
1

PharmaSUG 2017 - Paper TT08

Clinical Trials Data: It’s a Scary World Out There!

(or “Code that Helps You Sleep at Night”)

Scott Horton, United BioSource Corporation

ABSTRACT

Clinical trials data can be tough to manipulate and summarize.

Sometimes the problems that data can cause are not obvious when SAS® code runs clean and perusal of
large data sets does not reveal any anomalies.

Text truncation, Merging data, Coded data, Unexpected dates, Duplicate data, Data set naming, Macro
parameters, Select statement, Array statement will be covered.

Most of these tricks are a few lines of code. Very little effort that continues to pay dividends without too
much up front cost.

All of the tricks are straightforward as well; even beginning programmers can implement them.

INTRODUCTION

Clinical trials data can be tough to manipulate and summarize. Sometimes the problems that data can
cause are not obvious when code runs clean and perusal of the large data sets does not reveal any
anomalies. Problems can occur due to:

1) DCT/CRF design may have been poorly designed,

2) DCT/CRF design may have changed during study execution (e.g., due to protocol amendment),

3) Sites closed prior to data being fully cleaned,

4) Data could be illogical but no update can be done (e.g., source data does not support changing
it),

5) Data are not final (e.g., Interim Analyses, DMCs/DSMBs, Annual Reports).

These are among the many issues that can result in “dirty data” and produce outputs that are
unacceptable but not easily detectable. Programs may have been running without issue for prior
deliveries, but now may need updates that you are unaware of.

Areas that will be covered in this presentation:

 Text truncation

 Merging data

 Coded data

 Unexpected dates

 Duplicate data

 Data set naming

 Macro parameters

 Select statement

 Array statement

Most of these tricks are a few lines of code. Very little effort that continues to pay dividends without
too much up front cost. All of the tricks are straightforward as well; even beginning programmers can
implement them.

Clinical Trials Data: It’s a Scary World Out There!, continued

2

TEXT TRUNCATION

SAS® provides some simple functions that perform concatenations:

 CAT - concatenates entire text value of variable or constant

 CATS - concatenates after removing leading and trailing blanks

 CATT - concatenates after removing trailing blanks

 CATX - concatenates with a specified delimeter (1+ characters) removing leading and trailing
blanks

During concatenation, all four of these functions automatically detect any truncations that occur (i.e., code
that breaks… …and that is good!). These functions assume the variable receiving the concatenated
result has already been assigned a variable length. The example presented will just use CATX function.

Some clinical data may be stored in variables that have a length greater than 200 characters when being
exported from a clinical database. However, given the CDISC standards that we operate within, storing
such data in variables of length $200 is required. We want to create data set variables of length $200
where:

1) The actual data values fit into a single variable of length $200

2) The actual data values require two or more variables of length $200.

DETECTION OF TEXT TRUNCATION

We will use CATX function and detect if single variable of length $200 is sufficient.

LENGTH C200Variable $200;

C200Variable = CATX(‘ ‘,BigTextVariable);

If data (ignoring leading or trailing blanks) that is stored in BigTextVariable is greater than 200 characters,
a warning will be written to LOG file that indicates number of characters being truncated. Let’s look at an
example.

Variable BIG has a length $500 and is populated with ‘x’ in each of the first 188 positions and has blanks
for rest of value. When processing data via the DATA step below, we find that the values stored in VAR1,
VAR2, VAR3, and VAR4 are identical.

DATA two;

 SET one;

 LENGTH var1 var2 var3 var4 $200;

 var1=big;

 var2=STRIP(big);

 var3=CATX(' ',big);

 var4=CATX(' ',STRIP(big));

run;

But what if variable BIG contained 211 characters of ‘x’ in the first 211 positions of BIG? Running same
code above results in the following in the LOG file:

WARNING: In a call to the CATX function, the buffer allocated for the result was not long enough to
contain the concatenation of all the arguments. The correct result would contain 211 characters, but the
actual result might either be truncated to 200 character(s) or be completely blank, depending on the
calling environment. The following note indicates the left-most argument that caused truncation.

