
1

PharmaSUG 2017 - Paper TT07

Converting Non-Imputed Dates for SDTM Data Sets With PROC FCMP

Noory Y. Kim, CROS NT LLC

ABSTRACT

SDTM (Study Data Tabulation Model) data sets are required to store date values with ISO8601 formats,
which accommodate both complete dates (e.g. YYYY-MM-DD) and partial dates (e.g. YYYY-MM). On the
other hand, raw data sets may come with non-ISO8601 date formats (e.g. DDMMMYYYY). Converting
complete date values to an ISO8601 format can be as simple as applying a SAS® date format to a
numeric version of the date value. Conversion of partial date values is trickier. How may we convert, say,
“UNMAY2017” and “UNUNK2017” into “2017-05” and “2017” respectively? This paper provides an
example of how to do this using the SAS Function Compiler procedure (PROC FCMP). This paper also
discusses methods of how to avoid the output of nonexistent dates such as “2017-01-99”.

INTRODUCTION

Standards by CDISC (Clinical Data Interchange Standards Consortium) specify that SDTM data sets
store date values using ISO8601 formats such as YYYY-MM-DD and YYYY-MM. On the other hand, raw
data sets may store date values in other formats such as DDMMMYYYY (the SAS format DATE9) or MM-
DD-YYYY.

Furthermore, the FDA prohibits the imputation of partial dates for SDTM data sets:

“SDTM should not include any imputed data. If there is a need for data imputation, this should
occur in an analysis dataset, and the relevant supporting documentation to explain the imputation
methods must be provided.” (FDA, 2011)

This paper will discuss how to use the SAS Function Compiler procedure (PROC FCMP) to convert
partial dates without imputing them.

DEFINING CUSTOM FUNCTIONS WITH PROC FCMP

PROC FCMP allows the SAS programmer to write customized functions and subroutines with syntax
similar to that of a DATA step. For those new to PROC FCMP, Carpenter (2013) is a useful introduction
with helpful examples.

Once compiled and located in memory, a PROC FCMP function can be invoked just like a built-in SAS

function as many times as needed to assign values to a new variable using the assignment (=) operator.

new_variable1 = user_defined_function(existing_variable1);

new_variable2 = user_defined_function(existing_variable2);

For SDTM data sets, we could convert the start and end dates of a domain such as CM (concomitant

medications) with the following invocations, where _CMSTDTC and _CMENDTC are the respective source

variables for CMSTDTC and CMENDTC, and convertdate() is a PROC FCMP function such as the one

defined on page 3.

CMSTDTC = convertdate(_CMSTDTC);

CMENDTC = convertdate(_CMENDTC);

Converting Non-Imputed Dates for SDTM Data Sets With PROC FCMP, continued

2

DISPLAYING PARTIAL DATE VALUES IN SDTM DATASETS

Partial dates are usually missing either the day (e.g. “UNMAY2017”) or both day and month (e.g.
“UNUNK2017”). Sometimes partial dates may contain information about the day but not the month (e.g.
“14UNK2017”). The CDISC SDTM Implementation Guide (SDTMIG) allows for two ways to store such a
date value:

“Missing components are represented by right truncation or a hyphen (for intermediate
components that are missing.” (See SDTMIG Version 3.2, Section 4.1.4.2.)

Right truncation ignores all components of finer granularity than the missing component, whereas
hyphenation replaces the missing component (but not the hyphens between components) with a single
hyphen. Table 1 contrasts the results of the two options.

Source Date Value ISO8601 Date Value Option

14UNK2017 2017 Right truncation

14UNK2017 2017---14 Hyphenation

Table 1: Options allowed by CDISC for representing dates with intermediate components missing.

The examples in this paper implement the right truncation option by observing the following rules:

 Omit day components if the month value is unknown.

 Omit day and month components if the year value is unknown.

