
PharmaSUG 2017 – TT02

Building Intelligent Macros:
Using Metadata Functions with the SAS® Macro Language

Arthur L. Carpenter
California Occidental Consultants, Anchorage, AK

ABSTRACT
The SAS macro language gives us the power to create tools that to a large extent can think for themselves. How often
have you used a macro that required your input and you thought to yourself “Why do I need to provide this information
when SAS already knows it?” SAS may well already know what you are being asked to provide, but how do we direct our
macro programs to self-discern the information that they need? Fortunately there are a number of functions and other
tools within SAS that can intelligently provide our programs with the ability to find and utilize the information that they
require.

If you provide a variable name, SAS should know its type and length; given a data set name, the list of variables should
be known; given a library or libref, the full list of data sets that it contains should be known. In each of these situations
there are functions that can be utilized by the macro language to determine and return these types of information.
Given a libref these functions can determine the library’s physical location and the list of all the data sets it contains.
Given a data set they can return the names and attributes of any of the variables that it contains. These functions can
read and write data, create directories, build lists of files in a folder, and even build lists of folders.

Maximize your macro’s intelligence; learn and use these functions.

KEYWORDS
Metadata, macro language, DATA step functions, %SYSFUNC, OPEN, ATTRN, ATTRC, FETCH, CLOSE

INTRODUCTION
There are a number of ways for a macro to determine information about the operating system, the SAS environment,
libraries and the files that they contain, data sets and their variables, and variable attributes and the values that they
contain (Carpenter, 2016). Among others these include the use of the X statement (and related statements and
functions), DICTIONARY tables, SASHELP views, data sets created by PROC CONTENTS, system options, and automatic
macro variables (Carpenter and Rosenbloom, 2016). Of these various approaches DATA step functions tend to be fastest
and as a bonus they support the creation of user defined macro functions.

There are also a number of DATA step functions that can be used to obtain information about the SAS environment.
Although used less often in the DATA step itself, these functions are invaluable to the macro programmer. Collectively
they are often referred to as metadata functions, because they tend to return information about data sets and locations.
In fact they actually have a much broader list of capabilities that extends beyond the metadata. These functions can also
read and write data; create, count, and eliminate both directories and files; return path and location information; and
much more. Of these functions, some of the more commonly used are highlighted here.

Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language (continued)

2

Within the macro language, these DATA step functions are typically accessed using the %SYSFUNC or %QSYSFUNC macro
functions. For each of these functions, the first argument is the DATA step function (along with its own arguments) that
is to be executed, and an optional
format in the second argument to
control the appearance of the
value returned by the function in the first argument. In this example of a TITLE statement, the DATE function is called. It
returns the current date as a SAS date, and this value is then formatted using
the WORDDATE18. format. The generated TITLE statement will then contain
the formatted date.

Most of the macros in this paper which demonstrate these DATA step functions are themselves macro functions. As
macro functions the macro itself returns a value. If you are unfamiliar with the coding techniques used to create user
written macro functions, you may want to review Carpenter, 2002 for more detail than will be described here.

VIEWING DATA SET METADATA
Metadata is data about the data set. Each SAS data set automatically stores, as a part of the data set, information about
the data set itself, hence metadata. This is the information that you see when you execute a PROC CONTENTS.
Although of interest to the DATA step programmer, access to the metadata can provide huge benefits to the macro
programmer.

Typically the CONTENTS procedure is used just to display the metadata, however it can also be used to store the

metadata in a data set as well. This data set has one row per variable
and it contains information on the individual variables as well as data
set specific information such as the number of observations in the
data set. A portion of the metadata data set generated by CONTENTS
for the SASHELP.CLASS data set is shown below.

One row per variable per data set can be obtained by using data=sashelp._all_. This is similar to the
information contained in the view SASHELP.VCOLUMNS which is shown in the next example.

proc contents data=sashelp.class
 out=classvar
 noprint;
 run;

title4 "%qtrim(%qleft(%qsysfunc(date(),worddate18.)))";

title4 "October 22, 2016";

Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language (continued)

3

Without executing a PROC CONTENTS, similar information can be found in the SASHELP view VCOLUMNS, however this
view has one row per variable per data set per library known to SAS.

Almost the same information can also be surfaced through the use of the SQL DICTIONARY table COLUMNS. The

DESCRIBE statement can be used to list the names of the
columns, while the SELECT statement can write the values held
in the table.

Both SASHELP.VCOLUMN and DICTIONARY.COLUMNS are
created when they are requested. This means that they will
always contain current information. This also means that there
can be a significant wait while these tables are created. The
metadata functions described in this paper do not have this

limitation.

Viewing the metadata is oftentimes sufficient, but what if during the execution of a program we need to gather some
metadata item and use it in the program? How can we have our program do this dynamically? Yes we can! Enter the
DATA step’s metadata functions.