LOG file indicates exact length needed due to only first value that is too long.

It is important to note that if variable being assigned the concatenated result is also included in the items
being concatenated then a WARNING will not be written to the log file. An example of this is provided in
the DATA step below.

Clinical Trials Data: It’s a Scary World Out There!, continued

3

DATA two;

 SET one;

 var3=CATX(' ','no warning written',var3);

run;

MERGING DATA

Merging is one of the most common activities in the manipulation of clinical trials data. Are there little bits
of code that will help navigate this avenue of data manipulation? Yes! A couple examples of approaches
to detecting problems with the data are:

 Detect when expected extra records per subject are found

 Detect when important data are missing

CODE TO IDENTIFIY MERGING ISSUES

Below are three DATA steps that address both of these issues. The PUT statement below (and
throughout this paper) that splits WARNING into two pieces is used to have WARNING written to the LOG
file as one word only if a problem in the data is detected. This is done so that tools that parse the log file
do not detect WARNING when just writing the actual code to the LOG file.

DATA final dupsubs no_dm_random;

 MERGE dm(IN=indm) random(IN=inrandom) baseheight baseweight;

 BY subjid;

 *** DETECT SUBJECTS WITH 2+ RECORDS ***;

 IF not (first.subjid and last.subjid) THEN output dupsubs;

 *** DETECT SUBJECTS MISSING DEMOGRAPHIC AND/OR RANDOMIZATION DATA ***;

 IF sum(indm,inrandom) lt 2 THEN output no_dm_random;

 OUTPUT final;

run;

DATA _null_;

 SET dupsubs END=last;

 PUT 'WARN' 'ING - ' subjid ' HAS 2+ RECORDS';

 *** STOP EXECUTION ***;

 IF last THEN abort;

run;

DATA _null_;

 SET no_dm_random;

 PUT 'WARN' 'ING - ' subjid

 ' MISSING EITHER DEMO OR RANDOM DATA';

run;

CODED DATA

For analyses that are conducted during a clinical trial (e.g., interim analyses, DMCs, annual reports), not
all terms (e.g., adverse events, concomitant medications) may be coded at the time of a delivery.
Flagging any uncoded terms without searching for them manually will pay dividends through repeated
analyses. This detection of uncoded terms can be done via a PUT statement that writes a WARNING to
the LOG file.

Clinical Trials Data: It’s a Scary World Out There!, continued

4

CODE TO IDENTIFIY UNCODED TERMS

The key line of code in the DATA step below is the IF-THEN statement. This does not have to be a
“stand alone” DATA step; the IF-THEN statement can be included in a DATA step with many other
statements.

DATA adae1;

 SET adae;

 IF aebodsys eq ' ' THEN

 PUT 'WARN' 'ING - ' subjid ‘ WITH UNCODED AE (' aeterm ') ';

run;

The result of detected terms that are not coded is a WARNING being written to the LOG file.

PRESENTATION OF UNCODED TERMS IN TABLES AND LISTINGS

Presentation of uncoded terms in tables and listings can be handled with different approaches; some
approaches may be sponsor specific or even project specific in nature. The example given below is for
adverse events but can be extrapolated to other types of data that is coded.

The text of “Uncoded” can be assigned into the variable AEBODSYS (which contains the coded term for
the MedDRA System Organ Class of an adverse event) for display in a table. It is common in the case of
an uncoded adverse event for the text recorded by the clinical site to be displayed in AEDECOD (which
contains the MedDRA Preferred Term of an adverse event). Another example of what could be assigned
to AEBODSYS for uncoded adverse events is “Uncoded (verbatim term listed below)”.

Here is some example code.

DATA aelist1;

 SET aelist;

 IF aebodsys eq ' ' THEN do;

 aebodsys='Uncoded (verbatim term listed below)';

 aedecod=strip(aeterm);

 END;

run;

If you want to have the uncoded terms appear at the top of tables that include this type of data,
assignment of an underscore (e.g., '_Uncoded' or '_Not coded') will cause this data to sort to top of table
when the table is sorted alphabetically. If the presentation order is based upon the frequencies of coded
terms then the creation of a sorting variable will give the desired presentation.

