangers of Correlated 3-25

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

48

Correlated Subqueries

Build the first row of the report:

Employee_ID Manager_Name
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

120104 Kareen Billington

49

proc sql;

select Job_Title,
avg(Salary) as MeanSalary

from PHSUG.staff
group by Job_Title

having avg(Salary) >
(select avg(Salary)

from PHSUG.staff);

quit;

Noncorrelated Subquery

s105d02

Evaluate the

subquery first.

3-26 Chapter 3 Tw o Ways to Stack Data Horizontally

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

50

Noncorrelated Subquery

s105d02

proc sql;

select Job_Title,
avg(Salary) as MeanSalary

from PHSUG.staff
group by Job_Title

having avg(Salary) >
(38041.51);

quit;

Then pass the results to

the outer query.

Employee Job Title MeanSalary

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
Account Manager 46090

Administration Manager 47415
Applications Developer I 42760

Partial PROC SQL Output

Chapter 4 Where ANSI SQL Falls
Short and PROC SQL Steps In

4.1 Making a View Portable ... 4-3

4-2 Chapter 4 Where ANSI SQL Falls Short and PROC SQL Steps In

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

 4.1 Making a View Portable 4-3

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

4.1 Making a View Portable

2

Objectives

◼ Create a PROC SQL view.

◼ Use PROC SQL views in SQL queries.

◼ Make a PROC SQL view portable.

3

Business Scenario

Tom Zhou is a sales manager who needs access

to personnel information for his staff.

Tom Zhou

4-4 Chapter 4 Where ANSI SQL Falls Short and PROC SQL Steps In

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

4

Business Data

The data that Tom needs is name, job title, salary,

and years of service. This data is contained in three tables.

PHSUG.employee_addresses

PHSUG.employee_payroll

PHSUG.employee_organization

5

Considerations

What is the best way to help Tom, given the following

requirements:

◼ He should not be allowed access to personnel data for

any employee that is not his direct report.

◼ He can write simple PROC SQL queries and use basic

SAS procedures, but cannot write complex joins.

A PROC SQL view accessing data for Tom Zhou’s direct

reports can provide the information that Tom needs

in a secure manner.

 4.1 Making a View Portable 4-5

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

6

What Is a PROC SQL View?

A PROC SQL view

◼ is a stored query

◼ contains no actual data

◼ can be derived from one or more tables, PROC SQL

views, DATA step views, or SAS/ACCESS views

◼ extracts underlying data each time it is used and

accesses the most current data

◼ can be referenced in SAS programs in the same way

as a data table

◼ cannot have the same name as a data table stored

in the same SAS library.

7

Creating a PROC SQL View

To create a PROC SQL view, use the CREATE VIEW

statement.

proc sql;
create view PHSUG.tom_zhou as

select Employee_Name as Name format=$25.0,
Job_Title as Title format=$15.0,
Salary 'Annual Salary' format=comma10.2,

int((today()-Employee_Hire_Date)/365.25)
as YOS 'Years of Service'

from employee_addresses as a,
employee_payroll as p,
employee_organization as o

where a.Employee_ID=p.Employee_ID and
o.Employee_ID=p.Employee_ID and
Manager_ID=120102;

quit;

s107d07

CREATE VIEW view-name AS
SELECT …;

4-6 Chapter 4 Where ANSI SQL Falls Short and PROC SQL Steps In

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

8

View the Log
Partial SAS Log

5 proc sql;

46 create view PHSUG.tom_zhou as

47 select Employee_Name as Name format=$25.0,

48 Job_Title as Title format=$15.0,

49 Salary 'Annual Salary' format=comma10.2,

50 int((today()-Employee_Hire_Date)/365.25)

51 as YOS 'Years of Service'

52 from employee_addresses as a,

53 employee_payroll as p,

54 employee_organization as o

55 where a.Employee_ID=p.Employee_ID and

56 o.Employee_ID=p.Employee_ID and

57 Manager_ID=120102;

NOTE: SQL view PHSUG.TOM_ZHOU has been defined.

9

Location of a PROC SQL View

ANSI standards specify that the view must reside

in the same SAS library as the contributing table or tables.

libname=PHSUG

Employee_Addresses

Tom_Zhou

s:\workshop

Employee_Organization

Employee_Payroll

 4.1 Making a View Portable 4-7

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

10

Location of the Source Tables: ANSI

In PROC SQL, the default libref for the table (or tables)

in the FROM clause is the libref of the library that contains

the view. When the view and data source are in the same

location, you specify a one-level name for the table

(or tables) in the FROM clause.

create view PHSUG.tom_zhou as

…
from employee_addresses as a,

employee_payroll as p,
employee_organization as o

11

Using a View

Tom can use the view to produce simple reports.