DATA SET METADATA FUNCTIONS
The DATA step metadata functions operate directly against the metadata of a SAS data set. This means that we can
avoid the expenditure of resources that are needed to create the SASHELP.VCOLUMN view or the
DICTIONARY.COLUMNS table. It also means that through the use of these functions we can dynamically gather and use
metadata in our programs directly.

Since these are DATA step functions, when they are to be used with the macro language you will need to invoke them
through the use of the %SYSFUNC or %QSYSFUNC macro functions. This allows the DATA step function to execute
during macro execution and to return the value to the macro facility.

options nolabel;
title1 "DICTIONARY.COLUMNS";
proc sql;
 describe table dictionary.columns;
 select *
 from dictionary.columns
 where memname='CLASS';
 quit;

Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language (continued)

4

Opening the Metadata – making it available for our use
The data set’s metadata is not automatically available for our use. Before we can access it we need to get “permission”
to look at the data set’s descriptor record which contains the metadata. We gain this access through the use of the
OPEN function. This function checks to see if the data set is currently available for our use. If the data set is available,
the OPEN function returns a non-zero data set identifier. We never really care what the identifier is, as long as it is not
zero (which would indicate that we have been denied access to the data set). After we have utilized the information in
the metadata we need to release the data set so that other programs or programmers can use it. We do this by closing
our access through the use of the CLOSE function.

The macro %META shown here is just a shell that highlights the use of the OPEN and CLOSE functions. These functions

will almost always be present when working with a data
set’s metadata.
 ➊ The OPEN function is used to gain access to the data
set’s metadata. When the data set is successfully opened
for use, it returns a data set identifier, which, in this
macro, is stored in the local macro variable &DSID. When
the data set is not opened successfully the value returned
is a 0. This allows us to test whether or not the metadata
is available.
➋ After we have finished using the data set, it is closed

with the CLOSE function. This function returns a 0 for success. In this example macro the identifier is also cleared by
replacing it with the value returned by the CLOSE function.

The data set identifier that is returned by the OPEN function is used by many of the other metadata functions. Having a
unique identifier associated with a given data set is necessary as you may wish to open the metadata of more than one
data set at a time. Usually this identifier will be stored in a local macro variable. Remember although we need to store
the value of the identifier, the value itself is rarely of specific interest.

Variable Information Functions
As the name implies, variable information functions return information about the variables in the data set. These
functions are commonly used when you need to ask questions such as; “Is the ABC variable on this data set?”, “Does the
ABC variable have a format?”, and “What is the type of the ABC variable?”. The functions of this type all start with the
letters ‘VAR’, however not all functions that start with ‘VAR’ fit the category.

Function Name Returns the:
VARFMT Variable’s assigned format.
VARINFMT Variable’s informat.
VARLABEL Label of a variable.
VARLEN Length of a variable.
VARNAME Name of a SAS data set variable.
VARNUM Number of a variable's position.
VARTYPE Data type of a SAS data set variable (C or N)

Table 1: Variable Information Functions

One of the most commonly accessed metadata attributes is information about variable names and the existence of
variables on a data set. The two functions that apply specifically to the variable name is VARNAME and VARNUM. Given

%macro meta(dsn=class);
 %local dsid;
 %let dsid = %sysfunc(open(&dsn)); ➊
 %if &dsid %then

<<<<. . . .macro statements. . . .>>>>

 %let dsid = %sysfunc(close(&dsid)); ➋
%mend meta;

Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language (continued)

5

a variable number (position on the PDV), the VARNAME function returns the name of the variable. The VARNUM
function is the opposite as it provides the position number given the variable name.

The macro %VAREXIST checks to see if a specific variable exists on a specified data set. The name of the variable of

interest is passed to the VARNUM function,
which in turn returns the variable’s position.
If the variable does not exist on the data set
the VARNUM function returns a 0.
➊ The first argument of the VARNUM
function is the data set identifier (obtained
from the OPEN function), and the second is
the name of the variable of interest. In this
example the value returned by the VARNUM
function is stored in the local macro variable
&VNUM.

➋ The macro %VAREXIST is written as a macro function. The value returned by VARNUM is passed out of the macro,
and the macro is said to resolve to the returned value. This means that the macro call can be used in other statements,
such as an %IF, to make decisions about further
processing.

Data Set Attribute Functions
When a data set is created or modified a number of attributes of the data set are stored in the metadata. These
attributes include things like:

• when the data set was created
• how many variables it contains
• how many observations it contains (there can be more than one answer)
• data set size
• status of indexes, WHERE clauses, and passwords.

The two functions that return this type of attribute information are the ATTRC (returns character information) and
ATTRN (returns numeric information) functions. Each of these functions can return a number of different attributes that
can be selected by the user. These requests are made by specifying an attribute as the second argument to the
function. Some of the available attribute request options are shown in Table 2.