UNEXPECTED DATES

Clinical trials data often contains dates which are restricted in what is a legal value—that is, a date may
be impossible based on its definition though the value of the date may be a legal value otherwise.

DATES RESTRICTED BY RELATIONSHIP TO THE START OF TREATMENT DATE

An example of date values that cannot occur based on its definition is the date of cancer recurrence after
the start of study treatment. A PUT statement can alert a programmer to inappropriate date values that
otherwise would be legal date values.

DATA two;

 MERGE dm recurr;

 BY subjid;

 IF n(recurrdt) and recurrdt lt trtsdt THEN

 PUT 'WARN' 'ING - ' subjid ' RECURRENCE DATE(' recurrdt

 ') IS PRIOR TO START OF STUDY DRUG(' trtsdt ') ';

run;

Clinical Trials Data: It’s a Scary World Out There!, continued

5

The result of recurrence dates being detected that are prior to the start of study treatment is a WARNING
being written to the LOG file.

DUPLICATE DATA

Clinical databases may allow clinical sites to enter the same data twice. This duplication can be due to
entry screens designed for multiple records to be entered where the same exact data is entered a second
time. A second way duplication can occur is when a clinical site enters the same data under two different
protocol visits. Below we will present two ways that such duplicate data can be handled.

DISCARD DUPLICATE DATA

Discarding of duplicate data may be desires so that resulting summary data makes sense (e.g., the n for
a mean is not greater than the population N).

PROC SORT DATA=one OUT=two NODUPKEY DUPOUT=dups;

 BY _all_; *** OR BY JUST CERTAIN UNIQUE KEYS ***;

run;

DATA _null_;

 SET dups;

 PUT 'WARN' 'ING - ' subjid ' DUPLICATE RECORDS IN DATA ONE';

run;

KEEP DUPLICATE DATA

You may want to keep all records in the output for a reviewer to see (instead of just sending duplicates to
data management personnel for querying).

PROC SORT DATA=one;

 BY subjid keyvar2 keyvar3;

run;

DATA two;

 SET one;

 BY subjid keyvar2 keyvar3;

 IF not (first.keyvar3 and last.keyvar3) THEN

 PUT 'WARN' 'ING - ' subjid

 ' HAS DUPLICATE RECORDS IN DATA ONE for keyvar2('

 keyvar2 ') and keyvar3(' keyvar3 ') ';

run;

DATA SET NAMING

Using the same name for a DATA set is syntactically correct. However, when code reuses a DATA set
name review of a LST file can be confusing. More important, in interactive SAS® the earlier versions of
the data are not available for review if running the entire program. A good approach to eliminate such
potential confusion entails always using unique DATA set names in the same program.

NON-UNIQUE DATA SET NAMING

The ellipses (…) below just represent statements which manipulate data values that might be included in
a DATA step. In the example below, it is not immediately obvious which version of DATA set LAB is
being reviewed in the LST file.

Clinical Trials Data: It’s a Scary World Out There!, continued

6

DATA lab;

 MERGE lab demo;

 BY subjid;

 …

run;

title 'DATA LAB';

PROC PRINT;

run;

PROC SORT;

 BY subjid randdt;

run;

DATA lab;

 SET lab;

 BY subjid randdt;

 …

run;

title 'DATA LAB';

PROC PRINT;

run;

UNIQUE DATA SET NAMING

Reviewing the LST file is always clear with the code below.

TITLE 'DATA LAB';

PROC PRINT DATA=lab;

run;

DATA lab1;

 SET lab;

 …

run;

TITLE 'DATA LAB1';

PROC PRINT DATA=lab1;

run;

WHEN UNIQUE DATA SET NAMING MAY BE A CONCERN

When manipulating large datasets repeatedly in a program, you may need to consider using the same
DATA set name due to computer memory constraints; or, to maintain unique naming of DATA sets, you
can consider using the DATASETS PROCEDURE to delete work DATA sets that are not needed later in
the program. In cases where you do reuse the same DATA set name, you can add some descriptive text
(e.g. a unique algorithm performed in that particular DATA step) in the title statement used in conjunction
with a PROC PRINT.