Partial PROC SQL Output (executed 27Aug2018)

title "Tom Zhou's Direct Reports";
title2 "By Title and Years of Service";
select *

from PHSUG.tom_zhou
order by Title desc, YOS desc;

s107d08

4-8 Chapter 4 Where ANSI SQL Falls Short and PROC SQL Steps In

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

12

Business Scenario

You created a PROC SQL view to provide Tom Zhou

access to personnel data for his direct reports.

Tom copied his view to a folder on his hard drive.

Now Tom reports that the view does not work anymore,

and he asked for your help to resolve the problem.

13

Exploring the Problem

Tom submitted the following:

libname PHSUG 'c:\temp';

proc sql;
title "Tom Zhou's Direct Reports";
title2 "By Title and Years of Service";
select *

from PHSUG.tom_zhou
order by Title desc, YOS desc;

quit;

title;

s107d09

 4.1 Making a View Portable 4-9

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

14

Viewing the Log

Partial SAS Log

libname PHSUG ‘c:\workshop';
NOTE: Libref WUSS was successfully assigned as follows:

Engine: V9
Physical Name: c:\workshop

proc sql;
title "Tom Zhou's Direct Reports";
title2 "By Title and Years of Service";
select *

from PHSUG.tom_zhou
order by Title desc, YOS desc;

ERROR: File PHSUG.EMPLOYEE_ADDRESSES.DATA does not exist.
ERROR: File PHSUG.EMPLOYEE_PAYROLL.DATA does not exist.
ERROR: File PHSUG.EMPLOYEE_ORGANIZATION.DATA does not
exist.

quit;
title;

NOTE: The SAS System stopped processing this step because
of errors.

15

Considerations

Tom moved his view to his C:\workshop folder and

redefined the wuss library there. This violated the

one-level naming convention in the FROM clause

in the view code.

libname PHSUG ‘c:\workshop';

proc sql;
title "Tom Zhou's Direct Reports";
title2 "By Title and Years of Service";
select *

from PHSUG.tom_zhou
order by Title desc, YOS desc;

quit;

4-10 Chapter 4 Where ANSI SQL Falls Short and PROC SQL Steps In

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

16

Making a View Portable

s107d10

create view PHSUG.Tom_Zhou as

select Employee_Name as Name format=$25.0,

Job_Title as Title format=$15.0,

Salary "Annual Salary" format=comma10.2,

int((today()-Employee_Hire_Date)/365.25)

as YOS 'Years of Service'

from PHSUG.employee_addresses as a,

PHSUG.employee_payroll as p,

PHSUG.employee_organization as o

where a.Employee_ID=p.Employee_ID and

o.Employee_ID=p.Employee_ID and

Manager_ID=120102

using libname PHSUG "s:\workshop";

CREATE VIEW viewAS SELECT…
<USING LIBNAME-clause<, …LIBNAME-clause>>;

A USING clause names the

location of the tables.

two-level data

set names

17

libname=PHSUG

employee_addresses

s:\workshop

Two-Level Table Names in Permanent Views

◼ The USING clause libref is local to the view,

and it will not conflict with an identically named libref

in the SAS session.

◼ When the query finishes, the libref is disassociated.

CREATE VIEW proc-sql-viewAS SELECT …
<USING LIBNAME-clause<, …LIBNAME-clause>>;

libname=PHSUG

tom_zhou

c:\workshop

employee_organization

employee_payroll

 4.1 Making a View Portable 4-11

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

18

Views: Advantages

You can use views to do the following:

◼ avoid storing copies of large tables.

◼ avoid a frequent refresh of table copies. When

the underlying data changes, a view surfaces

the most current data.

◼ pull together data from multiple database tables

and multiple libraries or databases.

◼ simplify complex queries.

◼ prevent other users from inadvertently altering

the query code.

19

Views: Disadvantages

◼ Because views access the most current data

in changing tables, the results might be different

each time you access the view.

◼ Views can require significant resources each time

they execute. With a view, you save disk storage

space at the cost of extra CPU and memory usage.

◼ When accessing the same data several times in

a program, use a table instead of a view. This ensures

consistent results from one step to the next and can

significantly reduce the resources that are required.

4-12 Chapter 4 Where ANSI SQL Falls Short and PROC SQL Steps In

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Chapter 5 Summarizing Data
Using the Boolean Gate

5.1 Summarizing Data ... 5-3

5-2 Chapter 5 Summarizing Data Using the Boolean Gate

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

 5.1 Summarizing Data 5-3

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

5.1 Summarizing Data

2

Business Scenario
Create a report that shows the total number of current

Orion Star employees and a report that shows the total

number of current Orion Star managers.