Function Name Attribute Request Returns the:
ATTRC COMPRESS Compression status
 ENGINE Name of the engine used to create the data set
 LABEL Data set’s label
 LIB Location of the data set, the Library (libref) name
 MEM, DSNAME Name of the data set
 SORTEDBY List of BY variables used to sort the data
 TYPE Data set type

ATTRN CRDTE, MODTE Datetime the data set was created or last modified
 ISINDEX, INDEX Status on indexes for this data set

%macro varexist(dsn=class,varname=age);
%local dsid vnum;
%let vnum=0;
%let dsid = %sysfunc(open(&dsn));
%if &dsid %then %do;
 %let vnum = %sysfunc(varnum(&dsid,&varname)); ➊
 %let dsid = %sysfunc(close(&dsid));
%end;
&vnum ➋
%mend varexist;

%if %varexist(dsn=&dset,varname=&var) %then %do;

Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language (continued)

6

 NDEL, NLOBS,
NLOBSF, NOBS

Number of observations in the data set based on various
conditions (primarily whether or not to count those marked for
deletion)

 NVAR Number of variables in the data set
 various Read, write, and alter password status

Table 2: Data Set Attribute Functions

The use of the ATTRN function is demonstrated in the macro %VARLIST which creates a list of variable names of a
specified type (numeric or character) for the data set of interest. The user passes in the data set name and whether or

not to select a specific
type of variable. The
macro then returns the
list of variables (or a
blank if no variables
meet the criteria.
➊ The ATTRN function is
used with the NVARS
attribute to request the
number of variables in
the data set. The index
(&I) for the %DO loop
will then cycle from 1 to
the number of variables.
The loop index (&I) is
used to identify a specific

variable in both the VARTYPE function ➋ and the VARNAME function ➌.
➋ The VARTYPE function will return the type of the &Ith variable. The returned value is either a C or N and this value is
compared to the requested type stored in &VTYPE.
➌ The VARNAME function returns the name of the &ith variable. The name of each variable that meets the criteria is
added to the growing list stored in &VARLIST.
➍ Once the list of variables has been created it is passed
out of the macro.

The SAS Log to the right shows how the %VARLIST macro
could be used to create a list of variable names of varying
types.

%macro varlist(dsn=, vtype=);
 %local varlist dsid i;
 %let vtype = %upcase(&vtype);
 %let dsid = %sysfunc(open(&dsn));

 %if &dsid %then %do;
 %do i=1 %to %sysfunc(attrn(&dsid,nvars)); ➊
 %if %sysfunc(vartype(&dsid,&i))➋=&vtype or &vtype= %then
 %let varlist=&varlist %sysfunc(varname(&dsid,&i)); ➌
 %end;

 %let dsid = %sysfunc(close(&dsid));
 %end;
 &varlist ➍
%mend varlist;

59 %put %varlist(dsn=sashelp.class,vtype=n);
Age Height Weight
60 %put %varlist(dsn=sashelp.class,vtype=c);
Name Sex
61 %put %varlist(dsn=sashelp.class);
Name Sex Age Height Weight

Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language (continued)

7

Because the number of observations in a data set is stored in the data set’s metadata, the fastest way to determine the
number of observations is to access the
metadata directly using the macro language.
The data set is opened and the ATTRN function
is used with the NLOBS (number of non-
deleted observations) to return the number of
observations contained in the data set.
➎ The data set is opened. If the data set
cannot be opened, this macro returns a dot (.)
for the number of observations.
➏ The NLOBS attribute is used with the ATTRN
function to return the number of non-deleted
observations. This takes into account any
observations that may have been marked for
deletion during an interactive session using
PROC FSEDIT or a similar tool.
➐ The data set is closed after retrieving the
value of interest.
➑ If the data set is not available, a warning
along with the reason (using the SYSMSG
function) is written to the SAS Log.
➒ The number of observations is returned by
the %OBSCNT macro.

Notice that all the macro variables created by the %OBSCNT macro are forced onto the local symbol table.

READING DATA USING FUNCTIONS
Although not a common requirement, it is possible to both read and write data held in a SAS data set using the macro
language. Once a data set has been opened, you can read observations both sequentially and using random access
techniques.

Function Name Action:
CUROBS Current observation number
FETCH Reads the next non-deleted observation from a SAS data set into

the Data Set Data Vector (DDV)
FETCHOBS Reads a specified observation from a SAS data set into the Data

Set Data Vector (DDV)
GETVARN Returns the value of a numeric variable
GETVARC Returns the value of a character variable
NOTE/DROPNOTE NOTE stores a unique observation ID number
POINT Locates the observation identified by NOTE
REWIND Returns the observation pointer to the beginning of the data set
CALL SET Links data set variables to macro variables of the same name

Table 3: Data Access Functions

%macro obscnt(dsn);
%local nobs dsnid rc;
%let nobs=.;

%* Open the data set of interest;
%let dsnid = %sysfunc(open(&dsn)); ➎

%* If the OPEN was successful get the;
%* number of observations and CLOSE &dsn;
%if &dsnid %then %do;
 %let nobs=%sysfunc(attrn(&dsnid,nlobs)); ➏
 %let rc =%sysfunc(close(&dsnid)); ➐
%end;
%else %do;
 %put WARNING: Unable to open &dsn;
 %put %sysfunc(sysmsg()); ➑
%end;

%* Return the number of observations;
&nobs ➒
%mend obscnt;

Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language (continued)

8

The macro %SYMCHECK (Carpenter, 2016, Exp. 9.2.1b) can be used to determine if a given macro variable is currently
defined on a specific symbol table. The view SASHELP.VMACRO is used as input for the macro. As it is opened, a WHERE
clause is used to limit the read to the specific row of interest.