A rare case that you might encounter is that extremely large DATA sets may require using the same
DATA set name. An example of this using a PROC SORT where renaming the resulting sorted DATA set
name must be the same DATA set name.

MACRO PARAMETERS

How much information can be communicated to a programmer who takes over the maintenance of a
program (or even to the original author when a significant amount of time has elapsed) by just looking at

Clinical Trials Data: It’s a Scary World Out There!, continued

7

individual macro calls? Below are three calls where a review might indicate what is being performed, but
may not give a programmer full confidence on initial review.

%dolisting(1,Adverse Events,saffl eq 'Y')

%dolisting(2,Adverse Events Leading to Permanent Discontinuation,

 saffl eq 'Y' and index(upcase(aeacn),'WITHDRAW'))

%dolisting(3,Serious Adverse Events,

 saffl eq 'Y' and upcase(aeser) eq 'YES')

%dolisting? The purpose of the macro seems to be obvious: creating a listing. But what about the first
positional parameter in each of the calls above? Does if reflect the precision of display for some data? Is
it part of some text? Is it part of the listing title? Or maybe it is used to identify the title of the listing?

The use of keyword parameters instead of positional parameters allow more information about a
particular macro call to be more readily identified.

%dolisting(listnum=1,listttl=Adverse Events,subset=saffl eq 'Y')

LISTNUM? The digit identifies which listing is being created. This might be the actual number of the
listing or a reference used to obtain the listing number. LISTTTL? This is the title of the listing.
SUBSET? This is an expression used to obtain the desired subset of the data that will be included in the
listing.

Of course, commenting macro calls adds to the visual processing of a program. Keyword macro
parameters also allow a default value to be specified as well. In the first example below, having default
value of 1 for the SUBSET macro parameter would result in no subsetting of the data being processed
(e.g., based on macro code that uses the value of SUBSET in a subsetting IF statement or in a WHERE
statement).

%macro dolisting(listnum=,listttl=,subset=1)

*** ADVERSE EVENTS LISTING ***;

%dolisting(listnum=1,

 listttl=Adverse Events)

*** SERIOUS ADVERSE EVENTS LISTING ***;

%dolisting(listnum=3,

 listttl=Serious Adverse Events,

 subset=saffl eq 'Y' and upcase(aeser) eq 'YES')

SELECT STATEMENT

An IF-THEN/ELSE statement might be the most used statement in DATA steps that create or manipulate
data; so why might you consider using a SELECT statement instead. One result of an IF-THEN/ELSE
statement can be somewhat hidden to the casual review of code. We will compare the results of such
code versus a similar code using a SELECT statement.

CODE THAT ASSUMES TWO VALUES FOR A VARIABLE

Below is an IF-THEN/ELSE statement that seems to do exact what we want: convert a numeric value to a
corresponding text value.

IF colorn eq 1 THEN color=‘Red';

ELSE color=‘Blue';

This code assumes that only values of 1 and one other value (e.g., 2) exist in the data for COLORN. That
seems reasonable based on what should be in the data—but maybe that is not specific enough.

Clinical Trials Data: It’s a Scary World Out There!, continued

8

IF colorn eq 1 THEN color=‘Red';

ELSE IF colorn eq 2 THEN color=‘Blue';

Instead of just assuming a value of 2 for Blue, we want to check for that. This code results in missing
values when COLORN is either missing or contains a value other than 1 or 2—and the LOG file doesn’t
complain about this. This may not be exactly how you want to process the data.

SELECT STATEMENT (‘BREAKS’ BY DESIGN)

The SELECT statement fails when encountering unexpected values—that is, the code break by design…
…and that is what triggers you to address potentially needed updates.