MAIN EXAMPLE

EXPECTED INPUT

The complexity of a function will depend on the variability of the function input. To keep our example
relatively simple, let us suppose that the date values in the raw data sets have the following
characteristics (after all aberrant values have been passed on as data queries and resolved):

[1] All non-missing date values have 9 characters following the pattern DDMMMYYYY (similar in
appearance to the numeric date format DATE9).

[2] Date values with unknown day have a character string of length 2 in place of DD. For example,
“UKMAY2017”.

[3] Date values with unknown month have a character string of length 3 that does not match an English
abbreviation for month (e.g. “JAN”, “FEB”, “MAR”, etc.) in place of MMM. For example,
“UKUNK2017”.

[4] Date values with unknown year have a character string of length 4 with at least one non-numeric
character in place of YYYY. For example, “UKUNKUNKN”.

TARGET OUTPUT

Input Output Rule Followed

14MAY2017 2017-05-14

14May2017 2017-05-14 Ignore case when converting the month component

UNMAY2017 2017-05

UNUNK2017 2017

14UNK2017 2017 Omit day component if month is unknown.

14MAYUNKN null Omit day and month components if year is unknown.

Table 2: Target output the function should generate

Converting Non-Imputed Dates for SDTM Data Sets With PROC FCMP, continued

3

Table 2 shows instances of how our function should work. Note that the last two rows of the table apply
the right truncation option for representing partial dates.

DEFINING AND COMPILING THE FUNCTION

Below is the SAS code that defines a PROC FCMP function named convertdate() to implement the

conversion rules above:

proc fcmp outlib=work.functions.conversions; /*[1]*/

 function convertdate(indate $) $; /*[2]*/

 length outdate $10; /*[3]*/

 if indate ne ' ' then do;

 yyyy = substr(indate, 6, 4); /*[4]*/

 mmm = upcase(substr(indate, 3, 3));

 dd = substr(indate, 1, 2);

 /* if year not missing */

 if notdigit(yyyy) = 0 then do; /*[5]*/

 mm = put(mmm, $month.); /*[6]*/

 /* if month not missing */

 if mm ne ' ' then do;

 /* if day not missing */

 if notdigit(dd) = 0 then do; /*[5]*/

 outdate = yyyy || '-' || strip(mm) || '-' || dd; /*[7]*/

 end; /* if notdigit(dd) = 0 */

 else outdate = yyyy || '-' || strip(mm);

 end; /* if mm ne ' ' */

 else outdate = yyyy;

 end; /* if notdigit(yyyy) = 0 */

 else outdate = ' ';

 end; /* if indate ne ' ' */

 else outdate = ' ';

 return(outdate); /*[8]*/

 endsub; /*[9]*/

run;

Notes:

[1] Each function has a four level name: library.dataset.package.function_name. In this example we use

the temporary work library, name the dataset functions, and name the package conversions.

Alternatively, the function could be saved to a permanent library instead of work.

Converting Non-Imputed Dates for SDTM Data Sets With PROC FCMP, continued

4

[2] The FUNCTION statement begins the function definition. The dollar sign ($) inside the parentheses
indicates that the input variable indate is a character variable. The dollar sign outside the parentheses

indicates that the output variable outdate (as determined by the return()statement below) is a

character variable.

[3] To avoid truncation of character variables handled by the function, use a LENGTH statement (just as
you would in a DATA step).

[4] These three statements extract year, month, and day with the assumption that the input values come
in the form DDMMMYYYY.

[5] An IF statement with the notdigit() function equal to zero selects only those character strings

composed entirely of numbers. (Feeding the notdigit() function with a character string having at

least one non-numeric character will result in an output greater than zero.)

[6] This line converts the month abbreviation MMM to a number MM using the following format:.

 proc format;
 value $month

 'JAN' = '01'

 'FEB' = '02'

 'MAR' = '03'

 'APR' = '04'

 'MAY' = '05'

 'JUN' = '06'

 'JUL' = '07'

 'AUG' = '08'

 'SEP' = '09'

 'OCT' = '10'

 'NOV' = '11'

 'DEC' = '12'

 other = ' '

 ;

 run;

Note that the effectiveness of this format depends on the use of the upcase() function in a

statement associated with note [4].