➊ The view is opened using
a WHERE= data set option to
limit the number of rows
available – there should be
exactly one row if the macro
variable of interest exists
within the specified scope.
➋ The FETCH function is
used to determine if a row
meets the criteria in the
WHERE clause. The NOSET
attribute specifies that the
values stored in the view are
not to be transferred to
macro variables.

➌ A successful read indicates that the row exists, and the FETCH function returns a 0 for success.
➍ &RC will contain a 0 if the specified macro variable does not exist, and a 1 if it does. Regardless this value is returned
by the macro.

The %M_ALL_DATA macro shown next, can be used to mimic the functionality of the DATA step’s CALL EXECUTE routine.
In this macro both the FETCHOBS function and the SET routine are used (Carpenter, 2016, Exp. 9.2.2d) to build the

macro variables. In fact it creates a macro variable for
each variable in the named data set, and these macro
variables are then populated using the data in the data
set.
➎ The SET routine is used to match the names of the
variables in the data set with the names of the macro
variables to be created.
➏ The %DO loop is used to step through all of the
observations in the incoming data set (there will be
NLOBS of them).
➐ A FETCHOBS function is used to read the next
observation from the data set. Because of the use of
the SET routine ➎, the values of the variables read
from the data set are automatically written to
corresponding macro variables of the same name.
➑ A typically usage of this macro would be to call

another macro at this point that would utilize the newly created observation specific macro variables.

%macro symcheck(mscope,mvname);
 %* Determine if a specific macro variable
 %* has been defined in a specific scope.;
 %local fetchrc dsnid rc;
 %let rc = 0;
 %let dsnid = %sysfunc(open(sashelp.vmacro ➊
 (where=(scope=%upcase("&mscope") and
 name=%upcase("&mvname"))),i));
 %let fetchrc = %sysfunc(fetch(&dsnid,noset)); ➋
 %if &fetchrc eq 0 %then %let rc=1; ➌
 %let dsnid = %sysfunc(close(&dsnid));
 &rc ➍
%mend symcheck;

%macro M_all_data(dsn=);
%local dsid i nobs;
%let dsid = %sysfunc(open(&dsn));

%let nobs= %sysfunc(attrn(&dsid,nlobs));
%syscall set(dsid); ➎
%do i = 1 %to &nobs; ➏
 %let rc=%sysfunc(fetchobs(&dsid,&i)); ➐
 %* Local process goes here; ➑
 %put ****** Observation &i *********;
 %put _local_;
%end;
%let dsid = %sysfunc(close(&dsid));
%mend m_all_data;

Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language (continued)

9

For the first observation in the SASHELP.CLASS data set, the SAS Log
shows that a local macro variable has been created for each variable in
the incoming data set. The values of those macro variables correspond
to the values of the data set variables.

The important thing to note in this example is that for each variable in
the data set, a macro variable has been created with the same name
and value as the variable. This can be very advantageous when there
are a large number of macro variables that need to be created, and
even more especially so if we do not necessarily know the names of the
macro variables. This is demonstrated in the following example which
calls the macro %SHOE_RPT once for each observation in a control file,
and demonstrates the utility of this approach.

A control file is constructed with the desired attributes. In this case the two variables in the WORK.SHOE_RPT data set
will become the parameters that will be
used with a reporting macro named
%SHOE_RPT. This macro depends on two
macro variables (®ION and &PRODUCT).

To take advantage of the control data set
(WORK.SHOE_RPT) the macro %M_ALL_DATA has been
slightly modified at ➒. It will now call a macro with the
same name as the name of the control data set
(SHOE_RPT), and since it is called inside the %DO loop, it

will be called
once for each
observation.
For slippers
sold in Asia the
report to the
left is
generated.

➒ The macro variable &DSN will resolve before the SAS attempts to call the

macro. Because &DSN will resolve to SHOE_RPT %&DSN will resolve to %SHOE_RPT, which of course is interpreted as a
macro call. The macro %SHOE_RPT will execute using the current values of ®ION and &PRODUCT, which are both
updated for each iteration of the %DO loop and therefore for each observation in the control file.

In a blog Leonid Batkhan (Batkhan, 2016) uses the SET routine along with the FETCH function to read variable attributes.

