

1

PharmaSUG 2017 - Paper TT16

Dear Dave, Please See the .LST file for Our Validation Differences. Thanks,
Bad Validation Programmer

Tracy Sherman, David Carr, Ephicacy Consulting Group, Inc.;
Brian Fairfield-Carter, InVentiv Health

ABSTRACT

Good validation programmers are a rare commodity: too often validation programmers view themselves
as filling a subordinate role, one that requires little more than basic understanding of SAS syntax, and that
does not require imagination or an ability or willingness to question or critically evaluate or investigate.
Validation is often reduced to a rubber-stamp corroboration of specifications, and a reverse-engineering
of production output; investigating and resolving discrepancies is too often viewed as the exclusive
domain of the production programmer.

This paper will give examples of the good, the bad and the ugly among validation practices in statistical
programming. It will also strive to ensure that the next time you are validating a dataset or TFL (table,
figure or listing), you will understand the importance of and the reasons behind good validation practices
and effective communication, and also understand why responsibility for investigating differences
between production and validation output lies primarily with the validation programmer.

INTRODUCTION

The production programmer and the validator should have a symbiotic relationship, as their goals are so
closely aligned: both play an equal role in ensuring that reporting requirements are met, and that reporting
accurately portrays the underlying data. In practice this symbiosis is rarely in evidence, as many
validators habitually implement practices that do little to further these shared goals. Our intent in this
paper is to shine a light on deficient validation practices, using some real life examples, so validators can
recognize when they are 'missing the bus', and also understand why appropriate practices make a
difference. In a world of time constraints and competing demands, it’s important to be aware of where
corner-cutting might save modest increments on the validation side, but end up requiring substantial
additional effort in the long run.

Validation that is done well is a true embodiment of team-work, and not only goes a long way toward
keeping the production programmer sane, but also provides efficiencies for the company. If everyone
looked for opportunities to be more efficient and team oriented it would make all our lives easier. And
ultimately, streamlining the production of deliverables supports decisions and actions that offer better
treatment options for those who need them.

Good validation programmers are extremely hard to come by, not because the role is typically filled by
programmers lacking in programming skill, but because the roles and responsibilities of the validation
programmer are so often vastly underestimated. We will outline seven simple, useful, and thought-
provoking validation guidelines that could be used as guidance for all validation programmers. These
guidelines include communication techniques (for example, demonstrating exactly which
subject/parameter/visit you are not matching on and your deductions that produced the result you arrived
at), as well as investigational methods (for example, reviewing source data (raw/SDTM/ADaM datasets) in
light of study documentation, evaluating dataset specifications in light of the statistical analysis plan
(SAP), and/or the protocol, and leaning on the study statistician for confirmation of your programming
logic).

Simple, independent and minimalist code can be written to show the production programmer how you
achieved your results; not only is it unnecessary, bewildering, and totally counter-productive to paste your
entire validation code into an email, but it also violates the basic premise of 'independence' in validation.
And if your strategy is to merely point the production programmer to a .LST file, then the listing must at a
minimum include sufficient ID variables (i.e. in the PROC COMPARE output) to allow the production
programmer to isolate specific records.

Dear Dave, Please See the .LST File for Our Validation Differences. Thanks, Bad Validation Programmer, continued

2

In practice, validation needs to follow a reductionist approach: illustrative code, used for discussion
purposes and to test interpretations, needs to consist of the bare minimum necessary to query specific
records and generate specific computed values; and the demonstration of discrepancies needs to focus
on discrepancy patterns: i.e. specific visits, parameters, patients where discrepancies are concentrated.

After reading this paper, we hope to encourage you to implement some of the proposed guiding
principles, to streamline the validation process, broaden the scope of validation responsibilities, to and
ensure you approach validation with a team-focused mentality.

SEVEN GUIDING PRINCIPLES FOR VALIDATION AND COMMUNICATION

For the purposes of this paper, we propose that there are seven guiding principles behind validation and
the communication of validation findings. These principles describe not only the full scope of validation
responsibilities, but also the objectives that should drive validation methodology:

1. Apply industry standards: rather than being passive consumers of 'unassailable' specifications,
validators should play an active role in developing and refining specifications, and should critically
evaluate specs (SDTM, ADaM) against established principles and standards.