[7] This step concatenates a complete date. (Later in this paper we will expand this section of the code to
avoid the output of nonexistent dates.)

[8] The RETURN statement specifies what the function will output.

[9] The ENDSUB statement ends the function definition.

IDENTIFYING THE LOCATION OF COMPILED FUNCTIONS

To have compiled functions accessible in the (current) SAS session, include an OPTIONS statement with
the names of function libraries you want to use.

options cmplib=(library.dataset);

In our example, we identify the location of the compiled function with the following statement:

options cmplib=(work.functions);

Converting Non-Imputed Dates for SDTM Data Sets With PROC FCMP, continued

5

INVOKING THE FUNCTION

A PROC FCMP function can be invoked only after it has been compiled and its location identified. It can
be invoked from within a DATA step or a PROC step that allows the invocation of PROC FCMP functions
(e.g. PROC SQL).

data one;

 infile cards;

 input date_date9 $9.;

 cards;

14MAY2017

14May2017

UNMAY2017

UNUNK2017

14UNK2017

14MAYUNKN

01JAN2017

99JAN2017

31FEB2017

;

data two;

set one;

length date_iso8601 $10;

date_iso8601 = convertdate(date_date9);

run;

ACTUAL OUTPUT

The following shows the output of a PROC PRINT step of the resulting data set:

 date_ date_

Obs date9 iso8601

 1 14MAY2017 2017-05-14

 2 14May2017 2017-05-14

 3 UNMAY2017 2017-05

 4 UNUNK2017 2017

 5 14UNK2017 2017

 6 14MAYUNKN

 7 01JAN2017 2017-01-01

 8 99JAN2017 2017-01-99

 9 31FEB2017 2017-02-31

Output 1: Actual output from a PROC PRINT statement of data set two.

The actual output shown in Output 1 is consistent with the target output. However, sometimes missing

day is indicated with a strictly numerical string, e.g. “99”. The convertdate() function had not been

defined to detect such missingness codes. As a result, the actual output displays nonexistent date values
such as “2017-01-99”.

Converting Non-Imputed Dates for SDTM Data Sets With PROC FCMP, continued

6

PREVENTING THE OUTPUT OF NONEXISTENT DATES

How may we prevent the output of such nonexistent dates? Aside from submitting queries to data
management, omitting the day (e.g. “2017-01” and “2017-02”) might be an option.

Two approaches of modifying the convertdate() function to prevent the output of such nonexistent

dates are presented below.

METHOD 1: COMPARE WITH THE LAST EXISTING DATE OF THE SAME MONTH

We can modify the convertdate() function to prevent nonexistent dates by adding lines of code

beneath the line in gray (with footnote reference [7]) as follows:

 outdate = yyyy || '-' || strip(mm) || '-' || dd;

 year = input(yyyy, 8.);

 month = input(mm, 8.);

 day = input(dd, 8.);

 month_start = mdy(month, 1, year);

 month_end = intnx('month', month_start, 0, 'end');

 month_lastday = day(month_end);

 if day < 1 or day > month_lastday then outdate = yyyy || '-' || strip(mm);

This code compares the input date value with the last existing date of the month (as determined by the

handy intnx() function). If the input date value has a day value less than 1 or a day value that exceeds

the last existing day of that month, then the code omits the day value from the output. This method yields
the output shown in Output 2 on the following page.

 date_ date_

 Obs date9 iso8601

 1 14MAY2017 2017-05-14

 2 14May2017 2017-05-14

 3 UNMAY2017 2017-05

 4 UNUNK2017 2017

 5 14UNK2017 2017

 6 14MAYUNKN

 7 01JAN2017 2017-01-01

 8 99JAN2017 2017-01

 9 31FEB2017 2017-02

Output 2: Output from a PROC PRINT statement of data set two after modification of

convertdate()to prevent the output of nonexistent dates (by either Method 1 or Method 2).