20 %m_all_data(dsn=sashelp.class)
****** Observation 1 *********
M_ALL_DATA AGE 14
M_ALL_DATA DSID 1
M_ALL_DATA DSN sashelp.class
M_ALL_DATA HEIGHT 69
M_ALL_DATA I 1
M_ALL_DATA NAME Alfred
M_ALL_DATA NOBS 19
M_ALL_DATA RC 0
M_ALL_DATA SEX M
M_ALL_DATA WEIGHT 112.5

%macro shoe_rpt;
title Sales Report for &product in ®ion;
proc report
data=sashelp.shoes(where=(region="®ion" and
 product="&product"));
 column subsidiary sales;
 rbreak after / summarize;
 run;
%mend shoe_rpt;

%macro M_all_data(dsn=);
%local dsid i nobs;
%let dsid = %sysfunc(open(&dsn));

%let nobs= %sysfunc(attrn(&dsid,nlobs));
%syscall set(dsid);
%do i = 1 %to &nobs;
 %let rc=%sysfunc(fetchobs(&dsid,&i));
 %&dsn ➒
%end;
%let dsid = %sysfunc(close(&dsid));
%mend m_all_data;
%m_all_data(dsn=shoe_rpt)

Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language (continued)

10

WORKING WITH SAS FILES (LIBRARIES, DATA SETS, AND CATALOGS)
Creating and maintaining libraries of SAS files, like data sets and catalogs, can also be managed using functions. While
these functions do not use the metadata of SAS data sets, they return information about the libraries – effectively
metadata about the directory. These functions are often used in conjunction with those already described.

Function Name Action:
CEXIST, EXIST Whether or not the entity exists
LIBNAME Establish a libref
LIBREF Check for libref existence
PATHNAME Return the physical path for a libref or fileref
RENAME Rename a data set or catalog

Table 4: SAS File Functions

When you need to work with libraries of SAS files (data sets or catalogs) or with SAS files as entities, the functions in
Table 4 can be of assistance. The LIBNAME and LIBREF functions can be used to establish or check the existence of a
library. While the CEXIST and EXIST functions are used to determine whether or not a catalog or data set exists.

The PATHNAME function returns a physical path given a libref or a fileref. In this example a series of data sets are to be
copied from a SAS data directory with a libref of PROJMETA into an Excel workbook using the PCFILES engine. Because
we want to create the workbook in the same directory as the original data, the PATHNAME function is used to return the
current path to the libref PROJMETA.

➊ The PCFILES
interpretation engine is
selected for the new libref.
➋ The PATHNAME
function is used to return
the physical path used by
the PROJMETA libref.
➌ The PROC DATASETS
COPY statement is used to
point to the incoming and
outgoing librefs.

➍ The SELECT statement specifies which data sets are to be copied.
➎ The libref must be cleared before the new workbook can be used.

libname toxls pcfiles ➊
 path="%qsysfunc(pathname(projmeta))➋\MyExcelData.xls";

proc datasets nolist;
 copy inlib=sashelp outlib=toxls; ➌
 select class heart prdsale; ➍
 quit;

libname toxls clear; ➎

Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language (continued)

11

In the previous example, because an existing libref is used, we know that its associated folder also exists. Often we will
be given a folder or path to use and we will need to either verify that it is valid or to create if it does not already exist.
Given a path/location, the %CHECKLIB macro uses the LIBNAME and LIBREF functions to establish or clear a libref.

➏ When only a libref is passed to
the LIBNAME function, the libref is
cleared.
➐ The LIBREF function determines
whether or not the libref is defined.
The function returns a non-zero
value if the libref does not exist.
➑ When a second argument is
present and the libref does not
already exist, the LIBNAME function
is used to establish the libref.
➒ The SYSMSG function is used to
return error messages when the
macro is unable to establish the
libref.

WORKING WITH DIRECTORIES

There are a number of functions available that have been designed to work with directories or folders in much the same
way that the functions discussed earlier work with data sets. These functions can be used to create new folders as well
as to read the names of the files within a folder.

Common approaches to working with folders include the use of the X statement or one of its equivalents (%SYSTASK,
CALL SYSTEM, etc.). Because these techniques tend to be OS dependent, they require the programmer to understand
the language/commands of the OS sub session. For the Windows OS the sub session, these are
DOS commands. You can learn more about DOS commands by using the help command or by
pairing help with the name of a command to get command specific help.

Here the X statement is used to create a Windows directory (using the MD command), and to write a list of SAS
programs and data sets to a text file (using the DIR command).

➊ The MD command is used
to create a directory.
➋ The DIR command is used

to write the names of the files that contain SAS in the extension to the text file PGMLIST.TXT.