2. Develop and apply knowledge of study documentation, analytical rules and objectives:
again, validators should challenge specs and ask if they realize the objectives as defined in the
SAP and protocol. Validators shouldn't just say 'I wrote my validation program exactly per what
you put in the spec', but should also ask whether the spec accurately represents the SAP.

3. Develop a thorough knowledge of the data: validators should not take on faith that the ground-
work done by the production programmer is correct, but should double-check that data handling
rules make sense in light of the source data, and handle any exceptions that the raw data may
pose.

4. Be pragmatic, systematic and consistent in communication: validators should recognize that
project leads (who are often the production programmers) have to receive validation comments
from multiple programmers, so there isn't time to do a lot of deciphering of sprawling email
threads, nor to accommodate multiple styles of communication. Communication of validation
findings should be kept to the bare minimum required to 'prove your point'.

5. Provide specific and supportable explanation for validation findings: as validator, be
prepared to state why you think that an abstract idea should be implemented according to your
specific prescription. Support your explanation directly from source data (raw data, or validated
SDTM data, or validated ADaM data, depending on context), rather than from some random
WORK dataset that may suffer from confounding factors.

6. Identify discrepancy patterns: validators should learn to differentiate between discrepancies
that illustrate unique differences in data-handling, and those that are merely instances of the
same type of discrepancy.

7. Identify dependencies and cascading/secondary effects: validators need to identify
interdependencies between related derivations, and trace the impact of discrepancies across all
relationships.

Table 1 outlines seven guiding principles for programming validation and communication, and provides
illustrative "Do's" and "Don’t's".

Dear Dave, Please See the .LST File for Our Validation Differences. Thanks, Bad Validation Programmer, continued

3

7 Guiding Principles for
Validation Programming

Do Don’t

Apply industry standards Review standards and/or have
methods in place for checking
standards (e.g. Pinnacle 21 for
SDTM/ADaM/define)

Validate only what you see, and
assume that specs already meet
Industry standards; blindly
implement specs in validation
code without ensuring the specs
are accurate.

Develop and apply knowledge
of study documentation,
analytical rules and objectives

Respond with the page of the
section in the
SAP/Protocol/Specifications
that details the derivation you
are not matching on, and
provide your interpretation or
paraphrase of that text; go
through a 'hand-calculation'
based on specific data points.

Make the unsupported assertion
that 'the derivation is not matching
the supporting documentation
(SAP, etc.)', and pass
responsibility back to the
production programmer.

Develop a thorough knowledge
of the data

Trace specific data points (i.e.
for a target patient) through a
derivation, and make sure
expectations are met at each
step.

Proactively refresh datasets or
output when pre-requisites
have been updated.

Wander laboriously through a
complex program hoping to
miraculously spot a logic error.

Observe that data and/or outputs
are out of sync, but do nothing
about it.

Be pragmatic, systematic and
consistent in communication

Be specific, and provide
sufficient background to make
your case.

Be aware of global time
differences and explain
discrepancies as they are seen
in real time. You save time for
team if you keep team logistics
in mind.

Assume that the production
programmer is intimately aware of
the minute details of every
derivation, and has nothing else
to work on.

Send a vague email to a
programmer in a different time
zone, and lose a 24-hour cycle
without resolving any
discrepancies.

Provide specific and
supportable explanation for
validation findings

Send examples of
subjects/data points not
matching, and explain why you
think there is a difference, and
what you think the correct
outcome should be, as based
on supporting documentation

Send an email pointing to the
.LST file of the PROC COMPARE
output and observe that 'there are
differences'.

Dear Dave, Please See the .LST File for Our Validation Differences. Thanks, Bad Validation Programmer, continued

4

7 Guiding Principles for
Validation Programming

Do Don’t

Identify discrepancy patterns. Recognize where
discrepancies are all of the
same type, and provide a
small number of examples. For
example, if values on the
validation side are consistently
half of what they are on the
production side, then it's likely
that someone missed
multiplying or dividing by 2 in
the derivation algorithm.

Email the production programmer
a huge list of identical
discrepancies, observe that the
numbers are not matching and
that you don’t know why, and
propose that someone else needs
to figure it out.