Changes from Output 1 are in boldface text.

Converting Non-Imputed Dates for SDTM Data Sets With PROC FCMP, continued

7

METHOD 2: CHECK IF CONVERSION TO A NON-MISSING NUMERIC VALUE IS POSSIBLE

Another way to prevent nonexistent dates is to add lines of code beneath the line in gray (with footnote

reference [7]) which check whether a (complete) character date value can be converted to a non-

missing numeric date value. A character date value that is complete but invalid will yield a missing
numeric date value.

 outdate = yyyy || '-' || strip(mm) || '-' || dd;

 outdate_numeric = input(outdate, anydtdte10.);

 if outdate_numeric < .z then outdate = yyyy || '-' || strip(mm);

This modification yields the same output as the output by Method 1, shown above in Output 2.

In SAS 9.2, this modification also yields the following log warning:

WARNING: Unable to load TKFormat for ANYDTDTE10., proceeding with MVA

format definition.

According to the SAS Knowledge Base, this type of log warning may be ignored. (See SAS Knowledge
Base, Problem Notes 17881 and 20545: http://support.sas.com/kb/17/881.html;
http://support.sas.com/kb/20/545.html.)

If we still try to remove the warning replacing anydtdte10 with ??anydtdte10, the result will be a non-

working function with log error messages. In other words, PROC FCMP does not accommodate allow the

use of the format modifier ?? (which prevents log error messages when used in a DATA step).

This log warning does not appear in SAS 9.3 or SAS 9.4.

Also, if anydtdte10 is replaced with anydtdte, the output will vary across different versions of SAS. In

SAS 9.2, the output will be the same as Output 2. SAS 9.3 and 9.4, on the other hand, will drop the day if

it has a leading zero, i.e. convert “15JAN2017” into “2017-01”. (See Output 3.)

 date_ date_

 Obs date9 iso8601

 1 14MAY2017 2017-05-14

 2 14May2017 2017-05-14

 3 UNMAY2017 2017-05

 4 UNUNK2017 2017

 5 14UNK2017 2017

 6 14MAYUNKN

 7 01JAN2017 2017-01

 8 99JAN2017 2017-01

 9 31FEB2017 2017-02

Output 3: SAS 9.4 output from a PROC PRINT statement of data set two after modification by

Method 2 and with anydtdte. replacing anydtdte10. Note that the day value drops out entirely

if it has a leading zero.

METHOD 1 VERSUS METHOD 2

The author recommends using Method 1 rather than Method 2, as Method 2 can yield inconsistent results
across different versions of SAS.

http://support.sas.com/kb/17/881.html
http://support.sas.com/kb/20/545.html

Converting Non-Imputed Dates for SDTM Data Sets With PROC FCMP, continued

8

CAVEATS

Some DATA step syntax cannot be used within a FCMP definition. Examples are the format modifier ??

(as mentioned above) and the IN operator. (See SAS Knowledge Base, Note 51685:
http://support.sas.com/kb/51/685.html.)

The Base SAS Procedures Guide lists other differences between what a DATA step allows and what
PROC FCMP allows.

CONCLUSION

SDTM data sets must store and display date values with ISO8601 formats (such as YYYY-MM-DD).
When raw data sets come with date values with non-ISO8601 formats, it is necessary to convert these
date values into ISO8601 formats. This conversion must avoid imputation to comply with FDA guidelines
on SDTM data sets.

The SAS user can define a custom function using PROC FCMP to carry out routine tasks. This paper
presented an example of a PROC FCMP function that converts complete and partial dates of the form
DDMMMYYY to an ISO8601 format while avoiding imputation of partial dates. The author hopes this
example will serve as a useful reference for SAS programmers developing their own PROC FCMP
functions.