%macro checklib(libref=,libpath=);
 %local rc;
 %if &libpath= %then %do;
 %* Clear this libref;
 %let rc=%sysfunc(libname(&libref)); ➏
 %end;
 %else %if %sysfunc(libref(&libref)) ➐ ne 0 %then %do;
 %* Establish this libref;
 %let rc=%sysfunc(libname(&libref,&libpath)); ➑
 %put %sysfunc(sysmsg());
 %end;
 %else %do;
 %sysfunc(sysmsg()); ➒
 %put WARNING: LIBREF not reassigned;
 %end;
%mend checklib;

x md "c:\temp\test"; ➊
x dir "c:\temp*.sas" /o:n /b > "c:\temp\test\pgmlist.txt"; ➋

x help;
x help md;

Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language (continued)

12

The DATA step’s file and directory functions allow us to accomplish the same basic types of tasks as the X statement
without resorting to OS specific syntax and without stepping out of the macro language. Some of the more common
functions of this type are shown in Table 5.

Function Name Action:
DOPEN and DCLOSE Open and close a directory
DCREATE Create a directory or sub folder
DREAD Read the names of items within a directory
DNUM Returns the number of items in a directory
FILEEXIST Checks existence of a file or directory
MOPEN Open a file within a directory

Table 5: Directory and File Functions

The %CHECKLOC macro utilizes the FILEEXIST function to determine if a directory exists, and if it does not exist, the
DCREATE function is used to create the directory. This macro is written as a macro function that returns the full path of
the directory (whether it already exists or if it is created).

➌ The upper portion of the
path along with the folder
name is passed into the macro.
➍ The FILEEXIST function is
used to determine whether or
not the specified folder already
exists. This function returns a 0
when the folder does not
already exist.
➎ The DCREATE function can
be used to make a directory.
The first argument is the
directory name and the second

is the upper portion of the path. Notice that the call to %SYSFUNC stands alone and is not a part of a complete
statement. Because the DCREATE function returns the full path, this line will resolve to the full path, and it is this value
that is passed out of the macro.
➏ When the directory already exists, the full path is returned at this point in the macro.

➐ Because %CHECKLOC is itself written as a function that returns an existing path, it can be used in a LIBNAME
statement. Here %CHECKLOC
establishes the path
c:\temp\test (if it does not already exist), and it creates the libref TEMTEST.

%macro CheckLoc(DirLoc=, DirName=); ➌
 %* if the directory does not exist, make it;
 %if %sysfunc(fileexist("&dirloc\&dirname"))=0 %then %do;➍
 %put Create the directory: "&dirloc\&dirname";
 %* Create the directory;
 %sysfunc(dcreate(&dirname,&dirloc)) ➎
 %end;
 %else %do;
 %put The directory "&dirloc\&dirname" already exists;
 &dirloc\&dirname ➏
 %end;
%mend checkloc;

libname temtest "%checkloc(dirloc=c:\temp, dirname=test)"; ➐

Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language (continued)

13

When you want to access the names of the files in a directory you will need to open and close the directory using the
DOPEN and DCLOSE functions. Once the directory is opened, you can use the DREAD and DNUM functions to step
through the files in the directory. The %FILLIST macro writes the names of all the SAS programs in a directory to the SAS
Log.

➑ The directory specified in the
fileref passed into the macro is
opened for use. The directory
identification number is saved in
the macro variable &FID.
➒ The DNUM function returns the
number of files in the directory.
➓ The name of the &Ith file is
returned by the DREAD function,
and the names are written to the
SAS Log.
⓫ After using the directory, it is
closed.
Establishing a process for each file

in a directory would be a fairly straightforward expansion of the %FILLIST macro. Since the %DO loop will execute once
for each file in the directory, any process that depends on the name of the file will have sufficient information.

In the next macro %FILLIST is expanded in a couple of important ways. The critical elements of %FILLIST remain,
however in this macro, instead of just a %PUT, we include a process (to convert all CSV files in a directory to SAS data
sets using PROC IMPORT). Not only do we need to convert the CSV files in the current directory, but in all subdirectories
as well. This can be accomplished using a technique known as recursion.

A recursive macro is a macro that calls itself. The macro %FILLIST can be expanded to search for all files of a given type
across a directory, including sub-directories, by making it recursive. The macro %RECURSIVEIMPORTDATA shown here is
a simplified version of a macro written by Phuong Dinh of Cornerstone Research Inc. A similar, albeit even more
simplistic, version of this macro appears in the SAS 9.4 Macro Language reference manual. Ostensibly this macro
converts all CSV files in a folder (and subfolders) to SAS data sets and appends them into a single data set, however the
important take away is that it uses recursion and a series of directory and file functions to search the sub-directories as
well.

In this macro each file in a directory is examined by passing the macro the path of the directory of interest. If the file is a
CSV file it is converted to a SAS data set, however if the file is a subdirectory, the macro is called again, this time with the
path to the subdirectory. Because it is recursively called, this macro will crawl through an entire directory including all
levels of subdirectories.