Identify dependencies and
cascading/secondary effects

Understand how differences
with some variables can have
cascading effects on other
variables (e.g. AVAL >
AVALCAT1, AVALCAT2); start
by communicating to the
production programmer only
the discrepancies at the top of
the dependency hierarchy.

Inundate the production
programmer with discrepancies
across the whole dependency
hierarchy; or worse, cite the
secondary discrepancies but not
the 'parent' discrepancies from
which they derive.

Table 1. Seven guiding principles for validation programming and communication

APPLY INDUSTRY STANDARDS

Standards are intended to improve efficiency and accuracy by promoting uniformity. Applying standards
requires judgment and interpretation, and as such there must be a certain division of labor between the
production programmer and validator: interpretation by the production programmer is not necessarily
correct or complete, and needs to be challenged and tested by the validator. Further, in a given project,
the production programmer does not necessarily enjoy exhaustive knowledge of all reporting
requirements across all domains, which means that a 'second set of eyes' is vital: specs need to be
reviewed for completeness by the validator.

If you are validating an ADaM dataset such as ADVS, review the dataset specification and compare it to
the current version of the document titled “Analysis Data Model (ADaM)” which is available for download
at http://www.cdisc.org/adam. Are all the requirements of a dataset following 'Basic Data Structure' met?
Are there additional variables or derived records, and if so, do they follow accepted conventions? If there
are inconsistencies or things that seem questionable, it is your responsibility as validator to point these
out to the author of the specifications. Don’t trust the specifications are accurate as standards are
constantly changing and people often make mistakes. Take the initiative to use the readily available tools
such as Pinnacle 21 Community to validate an ADaM dataset or group of datasets. Performing these
checks before TFL programming starts, can eliminate rework if issues are found after the fact. The most
current version can be downloaded for free at https://www.pinnacle21.com/downloads.

You should also check that each TFL can all be programmed from the supposedly ‘analysis-ready’
dataset. It is not adequate to say that ADSL is 'validated' simply because there are no
production/validation discrepancies, if there are population flags or subject-level covariates missing.

DEVELOP AND APPLY KNOWLEDGE OF STUDY DOCUMENTATION, ANALYTICAL
RULES AND OBJECTIVES

Given turnover in project teams, the tendency to over-simplify in the face of interim or incomplete data
(i.e. when generating DMC output early on in a project), and the resistance among some programmers to
develop things from scratch (often accompanied by a tendency to take on faith work done by previous

Dear Dave, Please See the .LST File for Our Validation Differences. Thanks, Bad Validation Programmer, continued

5

team members), it’s not uncommon to see programming specifications that include definitions for baseline
that read "set BASE=VSSTRESN where VISITNUM=1". This begs the question: as a validator, when you
see this, do you obediently implement exactly this derivation, and consider your job complete when you
get a perfect match with production output? Hopefully your answer is an emphatic 'No'. When you run into
a questionable derivation, or any non-self-evident derivation for that matter, the first thing you should do is
look up exactly what the SAP has to say on the matter. Then you should implement the derivation on the
validation side according to your interpretation of the SAP, and highlight the deficiency in the spec to the
production programmer.

Regardless of what is written in the specifications, the Protocol/SAP/CRF are the 'ultimate authorities',
and programming specs should be reviewed for consistency with these documents to ensure the analysis
is done correctly. It’s everyone’s responsibility to point out inconsistencies; arguably the review of specs
should be a task unto itself, but validation programmers provide a last line of defense against the potential
disconnect between the SAP and analysis implementation. A quick email or call to the lead programmer
or statistician, citing the section in the Protocol/SAP that is inconsistent with the specifications, is
extremely beneficial to all parties involved. It may take a few extra minutes at the time it was noticed, but
it will save the team many hours and a lot of stress if it is addressed well in advance of the end of the
study or during a time-crunch deliverable.

DEVELOP A THOROUGH KNOWLEDGE OF THE DATA

Some of the most common discrepancies result from differences in record selection, or more accurately,
from over-simplified assumptions about the structure of the underlying data which result in imprecise or
ambiguous record selection. Consider for example what happens when you select the 'last' lab record
prior to first dose of investigational product as baseline, but you assume that you only need to order
records by USUBJID, PARAMCD and AVISITN (in other words, you assume that there could only be 1
record per patient per parameter per visit). When there are actually multiple records per patient per visit,
record selection becomes arbitrary and ambiguous.