REFERENCES

 Carpenter, Arthur L. 2013. “Using PROC FCMP to the Fullest: Getting Started and Doing More.”
Proceedings of the Pharmaceutical SAS Users Group (PharmaSUG) 2013 Conference. Cary, NC:
SAS Institute Inc. Available at http://www.pharmasug.org/proceedings/2013/HT/PharmaSUG-2013-
HT02.pdf.

 Clinical Data Interchange Standards Consortium (CDISC). 2013. CDISC SDTM Implementation
Guide. Version 3.2. (November 26, 2013)

 Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER), 2011.
“CDER Common Data Standards Issues Document.” Version 1.1 (December 2011).
http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/FormsSubmissionRequirements/
ElectronicSubmissions/UCM254113.pdf

 SAS Institute Inc. 2013. Base SAS® 9.4 Procedures Guide. Cary, NC: SAS Institute Inc. Chapters 22
and 23. Available at http://support.sas.com/documentation/cdl/en/proc/68954/PDF/default/proc.pdf.

RECOMMENDED READING

The following papers have examples of PROC FCMP functions useful for programming ADaM (Analysis
Data Model) data sets, including functions that impute partial dates.

 Adams, John H. 2010. “The new SAS 9.2 FCMP Procedure, what functions are in your future?”
Proceedings of the Pharmaceutical SAS Users Group (PharmaSUG) 2010 Conference. Cary, NC:
SAS Institute Inc. Available at http://www.lexMAYsen.com/pharmasug/2010/ad/ad02.pdf.

 Fan, Jueru. 2017. “Trivial Date Tasks? PROC FCMP Can Help.” Proceedings of the Pharmaceutical
SAS Users Group (PharmaSUG) 2017 Conference. Cary, NC: SAS Institute Inc. Available at
http://www.pharmasug.org/proceedings/2017/QT/PharmaSUG-2017-QT08.pdf.

ACKNOWLEDGMENTS

The author gratefully acknowledges the following individuals for their help in preparing an earlier version
of this paper (presented at SESUG 2016): Hunter Vega provided feedback on drafts of the manuscript
and tested the function in the main example. Habtamu Benecha aided in running code on different
versions of SAS.

http://support.sas.com/kb/51/685.html
http://www.pharmasug.org/proceedings/2013/HT/PharmaSUG-2013-HT02.pdf
http://www.pharmasug.org/proceedings/2013/HT/PharmaSUG-2013-HT02.pdf
http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/FormsSubmissionRequirements/ElectronicSubmissions/UCM254113.pdf
http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/FormsSubmissionRequirements/ElectronicSubmissions/UCM254113.pdf
http://support.sas.com/documentation/cdl/en/proc/68954/PDF/default/proc.pdf
http://www.lexjansen.com/pharmasug/2010/ad/ad02.pdf
http://www.pharmasug.org/proceedings/2016/QT/PharmaSUG-2016-QT08.pdf

Converting Non-Imputed Dates for SDTM Data Sets With PROC FCMP, continued

9

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Noory Kim
Enterprise: CROS NT LLC
Address: 501 Eastowne Drive
City, State ZIP: Chapel Hill, NC 27514
Work Phone: 919-929-5015
Fax: 919-928-9320
E-mail: noory dot kim at crosnt dot com
Web: http://crosnt.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://crosnt.com/

Converting Non-Imputed Dates for SDTM Data Sets With PROC FCMP, continued

10

APPENDIX

Below is the code for this paper in its entirety. The names of functions modified using Method 1 or 2 have
been slightly changed to distinguish them from the main example. Differences among the functions are
displayed in boldface type.

proc format;

 value $month

 'JAN' = '01'

 'FEB' = '02'

 'MAR' = '03'

 'APR' = '04'

 'MAY' = '05'

 'JUN' = '06'

 'JUL' = '07'

 'AUG' = '08'

 'SEP' = '09'

 'OCT' = '10'

 'NOV' = '11'

 'DEC' = '12'

 other = ' '