%macro filList(filerf=);
%local rc fid i fname;
%let fid = %sysfunc(dopen(&filerf)); ➑
%if &fid %then %do i = 1 %to %sysfunc(dnum(&fid)); ➒
 %let fname= %sysfunc(dread(&fid,&i)); ➓
 %if %upcase(%qscan(&fname,-1,.))=SAS %then %put &fname;
%end;
%let fid = %sysfunc(dclose(&fid)); ⓫
%mend fillist;

filename saspgms 'c:\temp';
%fillist(filerf=saspgms)
filename saspgms clear;

http://support.sas.com/documentation/cdl/en/mcrolref/69726/HTML/default/viewer.htm#n0js70lrkxo6uvn1fl4a5aafnlgt.htm

Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language (continued)

14

➊ A unique fileref name is created. A level counter is used so that when the macro is called recursively the fileref
created by the inner macro will not replace a fileref that already exists. Because a fileref is restricted to 8 characters,
this macro cannot accommodate more than 1,000 levels (the highest level defaults to &LEVELCOUNTER=0).
➋ The FILEEXIST function is used to check to make sure that the requested folder exists. If it does not exist a custom
error message is written to the SAS Log and the macro terminates execution.
➌ The FILENAME function is used to establish the fileref for this folder. Notice that although the name of the fileref is
stored in &_REF, the ampersand is not used with the FILENAME function.
➍ Assuming that the fileref (&_REF) is successfully established (&_RC=0), the folder designated by the fileref &_REF is
opened for processing. The folder’s identification number is saved in &_DSID.

%macro RecursiveImportData(folder=,levelcounter=0);
 %* written by Phuong Dinh of Cornerstone Research Inc.;
 %local _rc _dsid _i _s_ext _filename _ref;
 %let _ref=filrf&levelcounter; ➊
 %if %sysfunc(fileexist(&folder)) = 0 %then %do; ➋
 %put ERROR: Folder does not exist - &folder;
 %return;
 %end;
 %let _rc = %qsysfunc(filename(_ref, &folder)); ➌

 %if &_rc=0 %then %do;
 %let _dsid = %qsysfunc(dopen(&_ref)); ➍
 %if &_dsid ne 0 %then %do;
 %do _i=1 %to %qsysfunc(dnum(&_dsid)); ➎
 %let _filename = %qsysfunc(dread(&_dsid, &_i)); ➏
 %let _s_ext = %scan(&_filename, -1, .); ➐
 %if %upcase(&_s_ext)=CSV %then %do; ➑
 %put NOTE: Importing &folder\&_filename;
 proc import file="&folder\&_filename"
 out=temp dbms=csv replace;
 getnames=yes;
 run;
 proc append base=bigdata
 data=temp force;
 run;
 %end;
 %else %if &_s_ext= &_filename %then %do; ➒
 %put This is a folder: &folder\&_filename;
 %recursiveImportData(folder=&folder\&_filename,
 levelcounter=%eval(&levelcounter+1))
 %end;
 %end;
 %end;
 %let _dsid=%qsysfunc(dclose(&_dsid)); ➓
 %end;
 %let _rc = %qsysfunc(filename(_ref)); ⓫
%mend recursiveImportData;

Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language (continued)

15

➎ When the directory is successfully opened (%_DSID ne 0), a %DO loop is used to step through all of the files in the
current folder. The number of files to be processed is returned by the DNUM function. The index of the %DO loop (&_I)
will be used by the DREAD function.
➏ The DREAD function is used to read the name of the &_Ith file. The file’s name is stored in the macro variable
&_FILENAME.
➐ The extension of the current file name is extracted using the %SCAN function. If there is no extension the name of the
file will be returned. This macro assumes that all files except folders have extensions.
➑ The file name has an extension of CSV. Import the CSV file, create a data set and append it to the growing data table.
➒ This file does not have an extension and is therefore assumed to be a sub-directory. The macro
%RECURSIVEIMPORTDATA is called with the name of the subfolder and with a level indicator increased by 1.
➓ The directory is closed using the DCLOSE function.
⓫ The fileref for this folder is cleared. Remember that the macro variable &_REF is specified without the ampersand in
the FILENAME function.

RELATED FUNCTIONS AND OTHER TOOLS
There are a number of less commonly used directory functions. Remember less commonly used does not necessarily
mean less useful. These are most useful when you want to handle the directory as an entity.

Function Name Action:
DINFO Returns information about a directory
DOPTNAME Returns directory attribute information
DOPTNUM Returns the number of attribute items

Table 6: Other Directory Functions

The macro %DIRINFO can be used to show the directory information returned by the functions in Table 6. It has been

my experience that, under
Windows at least, only a limited
amount of information is
returned. It is possible that other
operating systems and directory
structures will return more useful
information. Experiment -
execute %DIRINFO on your OS.