In any program, and for any problem, you will probably never bring as much focus, or as much attention
to detail, as you do while making your initial effort at writing code. This means it is vital, as you're
programming any derivation, to include defensive code (Sherman and Ringelberg, 2013), and test for
assumptions, right from the outset, rather than assuming you'll go back and carry out these tasks later. At
every point in a derivation there are a host of obvious questions that should be explored: is there a
potential for missing values?; are there potentially multiple records within 'by' variables?; etc. Answering
these questions during your initial coding effort will provide necessary insight when you reach the point of
addressing discrepancies.

Knowing the status of the source data (SDTM/ADaM) is also vital to addressing validation problems. This
includes [a] noting when the source data was last updated and ensuring both production and validation
code has been run after any data refresh and [b] ensuring that any dependencies from other ADaM
datasets have also been re-run against refreshed data prior to validation of that dataset.

Too often programmers find themselves enquiring why validation is no longer matching when it previously
passed. This is where the investigator skills come in handy for the validator. The validator should look to
see if there were updates to the specifications and if the production program had changed after the last
validation date. If not, then it is probably due to the source data being refreshed. A quick rerun of the
production and validation code can eliminate this as a potential reason.

BE PRAGMATIC, SYSTEMATIC AND CONSISTENT IN COMMUNICATION

As more companies are going global, with offices in many different time zones, it’s important to recognize
the potential cost of ineffective communication. For instance, if you ask a question of someone located in
an overseas location such as India, it may take two working days (your work day plus the other
programmer's work day) to get an answer.

Dear Dave, Please See the .LST File for Our Validation Differences. Thanks, Bad Validation Programmer, continued

6

To mitigate this potential inefficiency, it is vitally important to adhere to stringent communication
standards, with the goal of making it impossible to be misunderstood. Adequate context, background and
supporting information must be provided so that the recipient of the information is spared from thinking "I
think what you mean here is…", and all possible effort must be made to investigate the underlying
reasons for a discrepancy.

Specifically, where there is the potential for alternate interpretations of project documentation, start by
referencing the relevant sections of (i.e.) the SAP, followed by your interpretation or paraphrase. Provide
illustration in the form of specific records and data values, and if necessary, provide self-contained,
independent code fragments (Fairfield-Carter, 2015) (i.e. that can be dropped verbatim into a SAS
session and run 'as is', as opposed to excerpts from your validation program that require WORK datasets
as pre-requisites).

Use complete sentences, and try to structure your arguments: 'if X and Y, then Z', rather than 'I used the
last record and multiplied it so shouldn't the answer be 0.000342558?'. State the alternate assumptions
that occurred to you, and why you rejected them and/or what the outcome was of your assumptions
testing (i.e. 'I considered censoring at last dose date, but realized that for lots of patients this would fall
much earlier than the true end-of-trial').

There are a few practical considerations that should be kept in mind: if you send a screenshot showing
specific/illustrative records, the recipient cannot copy/paste ID values (such as USUBJID) into a SAS
session to try and corroborate your results. Further, in PROC COMPARE output you should make it
abundantly clear which is the production and which is the validation output (so PROC COMPARE should
be run on datasets called something like 'PRODUCTION' and 'VALIDATION' rather than 'DEV' and 'VAL'
or 'FINAL1' and 'TEST'). Many validation issues can be resolved quickly over IM; you may find that
logging on for a few minutes into the other programmer’s time zone can save an entire day’s wait.

PROVIDE SPECIFIC AND SUPPORTABLE EXPLANATION FOR VALIDATION FINDINGS

Probably the most important principle behind effective and efficient validation is that of exercising
detective skills in supporting observations. No synopsis of validation findings should ever be offered
without at least some form of defensible evidence. The level of detail will of course depend on context
and the complexity of the derivation, but should provide enough evidence to support why you think your
answer is correct.

Look at the values on both the production and validation sides, and try to understand why the production
side shows the value that it does. Assemble an illustrative example and provide supporting information,
which could be as simple as the following email, Display1:

Hi,

In the ADQOL dataset, we are not matching on the numbers of observations. I have 20,515 and you have
21,902 records.
Looks like you have included the QSSTAT=’NOT DONE’ records and I am not. When I checked the dataset specs,
it says to keep the ‘NOT DONE’ records as we need to report the number of questions not answered for each
questionnaire in Table 14.3.1.5.
When we match on the observations, I will check into any variable differences.