SELECT (colorn);

 WHEN (1) color=‘Red';

 WHEN (2) color=‘Blue';

END;

The code above will write an ERROR to LOG file for first value of COLORN other than 1 or 2 (including
missing values). If an ERROR is written to the LOG file, then you can determine whether a potential
update should be made or information should be relayed back to data management personnel.

If you want your code to not encounter an ERROR but still handle values of 1 and 2, ignore missing
values, and still keep you posted on other data values by writing the text WARNING to the LOG file, you
might consider this:

SELECT (colorn);

 WHEN (1) color='Red';

 WHEN (2) color='Blue';

 WHEN (.) ;

 OTHERWISE PUT 'WARN' 'ING – UNEXPECTED VALUE ' colorn=;

END;

You can accomplish this same algorithm with multiple IF-THEN/ELSE statements:

IF colorn eq 1 THEN color='Red';

ELSE IF colorn eq 2 THEN color='Blue';

ELSE IF colorn ne . THEN PUT 'WARN' 'ING – UNEXPECTED VALUE ' colorn=;

This is a simple example. But once you have more than a couple of different values, the SELECT
statement is visually easier to decipher in regards to what values are actually being handled. If no
OTHERWISE is used, then code automatically trips over new values not handled by code. The SELECT
statement is not limited to testing the values of a single variable (per above), but can also test compound
expressions as well.

SELECT;

 WHEN (colorn eq 1) color='Red';

 WHEN (colorn eq 2 and day eq 'Friday') color='Blue';

 WHEN (thispresentationistoolong eq 'TRUE') ;

 WHEN (nmiss(colorn)) ;

 OTHERWISE

 PUT 'WARN' 'ING – UNEXPECTED COMBINATION OF VALUES '

 colorn= day= thispresentationistoolong=;

END;

ARRAY STATEMENT

By design, the DATA step allows by-observation processing to occur as you process statements in a
DATA step for each observation of the data (i.e. implicit looping). ARRAY statements allow multiple
variables to be similarly processed on the same observation. In our example below we will use a

Clinical Trials Data: It’s a Scary World Out There!, continued

9

temporary array instead of one that uses actual variables. The goal of the code is to slot subjects into
time-to-event time slots; and these slots are cumulative slots. The resulting data will show how many
subjects reached an event with the passage of time.

ARRAY slots{5} _temporary_ (1 3 6 12 18);

DO i=1 TO dim(slots);

 IF n(tte) and tte le slots[i] THEN do;

 slotn=slots[i];

 output;

 END;

END;

But what if the final number of slots to consider was unknown at the original creation of the code? Or the
number of slots changed after initial code creation? We could create a large array that would handle a lot
of possibilities (ellipses in the code below, of course, are not syntactically correct—they are just used to
indicate exact values would replace them); the rest of the code would remain the same.

ARRAY slots{…} _temporary_ (1 3 6 12 18 24 30 36 …);

A more robust solution that would trigger you when the code is inadequate due to new data values. It
would be placed outside of the DO-LOOP.

IF tte gt slots[dim(slots)] THEN

 PUT 'WARN' 'ING – TIME TO EVENT TOO LARGE FOR ARRAY SLOTS ' tte=;

CONCLUSION

Though clinical trials data can be tough to manipulate and summarize due to unexpected values,
implementation of some very simple lines of code will pay ongoing dividends. Very little effort is required
to implement such code since they are straightforward and can be used by programmers of any
experience level.

Implementing code that assumes some data anomalies will occur (without going overboard to cover all
imaginable problems) will:

 Ensure quality in future repeat deliveries for the same study

 Ensure smoother transitions

o New programmer joining the study team

o New programming lead for the study

 Make you look good as others view or use your code

o Alerts them (or you) to problems in a timely fashion

 Help you sleep at night!

ACKNOWLEDGMENTS

Benjamin Young, Experis

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Scott Horton
scott.horton@ubc.com

Clinical Trials Data: It’s a Scary World Out There!, continued

10

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