%macro DirInfo(fileref=);
%local dirid i rc;
%let dirid = %sysfunc(dopen(&fileref));
%if &dirid %then %do i = 1 %to %sysfunc(doptnum(&dirid));
 %let dname= %sysfunc(doptname(&dirid,&i));
 %let dinfo= %sysfunc(dinfo(&dirid,&dname));
 %put &=i &=dname &=dinfo;
%end;
%mend dirinfo;
filename my2temp 'c:\temp';
%dirinfo(fileref=mytemp)
filename my2temp;

Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language (continued)

16

Much like the functions that can be used to read and write data in a SAS data set, there are also a number of similar
functions that can be used to read and write information to and from non-SAS controlled files. Some of those functions
are shown in Table 7.

Function Name Action:
FOPEN and FCLOSE Opens and closes a specific file
FREAD Reads a row into the File Data Buffer (FDB)
FAPPEND Appends the current record to an existing file
FCOL Current position on the FDB
FGET Retrieves item from the FDB
FWRITE Writes a record to an external file
FDELETE Deletes an external file
FPOINT Contains number of the next row to read

Table 7: File I/O Functions

SUMMARY
There are a number of SAS DATA step functions that you will likely never use in the DATA step. However when paired
with the macro language through the use of the %SYSFUNC macro function, these DATA step functions have extensive
utility. Functions that are designed to work with the metadata of SAS data sets and OS folders are especially valuable.
These functions allow us to retrieve, manipulate, and use information that in many cases would be otherwise
unavailable to us; and we do not need to leave the macro language in order to take advantage of them!

ABOUT THE AUTHOR
Art Carpenter is a SAS Certified Advanced Professional Programmer and his publications list includes; five books and
numerous papers and posters presented at SAS Global Forum, SUGI, PharmaSUG, WUSS, and other regional
conferences. Art has been using SAS since 1977 and has served in various leadership positions in
local, regional, and international user groups.

Recent publications are listed on my sasCommunity.org Presentation Index page.
http://sascommunity.org/wiki/Presentations:ArtCarpenter_Papers_and_Presentations

AUTHOR CONTACT
Arthur L. Carpenter
California Occidental Consultants
10606 Ketch Circle
Anchorage, AK 99515

(907) 865-9167
art@caloxy.com
www.caloxy.com

http://sascommunity.org/wiki/Presentations:ArtCarpenter_Papers_and_Presentations
http://www.caloxy.com
http://sascommunity.org/wiki/Presentations:ArtCarpenter_Papers_and_Presentations
http://www.sas.com/store/books/categories/usage-and-reference/carpenter-s-complete-guide-to-the-sas-macro-language-third-edition/prodBK_67815_en.html

Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language (continued)

17

REFERENCES
Adams, John H., 2003, “The power of recursive SAS® macros - How can a simple macro do so much?”, presented at the
2003 SAS User Group International Conference, SUGI28. http://www2.sas.com/proceedings/sugi28/087-28.pdf

Batkhan, Leonid, 2016, “Modifying variable attributes in all datasets of a SAS library”, a SAS Blog Post,
http://blogs.sas.com/content/sgf/2016/11/25/modifying-variable-attributes-in-all-datasets-of-a-sas-library/

Carpenter, Arthur L., 2002, “Macro Functions: How to Make Them - How to Use Them”, Presented at the SAS User Group
International Conference, SUGI27. http://www2.sas.com/proceedings/sugi27/p100-27.pdf.

Carpenter, Art, 2016, Carpenter’s Complete Guide to the SAS® Macro Language, Third Edition; SAS Institute, Cary NC.
http://support.sas.com/publishing/authors/carpenter.html

Carpenter, Arthur L. and Mary F. O. Rosenbloom, 2016, “I’ve Got to Hand It to You; Portable Programming Techniques”,
presented at the Midwest SAS Users Group Conference, MWSUG, Cincinnati, OH.
http://sascommunity.org/wiki/I%E2%80%99ve_Got_to_Hand_It_to_You;_Portable_Programming_Techniques

There are a number of nice examples in the SAS 9.4 Macro Language Reference manual that have to do with reading
files within directories, start here:
http://support.sas.com/documentation/cdl/en/mcrolref/69726/HTML/default/viewer.htm#n02xowj8yuqfo4n0zzi98shu
8qup.htm

TRADEMARK INFORMATION
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries.

® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://www2.sas.com/proceedings/sugi28/087-28.pdf
http://blogs.sas.com/content/sgf/2016/11/25/modifying-variable-attributes-in-all-datasets-of-a-sas-library/
http://www2.sas.com/proceedings/sugi27/p100-27.pdf
http://support.sas.com/publishing/authors/carpenter.html
http://sascommunity.org/wiki/I%E2%80%99ve_Got_to_Hand_It_to_You;_Portable_Programming_Techniques
http://support.sas.com/documentation/cdl/en/mcrolref/69726/HTML/default/viewer.htm#n02xowj8yuqfo4n0zzi98shu8qup.htm
http://support.sas.com/documentation/cdl/en/mcrolref/69726/HTML/default/viewer.htm#n02xowj8yuqfo4n0zzi98shu8qup.htm