 Display 1. Offer Supporting Information for the Differences

The email above offers a potential reason for the discrepancy of the number of observations as well as
illustrates that the number of observations should match before you start investigating value-level
differences. This is a common mistake that junior programmers make when starting validation. PROC

Dear Dave, Please See the .LST File for Our Validation Differences. Thanks, Bad Validation Programmer, continued

7

COMPARE will spit out a ton of variable mismatches if the number of observations are not equal between
the production and validation datasets, and record-count differences absolutely must be resolved before
any attempt can be made to address value-level differences.

If you are validating a figure and multiple endpoints are not matching, a useful strategy is to copy the
PROC PRINT output that supports your inference and add it to your outgoing email. A visual
representation of your observation is sometimes worth a thousand words as shown in Display 2.

Hi,

I compared the data until Week 18.

Patients at Risk (Placebo): For W03, I get 35 subjects whereas on production output it is displayed as 34
patients. Below are the numbers from my output until Week 18 for both treatments.

 W0 W03 W06 W09 W12 W15 W18
Event/Cum. Events: Treatment 0/0 0/0 8/8 8/16 5/21 2/23 2/25
Patients at Risk 48 48 37 24 17 14 12

Event/Cum. Events: Placebo 0/0 0/0 4/4 6/10 5/15 2/17 2/19
Patients at Risk Placebo 35 35 30 22 17 15 13

 Display 2. Create a Visual for Supporting Validation Observations

Sending an email pointing to the .LST file containing PROC COMPARE output is generally not efficient
for either the production or the validation programmer. Somewhere along the line someone must take the
plunge and assess what the PROC COMPARE output means, and what it is showing, and since this
output is generated by the validation program, it makes the most sense for this to fall to the validation
programmer (otherwise the production programmer is reduced to interpreting implementation on the
validation side by proxy, by taking a 'back-bearing' from validation output). And since validation essentially
amounts to leveling criticism, the validation programmer should provide evidence and justification.
(Imagine a book review in the New York Times that just said "this is a terrible book", but provided no
support for the opinion).

The exception is if the PROC COMPARE output is self-explanatory, such as when the number of
decimals is off by one place. Validation compare code should typically include the LISTALL option along
with an ID statement to ensure all records are in sync with production. The LISTALL option can capture
valuable pieces of information such as duplicate records which can cause data mismatches on its own.

The ultimate goal should be to save every team member time and energy and to support each other at all
times. We are all trying to achieve the same result; the highest quality product, produced in the shortest
amount of time.

IDENTIFY DISCREPANCY PATTERNS

Inefficient problem-solving generally involves exhaustively eliminating non-working alternatives, and we
often see this enacted in validation programming when piecemeal, isolated, 'hail-Mary' updates are made
in the hopes that the number of discrepancies will somehow be reduced. Efficient problem-solving, in
contrast, works by identifying the layers of abstraction that define any problem, and looking for patterns
that result from some underlying property. In validation programming, this involves looking for patterns
that expose collections of discrepancies as belonging to a particular 'type'.

Record-count differences might seem at the outset to follow no particular pattern, and may result from
discrepancies across multiple variables, but almost always turn out to be isolated to specific combinations
of key variables (for instance, comparing production/validation frequency counts by PARAMCD and

Dear Dave, Please See the .LST File for Our Validation Differences. Thanks, Bad Validation Programmer, continued

8

AVISITN often isolates the specific parameters and/or visits where problems exist). Record-count
differences mask discrepancies at the level of individual variables, so there's an obvious hierarchy or
order that needs to be followed in deciphering and reducing PROC COMPARE output.

Value-level differences are naturally and conveniently grouped by variable, but it’s always worth looking
for further patterns within individual variables before going back to the program code and experimenting
with updates, and this will usually identify and resolve issues more quickly (sometimes instantly). For
example, in a summary variable that gives 'n (%)', if your frequency counts match but your percentages
don't then you can conclude that the difference must be isolated to the denominator. Similarly, if all values
on the validation side are exactly half those on the production side, then one programmer or the other
likely just missed multiplying or dividing by 2 in the derivation.