PROC SQL

Desired Report 1

PHSUG.employee_information

Count
ƒƒƒƒƒƒƒ

Count
ƒƒƒƒƒƒƒ

Desired Report 2

3

Business Scenario

Create a report that lists the following for each department:

◼ total number of managers

◼ total number of non-manager employees

◼ manager-to-employee (M/E) ratio

Below is a rough sketch of the desired report.

Department Managers Employees
M/E

Ratio

Accounts 1 5 20%

Administration 2 20 10%

5-4 Chapter 5 Summarizing Data Using the Boolean Gate

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

4

Business Data

Determine whether an employee is a manager

or a non-manager.

The Job_Title column contains the information

about each employee.

Department Job_Title
ƒƒ
Administration Administration Manager
Administration Secretary I
Administration Office Assistant II

5

Counting Rows That Meet a Specified Criterion

How do you determine the rows that do have Manager

in Job_Title, as well as rows that do not? You cannot

use a WHERE clause to exclude either group.

Use the FIND function in a Boolean expression to identify

rows that contain Manager in the Job_Title column.

Department Job_Title
ƒƒ
Administration Administration Manager
Administration Secretary I
Administration Office Assistant II

 5.1 Summarizing Data 5-5

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

6

FIND Function

The FIND function returns the starting position of the first

occurrence of a substring within a string (character value).

Find the starting position of the substring Manager in the

character variable Job_Title.

The value returned by the FIND function is 16.

Job_Title 1 2

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

A d m i n i s t r a t i o n M a n a g e r

find(Job_Title,"manager","i")

FIND(string, substring<,modifier(s)><,startpos>)

7

Using Boolean Expressions

Part 1: Use a Boolean expression to determine whether

an employee is a manager.

Note: Boolean expressions evaluate to true (1) or false (0).

◼ If Job_Title contains Manager, the value is 1.

◼ If Job_Title does not contain Manager, the value is 0.

proc sql;

select Department, Job_Title,
(find(Job_Title,"manager","i")>0)
"Manager"

from PHSUG.employee_information;

quit;

s103d13

5-6 Chapter 5 Summarizing Data Using the Boolean Gate

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

8

Viewing the Output

Partial PROC SQL Output

Department Job_Title Manager
ƒƒ
Administration Administration Manager 1
Administration Secretary I 0
Administration Office Assistant II 0
Administration Office Assistant III 0
Administration Warehouse Assistant II 0
Administration Warehouse Assistant I 0
Administration Warehouse Assistant III 0
Administration Security Guard II 0
Administration Security Guard I 0
Administration Security Guard II 0
Administration Security Manager 1

9

Using Boolean Expressions

Part 2: Calculate the statistics requested.

proc sql;

title "Manager-to-Employee Ratios";

select Department,

sum((find(Job_Title,"manager","i")>0))

as Managers,

sum((find(Job_Title,"manager","i")=0))

as Employees,

calculated Managers/calculated Employees

"M/E Ratio" format=percent8.1

from PHSUG.employee_information

group by Department;

quit;

s103d14

 5.1 Summarizing Data 5-7

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

10

Viewing the Output

PROC SQL Output

Manager-to-Employee Ratios

M/E
Department Managers Employees Ratio

ƒƒ
Accounts 3 14 21.4%
Accounts Management 1 8 12.5%
Administration 5 29 17.2%

Concession Management 1 10 10.0%
Engineering 1 8 12.5%
Executives 0 4 0.0%
Group Financials 0 3 0.0%

Group HR Management 3 15 20.0%
IS 2 23 8.7%
Logistics Management 6 8 75.0%
Marketing 6 14 42.9%

Purchasing 3 15 20.0%
Sales 0 201 0.0%
Sales Management 5 6 83.3%
Secretary of the Board 0 2 0.0%

Stock & Shipping 5 21 23.8%
Strategy 0 2 0.0%

5-8 Chapter 5 Summarizing Data Using the Boolean Gate

Copyright © 2018, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

	Course Outline
	Chapter 1 - PROC SQL Syntax Order: So Few Workers Go Home on Time
	1.1 Overview of the SQL Procedure

	Chapter 2 - Know Thy Data: DICTIONARY Tables
	2.1 DICTIONARY Tables and Views

	Chapter 3 - Two Ways to Stack Data Horizontally
	3.1 SQL Joins: When Is a Cartesian Product Useful?
	3.2 Subqueries: Best Practices, Dangers of Correlated

	Chapter 4 - Where ANSI SQL Falls Short and PROC SQL Steps In
	4.1 Making a View Portable

	Chapter 5 - Summarizing Data Using the Boolean Gate
	5.1 Summarizing Data