 ;

run;

proc fcmp outlib=work.functions.conversions;

 /* MAIN EXAMPLE */

 function convertdate(indate $) $;

 length outdate $10;

 if indate ne ' ' then do;

 yyyy = substr(indate, 6, 4);

 mmm = upcase(substr(indate, 3, 3));

 dd = substr(indate, 1, 2);

 if notdigit(yyyy) = 0 then do;

 mm = put(mmm, $month.);

 if mm ne ' ' then do;

 if notdigit(dd) = 0 then do;

 outdate = yyyy || '-' || strip(mm) || '-' || dd;

 end;

 else outdate = yyyy || '-' || strip(mm);

 end;

 else outdate = yyyy;

 end;

 else outdate = ' ';

 end;

 else outdate = ' ';

 return(outdate);

 endsub;

Converting Non-Imputed Dates for SDTM Data Sets With PROC FCMP, continued

11

 /* MODIFICATIONS TO PREVENTING THE OUTPUT OF NONEXISTENT DATES */

 /* METHOD 1: COMPARE WITH THE LAST EXISTING DATE OF THE SAME MONTH */

 function convertdate_modified_one(indate $) $;

 length outdate $10;

 if indate ne ' ' then do;

 yyyy = substr(indate, 6, 4);

 mmm = upcase(substr(indate, 3, 3));

 dd = substr(indate, 1, 2);

 if notdigit(yyyy) = 0 then do;

 mm = put(mmm, $month.);

 if mm ne ' ' then do;

 if notdigit(dd) = 0 then do;

 outdate = yyyy || '-' || strip(mm) || '-' || dd;

 year = input(yyyy, 8.);

 month = input(mm, 8.);

 day = input(dd, 8.);

 month_start = mdy(month, 1, year);

 month_end = intnx('month', month_start, 0, 'end');

 month_lastday = day(month_end);

 if (day < 1) or (day > month_lastday) then do;

 outdate = yyyy || '-' || strip(mm);

 end;

 end;

 else outdate = yyyy || '-' || strip(mm);

 end;

 else outdate = yyyy;

 end;

 else outdate = ' ';

 end;

 else outdate = ' ';

 return(outdate);

 endsub;

 /*METHOD 2: CHECK IF POSSIBLE TO CONVERT TO NON-MISSING NUMERIC VALUE*/

 function convertdate_modified_two(indate $) $;

 length outdate $10;

 if indate ne ' ' then do;

 yyyy = substr(indate, 6, 4);

 mmm = upcase(substr(indate, 3, 3));

 dd = substr(indate, 1, 2);

 if notdigit(yyyy) = 0 then do;

 mm = put(mmm, $month.);

 if mm ne ' ' then do;

 if notdigit(dd) = 0 then do;

 outdate = yyyy || '-' || strip(mm) || '-' || dd;

 outdate_numeric = input(outdate, anydtdte10.);

 if outdate_numeric < .z then do;

 outdate = yyyy || '-' || strip(mm);

 end;

Converting Non-Imputed Dates for SDTM Data Sets With PROC FCMP, continued

12

 end;

 else outdate = yyyy || '-' || strip(mm);

 end;

 else outdate = yyyy;

 end;

 else outdate = ' ';

 end;

 else outdate = ' ';

 return(outdate);

 endsub;

run;

options cmplib=(work.functions);

data one;

 infile cards;

 input date_date9 $9.;

 cards;

14MAY2017

14May2017

UNMAY2017

UNUNK2017

UNUNKUKUK

14UNK2017

14MAYUNKN

01JAN2017

99JAN2017

31FEB2017

;

data two;

 set one;

 length date_iso8601 date_iso8601_m1 date_iso8601_m2 $10;

 date_iso8601 = convertdate(date_date9);

 date_iso8601_m1 = convertdate_modified_one(date_date9);

 date_iso8601_m2 = convertdate_modified_two(date_date9);

run;

proc print;

run;