As a further example, consider an instance where you notice that all the ‘No’ counts in a frequency table
are off by a few patients but you are matching on the ‘Yes’ counts. Further, the first variable that is
displayed in the COMPARE output is a flag variable, such as MESIRFFL (Patients with Measurable
Disease), which is only populated in the dataset with a ‘Y’. Right away, you realize the trend of
mismatches is related to how you are both counting subjects that are missing data and are not
considered an ‘N’. Instead of wasting your time going through each flag variable, you can send the
mismatch for the one variable and have confidence that the rest will likely resolve once the first variable
matches.

Other trends you might see in a time-to-event analysis dataset are where all the AVALs are off a couple
of days. Most likely one of you is using the treatment start date as opposed to the randomization date as
the 'start' date. Looking for these kinds of trends is far more productive than staring at program code
hoping to spot the exact statements that are causing problems, and can save you many hours of work
over the long run.

IDENTIFY DEPENDENCIES AND CASCADING/SECONDARY EFFECTS

When reviewing the validation output for an ADaM BDS (basic data structure) dataset, it’s helpful to
understand that some variables can have cascading effects on other variables. For example, if
AVAL/AVALC is not matching, then dependent variables such as AVALCAT1, AVALCAT2, BASECAT,
CHG, PCHG, and SHIFTy, just to mention a few, will most likely not match as well. Getting the number of
observations to match should always be the priority, but this should be followed closely by resolving any
discrepancies in AVAL. Once these are matching, it should be fairly easy to investigate differences in
dependent variables; but investigating differences in dependent variables when AVAL is not matching is
probably a waste of time.

Similarly, if you notice in the validation output of a summary statistics table that the N’s are not matching
for all the parameters, then you can deduce that record-selection criteria differ, and that there's little point
in worrying about differences in descriptive statistics until the 'N' counts are resolved. Following a little
investigation, you can email the production programmer and let them know what N should be for that
particular table, based on analysis population and any secondary criteria specified in the SAP or table
shells. Contrast that with simply sending an email that says "the N’s are not matching" (the latter
approach offering no investigation and no insights, and inevitably wasting a lot of time).

Partial-date imputation and the derivation of Adverse Event treatment-emergence offers a further
example of secondary discrepancies: if there are differences in imputed onset dates, then there's little
point in citing differences in the treatment-emergence flag until these differences are resolved.

CONCLUSION

The way to be effective and efficient when validating in this global industry is to keep the team in mind by
thinking of ways to mutually benefit each other. You can do this by providing, thoroughly explaining and
supporting validation observations in as much detail as you can muster. To do this, you should know the
data inside and out, learn how different variables can have cascading effects on other variables,

Dear Dave, Please See the .LST File for Our Validation Differences. Thanks, Bad Validation Programmer, continued

9

recognize validation output trends, study the industry standards, look for inconsistencies between the
study documentation and the production output and by using globally minded communication tools.

REFERENCES

Sherman T. and A. Ringelberg. 2013. “Defensive Programming and Error-handling: The Path Less
Travelled.” Proceedings of the 2013 Pharmaceutical Industry SAS Users Group Annual Conference.
Chicago, IL. http://www.lexjansen.com/pharmasug/2013/TF/PharmaSUG-2013-TF24.pdf

Fairfield-Carter, Brian. 2015. “Team-work and Forensic Programming: Essential Foundations of
Indestructible Projects.” Proceedings of the 2015 Pharmaceutical Industry SAS Users Group Annual
Conference. Orlando, FL. http://www.lexjansen.com/pharmasug/2015/TT/PharmaSUG-2015-TT01.pdf

ACKNOWLEDGMENTS

We would like to give a big shout out to Ephicacy Consulting Group, and in particular, Ganesh Gopal, for
his support and encouragement in conference attendance, as well as our family, friends and colleagues.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Tracy Sherman
Enterprise: Ephicacy Consulting Group, Inc.
E-mail: shermantracy@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://www.lexjansen.com/pharmasug/2013/TF/PharmaSUG-2013-TF24.pdf
http://www.lexjansen.com/pharmasug/2015/TT/PharmaSUG-2015-TT01.pdf

